1
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Kim YS, Sung DK, Kim H, Kong WH, Kim YE, Hahn SK. Nose-to-brain delivery of hyaluronate - FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. J Control Release 2019; 307:76-89. [PMID: 31229472 DOI: 10.1016/j.jconrel.2019.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023]
Abstract
The intranasal drug administration has attracted great interest as a non-invasive route allowing targeted delivery of drugs directly to the brain. However, one of the main issues in nasal drug administration is mucociliary clearance. Hyaluronate (HA) has been widely used as a mucoadhesive excipient for ocular, rectal, and vaginal delivery. Here, FG loop peptide (FGL) was conjugated to HA for improving enzymatic stability and delivery efficiency from the nose to the brain. The successful conjugation of FGL to aldehyde modified HA was confirmed by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR). The outstanding enzymatic stability of HA-FGL conjugate was also corroborated by the GPC. The HA-FGL conjugate showed enhanced binding affinity onto nasal epithelial cells. In addition, in vivo nose-to-brain delivery of HA-FGL conjugate could be visualized by using an IVIS imaging system and fluorescence microscopy. Finally, in vivo therapeutic effect of HA-FGL conjugate was successfully confirmed by histological analysis, transferase-mediated uridine 5-triphosphate-biotin nick end-labeling (TUNEL) assay, immunofluorescent staining, transmission electron microscopy (TEM), and rotarod tests in hypoxic-ischemic encephalopathy model animals.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea
| | - Won Ho Kong
- Advanced Bio Convergence Center, Pohang Techno Park 394 Jigok-ro, Nam-gu, Pohang 37668, Gyeoungbuk, Republic of Korea
| | - Young Eun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea.
| |
Collapse
|
3
|
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128:337-362. [PMID: 29733950 DOI: 10.1016/j.ejpb.2018.05.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) disorders (e.g., multiple sclerosis, Alzheimer's disease, etc.) represent a growing public health issue, primarily due to the increased life expectancy and the aging population. The treatment of such disorders is notably elaborate and requires the delivery of therapeutics to the brain in appropriate amounts to elicit a pharmacological response. However, despite the major advances both in neuroscience and drug delivery research, the administration of drugs to the CNS still remains elusive. It is commonly accepted that effectiveness-related issues arise due to the inability of parenterally administered macromolecules to cross the Blood-Brain Barrier (BBB) in order to access the CNS, thus impeding their successful delivery to brain tissues. As a result, the direct Nose-to-Brain delivery has emerged as a powerful strategy to circumvent the BBB and deliver drugs to the brain. The present review article attempts to highlight the different experimental and computational approaches pursued so far to attain and enhance the direct delivery of therapeutic agents to the brain and shed some light on the underlying mechanisms involved in the pathogenesis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Aleck Alexopoulos
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54124 Thessaloniki, Greece; Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| |
Collapse
|
4
|
Cawthray J, Wasan E, Wasan K. Bone-seeking agents for the treatment of bone disorders. Drug Deliv Transl Res 2018; 7:466-481. [PMID: 28589453 DOI: 10.1007/s13346-017-0394-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The targeting and delivery of therapeutic and diagnostic agents to bone tissue presents both a challenge and opportunity. Osteoporosis, Paget's disease, cancer, and bone metastases are all skeletal diseases whose treatment would benefit from new targeted therapeutic strategies. Osteoporosis, in particular, is a very prevalent disease, affecting over one in three women and one in five men in Canada alone with the cost to the healthcare system estimated at over $2.3 billion in 2010. Bone tissue is often considered a rigid structure when in reality there is a process of continuous remodeling that takes place via complex endocrine-regulated cell signaling pathways in addition to the signaling pathways unique to bone tissue. It is these specific boneremodeling processes that provide unique targeting opportunities but also present a number of challenges.
