1
|
Zhang G, Li Z, Li N, Shi J, Fan H, Mao H. Mechanical properties of young mice tibia in four circumferential quadrants under nanoindentation. J Biomech 2022; 144:111350. [DOI: 10.1016/j.jbiomech.2022.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
2
|