Collapse
Affiliation(s)
- Jacqueline Cawthray
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Ellen Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kishor Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2017; 269:88-99. [PMID: 29127000 DOI: 10.1016/j.jconrel.2017.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023]
Abstract
The systemic administration of drugs to treat bone diseases is often associated with poor uptake of the drug in the targeted tissue, potential systemic toxicity and suboptimal efficacy. In order to overcome these limitations, many micro- and nano-sized drug carriers have been developed for the treatment of bone pathologies that exhibit specific affinity for bone. Drug carriers can be functionalized with bone mineral seekers (BMS), creating a targeted drug delivery system (DDS) which is able to bind to bone and release therapeutics directly at the site of interest. This class of advanced DDS is of tremendous interest due to their strong affinity to bone, with great expectation to treat life-threatening bone disorders such as osteomyelitis, osteosarcoma or even osteoporosis. In this review, we first explain the mechanisms behind the affinity of several well-known BMS to bone, and then we present several effective approaches allowing the incorporation BMS into advanced DDS. Finally, we report the therapeutic applications of BMS based DDS under development or already established. Understanding the mechanisms behind the biological activity of recently developed BMS and their integration into advanced therapeutic delivery systems are essential prerequisites for further development of bone-targeting therapies with optimal efficacy.
Collapse
Affiliation(s)
- S G Rotman
- AO Research Institute Davos, Switzerland; MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - D W Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | - D Eglin
- AO Research Institute Davos, Switzerland
| | | |
Collapse
|
6
|
Iwase Y, Kamei N, Khafagy ES, Miyamoto M, Takeda-Morishita M. Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. Int J Pharm 2016; 510:304-10. [PMID: 27343364 DOI: 10.1016/j.ijpharm.2016.06.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 01/22/2023]
Abstract
The conjugation of therapeutic proteins to polyethylene glycol (PEG) is known as PEGylation. It improves their retention in the body and reduces the frequency of injections. Development of noninvasive delivery systems for biopharmaceuticals can improve the patients' quality of life. The present study aimed to evaluate the cell-penetrating peptides (CPPs), which act as bioenhancers, for the nasal delivery of protein drug interferon beta (IFN-β) and its PEGylated form (PEG-IFN-β). The ability of CPPs to enhance the nasal mucosal absorption of unmodified IFN-β was assessed in rats. It was shown that only d-amino acid forms of amphipathic CPPs, penetratin and PenetraMax significantly enhanced the nasal absorption of IFN-β. Especially, D-penetratin (up to 2mM) enhanced the absorption of INF-β in a dose-dependent manner. The maximum absolute bioavailability reached 8.26% following in situ nasal coadministration of IFN-β with d-penetratin (2mM). Furthermore, it was found that the coadministration of d-penetratin also facilitated the nasal absorption of PEG-IFN-β, which remained in the circulation for more than 6h. Moreover, the toxicity assessments showed no damage to the epithelial membranes after nasal administration of CPPs including penetratin and PenetraMax. Altogether, this study provides the first evidence that the noncovalent coadministration of PEGylated proteins with CPPs could be a potent strategy for the noninvasive and sustained nasal delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Yuko Iwase
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - El-Sayed Khafagy
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 415-22, Egypt
| | - Mitsuko Miyamoto
- Toray Industries, Inc., 2-1-1 Nihonbashimuromachi, Chuo-ku, Tokyo 103-8666, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
7
|
Muñoz F, Caracciolo PC, Daleo G, Abraham GA, Guevara MG. Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 ( Solanum tuberosum aspartic protease 3) forms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:1-7. [PMID: 28626641 PMCID: PMC5466107 DOI: 10.1016/j.btre.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.
Collapse
Key Words
- AMPPs, antimicrobial proteins and peptides
- ATCC, American Type Culture Collection
- Antimicrobial protein
- BSA, bovine serum albumin
- DTT, dithiothreitol
- PBS, phosphate buffered saline
- PDA, potato dextrose agar
- PEG, polyethylene glycol
- PEGylation
- Plant aspartic protease
- SDS, sodium dodecyl sulphate
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Selective cytotoxicity
- StAP3, Solanum tuberosum aspartic protease 3
- StAsp-PSI, plant-specific insert of potato aspartic protease
- hRBC, Fresh human red blood cells
- mPEG-SVA, succinimidyl valerate monomethoxy polyethylene glycol
Collapse
Affiliation(s)
- Fernando Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - Gustavo Daleo
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - M. Gabriela Guevara
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
8
|
Muralidharan P, Mallory E, Malapit M, Hayes D, Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics 2014; 6:333-53. [PMID: 24955820 PMCID: PMC4085602 DOI: 10.3390/pharmaceutics6020333] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 06/04/2014] [Indexed: 12/29/2022] Open
Abstract
Nanomedicine is making groundbreaking achievements in drug delivery. The versatility of nanoparticles has given rise to its use in respiratory delivery that includes inhalation aerosol delivery by the nasal route and the pulmonary route. Due to the unique features of the respiratory route, research in exploring the respiratory route for delivery of poorly absorbed and systemically unstable drugs has been increasing. The respiratory route has been successfully used for the delivery of macromolecules like proteins, peptides, and vaccines, and continues to be examined for use with small molecules, DNA, siRNA, and gene therapy. Phospholipid nanocarriers are an attractive drug delivery system for inhalation aerosol delivery in particular. Protecting these phospholipid nanocarriers from pulmonary immune system attack by surface modification by polyethylene glycol (PEG)ylation, enhancing mucopenetration by PEGylation, and sustaining drug release for controlled drug delivery are some of the advantages of PEGylated liposomal and proliposomal inhalation aerosol delivery. This review discusses the advantages of using PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery through the nasal and pulmonary routes as inhalation aerosols.
Collapse
Affiliation(s)
- Priya Muralidharan
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Evan Mallory
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Monica Malapit
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| | - Don Hayes
- Lung and Heart-Lung Transplant Programs, Departments of Pediatrics and Internal Medicine, the Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, the University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721-0202, USA.
| |
Collapse
|
9
|
Synthesis, characterization and in vitro evaluation of a bone targeting delivery system for salmon Calcitonin. Int J Pharm 2010; 394:26-34. [DOI: 10.1016/j.ijpharm.2010.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/05/2010] [Accepted: 04/13/2010] [Indexed: 11/18/2022]
|
10
|
Cheng W, Lim LY. Design, synthesis, characterization and in-vivo activity of a novel salmon calcitonin conjugate containing a novel PEG-lipid moiety. J Pharm Pharmacol 2010; 62:296-304. [DOI: 10.1211/jpp.62.03.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim of the study was to explore (1) the synthesis of a novel poly(ethylene glycol) modified lipid (PEG-lipid, PL) containing a chemically active tri-block linker, ε-maleimido lysine (Mal), and its conjugation with salmon calcitonin (sCT), and (2) the biophysical properties and activity of the resulting conjugate, Mal-PL-sCT, relative to the control, 2PEG-Mal-sCT, which comprises sCT conjugated with α-palmitoyl-N-ε-maleimido-l-lysine at cysteine 1 and cysteine 7, and PEG moieties at lysine 11 and lysine 18 via a conventional stepwise method.
Methods
The PEG-lipid was obtained by condensing palmitic acid derivative of ε-maleimido lysine with methoxy poly(ethylene glycol) amine. Under reductive conditions, the PEG-lipid readily reacted with sCT to yield the resultant compound, Mal-PL-sCT.
Key findings
Dynamic light scattering analyses suggested that Mal-PL-sCT and 2PEG-Mal-sCT exhibited robust helical structures with a high tendency to aggregate in water. Both compounds were more stable against intestinal degradation than sCT, although Mal-PL-sCT was less stable than 2PEG-Mal-sCT. However, 2PEG-Mal-sCT did not possess hypocalcaemic activity while Mal-PL-sCT retained the hypocalcaemic activity of sCT when it was subcutaneously injected in the rat model. Multiple functional groups may be conjugated to a peptide via a tri-block linker without the risk of obliterating the intrinsic bioactivity of the peptide.
Conclusions
The resultant novel PEG-lipid has a potential role to optimize protein and peptide delivery.
Collapse
Affiliation(s)
- Weiqiang Cheng
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Lee-Yong Lim
- Pharmacy, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
11
|
Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules 2009; 14:3754-79. [PMID: 19783956 PMCID: PMC6254717 DOI: 10.3390/molecules14093754] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 01/28/2023] Open
Abstract
Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW) of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nano- and micro-particulate carrier systems will be summarised.
Collapse
Affiliation(s)
- Yildiz Ozsoy
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34116-Universite, Istanbul, Turkey.
| | | | | |
Collapse
|
12
|
Abstract
PEGylation is a pharmaceutical technology that involves the covalent attachment of polyethylene glycol (PEG) to a drug to improve its pharmacokinetic, pharmacodynamic, and immunological profiles, and thus, enhance its therapeutic effect. Currently, PEGylation is used to modify proteins, peptides, oligonucleotides, antibody fragments, and small organic molecules. Research groups are striving to improve the consistencies of PEGylated drugs and to PEGylate commercialized proteins and small organic molecules. Furthermore, the PEGylations of novel medications, like oligonucleotides and antibody fragments, are being pursued to improve their bioavailabilities. This active research in the PEGylation field and the continued growth of the biopharmaceutical market predicts that PEGylated drugs have a bright future.
Collapse
Affiliation(s)
- Jung Seok Kang
- SungKyunKwan University, College of Pharmacy, Drug Targeting Laboratory, Suwon 440-746, Korea
| | | | | |
Collapse
|
13
|
Gursahani H, Riggs-Sauthier J, Pfeiffer J, Lechuga-Ballesteros D, Fishburn CS. Absorption of Polyethylene Glycol (PEG) Polymers: The Effect of PEG Size on Permeability. J Pharm Sci 2009; 98:2847-56. [DOI: 10.1002/jps.21635] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Cheng W, Lim LY. Synthesis, Characterization and In Vivo Activity of Salmon Calcitonin Coconjugated With Lipid and Polyethylene Glycol. J Pharm Sci 2009; 98:1438-51. [DOI: 10.1002/jps.21524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Ryan SM, Wang X, Mantovani G, Sayers CT, Haddleton DM, Brayden DJ. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J Control Release 2009; 135:51-9. [PMID: 19168100 DOI: 10.1016/j.jconrel.2008.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 11/19/2022]
Abstract
Salmon calcitonin (sCT) was conjugated via its N-terminal cysteine to a comb-shaped end-functionalized poly(poly(ethylene glycol) methyl ether methacrylate) (PolyPEG, 6.5 kDa), and to linear PEG (5 kDa). Conjugate molecular weight and purity was assessed by SEC-HPLC and MALDI-TOF MS. Bioactivity of conjugates was measured by cyclic AMP assay in T47D cells. Calcium and calcitonin levels were measured in rats following intravenous injections. Stability of conjugates was tested against serine proteases, intestinal and liver homogenates and serum. Cytotoxicity of conjugates was assessed by lactate dehydrogenase (LDH) assay and by haemolytic assay of rat red blood cells. Results showed that the two conjugates were of high purity with molecular weights similar to predictions. Both conjugates retained more than 85% bioactivity in vitro and had nanomolar EC(50) values similar to sCT. While both sCT-PolyPEG(6.5 K) and sCT-PEG(5 K) were resistant to metabolism by serine proteases, homogenates and serum, PolyPEG (6.5 K) was more so. Although both conjugates reduced serum calcium to levels similar to those achieved with sCT, PolyPEG(6.5 K) extended the T(1/2) and AUC of serum sCT over values achieved with sCT-PEG and sCT itself. None of PolyPEG, PEG or methacrylic acid displayed significant cytotoxicity. PolyPEG may therefore have potential to improve pharmacokinetic profiles of injected peptides.
Collapse
Affiliation(s)
- Sinéad M Ryan
- UCD School of Agriculture, Food Science and Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
16
|
Cetin M, Youn YS, Capan Y, Lee KC. Preparation and characterization of salmon calcitonin-biotin conjugates. AAPS PharmSciTech 2008; 9:1191-7. [PMID: 19082740 DOI: 10.1208/s12249-008-9165-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/02/2008] [Indexed: 11/30/2022] Open
Abstract
This study was performed to prepare and characterize the biotinylated Salmon calcitonin (sCT) for oral delivery and evaluate the hypocalcemic effect of biotinylated-sCTs in rats. Biotinylated sCTs was characterized by using high performance liquid chromatography (HPLC) and MALDITOF-MS. The effect of biotinylation on permeability across Caco-2 cell monolayers was examined. Their hypocalcemic effect was determined in rats. Mono- and di-bio-sCTs were separated by reverse phase HPLC. The molecular weights of mono-bio-sCT and di-bio-sCT were determined to be 3,660.5 and 3,900.2 Da, respectively. The permeability of biotinylated-sCTs across Caco-2 cell monolayers was observed with a significant enhancement compared with sCT. Intrajejunal (ij) administration of mono-bio-sCT and di-bio-sCT resulted in sustained reduction in serum calcium levels, with a maximum reduction (% max(d)) of 21.6% and 30% after 4 h and 6 h of application, respectively. The biotin conjugation of sCT may be a promising strategy for increasing the oral bioavailability of sCT and achieving sustained calcium-lowering effects.
Collapse
|
17
|
Mansoor S, Youn YS, Lee KC. Oral Delivery of Mono-PEGylated sCT (Lys18) in Rats: Regional Difference in Stability and Hypocalcemic Effect. Pharm Dev Technol 2008; 10:389-96. [PMID: 16176019 DOI: 10.1081/pdt-65686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the in vitro experiment using a luminal, mucosal, and fecal fluid/extract from jejunum and colon of a rat, Lys18-residue modified mono-PEG(2k)-sCT (Lys18-PEG(2K)-sCT) exhibited a longer half-life than salmon calcitonin (sCT) in a colonic fluid and its extract. A physical adsorption study showed that Lys18-PEG(2K)-sCT had lower adsorption in the feces than sCT over an 8-hr period. An absorption study of the sCT and Lys18-PEG(2K)-sCT from the jejunum and colon using an in situ closed-loop technique in anesthetized rats showed a dose-dependent reduction in the plasma Ca2+ level but to a certain limit. Furthermore, the hypocalcemic response by intracolonic administration was significantly higher than the intrajejunal one, demonstrating that the colon had better absorption. In particular, Lys18-PEG(2K)-sCT (5 microg/rats) produced the most pronounced hypocalcemia after the intracolonic administration, which resulted in a sustained reduction in the serum calcium level over an 8-hr period, with a maximum reduction (% max(d)) of 38% after 4 hr. The overall reduction in the serum calcium levels, which was expressed as the net change in the AUC relative to the control over an 8-hr period, was 25.51 +/- 3.38 for Lys18-PEG(2K)-sCT. The relative pharmacological bioavailability of the intracolonically administered Lys18-PEG(2K)-sCT was 2.1-fold higher than sCT and the absolute pharmacological bioavailability was 73.59% of i.v.-injected sCT in an 8-hr period. Overall, this study highlights the feasibility of the oral delivery of Lys18-PEG(2K)-sCT in achieving a sustained calcium-lowering effect.
Collapse
Affiliation(s)
- Saffar Mansoor
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, Suwon City, Korea
| | | | | |
Collapse
|
18
|
Fishburn C. The Pharmacology of PEGylation: Balancing PD with PK to Generate Novel Therapeutics. J Pharm Sci 2008; 97:4167-83. [DOI: 10.1002/jps.21278] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Youn YS, Jeon JE, Chae SY, Lee S, Lee KC. PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes Metab 2008; 10:343-6. [PMID: 18034839 DOI: 10.1111/j.1463-1326.2007.00823.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS PEGylation - covalent modification of therapeutic peptides with polyethylene glycol (PEG) - is viewed as an effective way of prolonging the short lifetime of glucagon-like peptide-1 (GLP-1). In this study, we investigated the hypoglycaemic efficacies of PEGylated GLP-1s administered intranasally in type 2 diabetic db/db mice. METHODS Three types of site-specific (Lys(34)) PEGylated GLP-1 analogues (PEG molecular weight: 1, 2 or 5 kDa) were synthesized. Their metabolic stabilities were evaluated in nasal mucosa enzyme pools. Oral glucose tolerance test was conducted 30, 60 and 120 min after intranasally administering these analogues in type 2 diabetic db/db mice. RESULTS PEGylated GLP-1 analogues were found to have significantly longer half-lives than native GLP-1 in nasal mucosa enzymes (2.4-fold to 11.0-fold, p < 0.005). Non-PEGylated GLP-1 at 100 nmol/kg was not found to have marked efficacy irrespective of nasal administration time [total hypoglycaemic degree (HD(total)) values 2.8-17.3%]. On the contrary, PEGylated GLP-1s (100 nmol/kg) showed obvious efficacies with maximum HD(total) values of >51.8 +/- 5.8% (p < 0.005 vs. GLP-1). CONCLUSION This study highlights the pharmacological potential of intranasally administered PEGylated GLP-1s in terms of stabilizing postprandial hyperglycaemia in type 2 diabetic patients.
Collapse
Affiliation(s)
- Y S Youn
- College of Pharmacy, Pusan National University, Busan, South Korea
| | | | | | | | | |
Collapse
|
20
|
Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin: optimization by PEG size selection. J Control Release 2007; 125:68-75. [PMID: 18023905 DOI: 10.1016/j.jconrel.2007.10.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 10/10/2007] [Accepted: 10/14/2007] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to demonstrate the biological potentials of PEGylated salmon calcitonin (PEG-sCT) derivatives administered intratracheally and their dependences on PEG Mw (1, 2, 5 kDa). Initially, three different PEG-sCT derivatives were site-specifically synthesized by attaching PEG to the Lys(18)-amine. In an attempt to examine the pulmonary feasibilities of these derivatives, the following evaluations were undertaken to determine their; (i) proteolytic resistances to pulmonary enzymes, (ii) bioactivities, and (iii) pulmonary pharmacokinetic and pharmacologic profiles. The results obtained showed that the pulmonary stabilities and pharmacokinetic properties of these derivatives were greatly improved by increasing PEG Mw. PEG-sCTs had 10.5-, 40.1-, and 1066.0-fold greater stabilities than that of sCT in rat lung homogenates. Moreover, all pharmacokinetic parameters (AUC(inf), C(max), t(1/2), and others) of these derivatives in endotracheally cannulated rats were significantly improved by PEGylation. Specifically, C(max) values increased on increasing PEG Mw, i.e., 78.1+/-21.1, 102.9+/-9.1, and 115.2+/-5.7 for 1, 2, 5 kDa, respectively, vs. 54.8+/-3.9 ng/mL for sCT. Their circulating t(1/2) values also increased to 53.9+/-6.0, 100.7+/-21.7, and 119.4+/-13.7 min, respectively, vs. 34.6+/-7.6 min for sCT. Despite having the best properties, Lys(18)-PEG(5k)-sCT was found to have significantly lower hypocalcemic efficacy than other PEG-sCTs, probably due to its reduced intrinsic bioactivity ( approximately 30% vs. sCT). Rather, Lys(18)-PEG(2k)-sCT showed the most promising pulmonary potential because of its well-preserved bioactivity (>80% of sCT). Taken together, our findings suggest that the site-specific substitution to peptides like sCT with a PEG of an appropriate size offers optimized therapeutic potential by dual advantages, i.e., (i) increased proteolytic stability and (ii) extended circulating half-life in terms of intrapulmonary delivery.
Collapse
|
21
|
Youn YS, Na DH, Lee KC. High-yield production of biologically active mono-PEGylated salmon calcitonin by site-specific PEGylation. J Control Release 2006; 117:371-9. [PMID: 17207880 DOI: 10.1016/j.jconrel.2006.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/24/2006] [Accepted: 11/14/2006] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to develop and optimize a unique one-pot, two-step site-specific PEGylation method suitable for the high-yield production of mono-PEGylated (Lys(18)) salmon calcitonin (Lys(18)-PEG-sCT), which was previously demonstrated to have superior pharmaceutical properties to other conjugates. For the site-specific PEGylation, this study used the sCT derivative (FMOC(1,11)-sCT), which was FMOC protected at Cys(1)- and Lys(11)-amines among three PEGylation sites including Lys(18)-amine. This PEGylation process was achieved by the consecutive one-pot, two-step reaction: (i) the PEG conjugation to FMOC(1,11)-sCT; and (ii) the subsequent deprotection of FMOC group from the PEGylated FMOC(1,11)-sCT. The optimized reaction resulted in the high production yield of Lys(18)-PEG-sCT (about 86%), compared with that from conventional non-specific PEGylation (about 18%). The prepared Lys(18)-PEG-sCT conjugate showed improved biological stability without the loss in the in vitro and in vivo biological activity by PEGylation. Consequently, this site-specific PEGylation using an FMOC protection/deprotection strategy showed great usefulness in the production of the most promising Lys(18)-PEG-sCT conjugate with a high yield.
Collapse
Affiliation(s)
- Yu Seok Youn
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | | | | |
Collapse
|
22
|
Youn YS, Jung JY, Oh SH, Yoo SD, Lee KC. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release 2006; 114:334-42. [PMID: 16884808 DOI: 10.1016/j.jconrel.2006.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 11/23/2022]
Abstract
Peptides like salmon calcitonin (sCT) are subjected to aggressive proteolytic attack by various intestinal enzymes, and fractions that enter the systemic circulation via the intestinal route are rapidly inactivated by tissue accumulation and glomerular filtration. Here, we describe the beneficial effects of the Lys(18)-amine specific PEGylation of sCT on the intestinal delivery of sCT. Two key properties were enhanced by the PEGylation process: (i) the resistance of sCT to intestinal enzymes and (ii) the systemic clearance of sCT that had entered the circulation. Initially, we evaluated the cAMP-secreting activities of PEG(2K)-sCT isomers substituted at Cys(1)-, Lys(11)- or Lys(18)-amine position in T47D cells, and found that sCT PEGylated at Lys(18)-amine (Lys(18)-PEG(2K)-sCT) had the highest bioactivity. We then investigated the stability of Lys(18)-PEG(2K)-sCT in the presence of intestinal enzymes, its abilities to traverse the intestinal membrane, its pharmacokinetic behavior and in vivo hypocalcemic efficacy. Results show that Lys(18)-PEG(2K)-sCT has significantly increased resistance to pancreatic peptidases and brush-border peptidases. Despite the molecular size increase caused by PEGylation, Lys(18)-PEG(2K)-sCT was found to have an intestinal permeability similar to that of unmodified sCT (p>0.59) over an apical concentration range 12.5-100 microM in a Caco-2 cell monolayer transport system. In particular, tissue distribution results showed that (125)I-labeled Lys(18)-PEG(2K)-sCT markedly resists liver accumulation and glomerular filtration; levels were reduced by 75% and 50% vs. sCT. Finally, the hypocalcemic efficacy of intestinally administered Lys(18)-PEG(2K)-sCT, measured as total serum calcium in a rat model, was 5.8 and 3.0 times that of sCT at 100 and 200 IU/kg (p<0.025). Our findings suggest that this site-specific conjugation of peptides with PEG of proper size enhances pharmacokinetic properties by increasing their abilities to resist both proteolysis and systemic clearance without significantly reducing their membrane permeabilities or bioactivities. We believe that this concept, namely, dual effects by PEGylation, has great potential value because it presents a practical means of enhancing the efficacies of the peroral/intestinal pharmacologic route.
Collapse
Affiliation(s)
- Yu Seok Youn
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300, Chonchon-dong, Jangan-ku, Suwon City 440-746, South Korea
| | | | | | | | | |
Collapse
|
23
|
Youn YS, Na DH, Yoo SD, Song SC, Lee KC. Carbohydrate-specifically polyethylene glycol-modified ricin A-chain with improved therapeutic potential. Int J Biochem Cell Biol 2005; 37:1525-33. [PMID: 15833282 DOI: 10.1016/j.biocel.2005.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 01/03/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Ricin A-chain, which exhibits excellent cytotoxicity to tumor cells, has been widely used as an immunotoxin source. However, it has the fatal shortcoming of poor pharmacokinetics due to the tremendous liver uptake via carbohydrate-mediated recognition. Modification of proteins with polyethylene glycol, PEGylation, has the advantages of shielding the specific sites and prolonging the biological half-life. In this study, the carbohydrate-specific PEGylation of ricin A-chain was considered to be a novel approach to overcome this limitation. The carbohydrate group of ricin A-chain was oxidized by sodium m-periodate and further specifically conjugated with hydrazide-derivatized PEG. For a comparative study, the PEGylated ricin A-chain at amino groups was prepared using the hydroxysuccinimide ester-derivatized PEG. The carbohydrate-specifically PEGylated ricin A-chain showed a markedly lower liver uptake and systemic clearance compared with the amine-directly PEGylated ricin A-chain as well as the unmodified ricin A-chain. Furthermore, carbohydrate-specifically PEGylated ricin A-chain showed a significantly higher in vitro ribosome-inactivating activity than the amine-directly PEGylated ricin A-chain. These findings clearly demonstrate that the carbohydrate-specificity as well as PEGylation plays an important role in improving the in vivo pharmacokinetic properties and in vitro bioactivity. Therefore, these results suggest that the therapeutic use of immunotoxins constructed using this carbohydrate-specifically PEGylated ricin A-chain has potential as a cancer therapy.
Collapse
Affiliation(s)
- Yu Seok Youn
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, South Korea
| | | | | | | | | |
Collapse
|
24
|
Youn YS, Na DH, Yoo SD, Song SC, Lee KC. Chromatographic separation and mass spectrometric identification of positional isomers of polyethylene glycol-modified growth hormone-releasing factor (1-29). J Chromatogr A 2004; 1061:45-9. [PMID: 15633743 DOI: 10.1016/j.chroma.2004.10.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A one-step chromatographic method capable of separating all isomers of polyethylene glycol (PEG)-growth hormone-releasing factor (GRF) (1-29) conjugates was developed. The unmodified GRF (1-29) and seven different isomers of PEG-GRF (1-29) conjugates were separated by using a simple reversed-phase HPLC method depending on the differences of hydrophobicity due to the number and site of PEG attachment. The PEGylation sites of all isomers of PEG-GRF (1-29) conjugates were identified by determining the molecular masses of the Lys-C digested fragments with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This study is a first report for the separation of all PEG-conjugate isomers and would be useful for further studies to find the promising conjugate by evaluating biological activity and stability of each isomer.
Collapse
Affiliation(s)
- Yu Seok Youn
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, South Korea
| | | | | | | | | |
Collapse
|
25
|
Na DH, Youn YS, Park EJ, Lee JM, Cho OR, Lee KR, Lee SD, Yoo SD, DeLuca PP, Lee KC. Stability of PEGylated salmon calcitonin in nasal mucosa. J Pharm Sci 2004; 93:256-61. [PMID: 14705183 DOI: 10.1002/jps.10537] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to evaluate the stabilization of salmon calcitonin (sCT) by PEGylation in nasal mucosa. Degradation of native sCT in the homogenates of rat nasal mucosa was investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The initial cleavage of sCT was due to tryptic-like endopeptidase activity, and the subsequent degradation followed the sequential pattern of aminopeptidase activity. To prepare PEGylated sCT resistant to the proteolytic degradation, the lysine residues susceptible to tryptic activity were selectively PEGylated by controlling reaction pH. The PEGylated sCT showed strong resistance against enzymatic degradation in rat nasal mucosa, with 56-fold prolonged half-life compared with that of native sCT. In the MALDI-TOF MS spectrum, the PEGylated sCT did not show any degradation peak for incubation of 120 min in the homogenates of rat nasal mucosa. The improved stability may be responsible for enhancing nasal absorption of PEGylated sCT.
Collapse
Affiliation(s)
- Dong Hee Na
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Na DH, Lee KC. Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 2004; 331:322-8. [PMID: 15265738 DOI: 10.1016/j.ab.2004.04.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/27/2022]
Abstract
A capillary electrophoretic method (CE) for characterizing PEGylated human parathyroid hormone 1-34 (PTH) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. CE was used to optimize the PEGylation of PTH through control of the reaction pH and the molar ratio of reactants with the advantages of minimal sample consumption and high separation capacity. The mono-PEGylated PTH (mono-PEG-PTH) was isolated and then digested with endoproteinase Lys-C. Resistance to Lys-C digestion on the PEGylation sites in the mono-PEG-PTH resulted in patterns of CE electropherograms different from that of the native PTH, and the PEGylation sites were assigned accordingly. The extent of positional isomers present in the mono-PEG-PTH was also determined by quantifying PEGylated fragments in the same CE electropherogram. In conclusion, the CE analysis of the Lys-C-digested sample allowed for simultaneous analysis of the PEGylation site and the extent of positional isomers in the mono-PEG-PTH. The results were confirmed by MALDI-TOF MS. This method will be applicable for characterizing PEGylation of other therapeutic peptides.
Collapse
Affiliation(s)
- Dong Hee Na
- Drug Targeting Laboratory, College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Republic of Korea
| | | |
Collapse
|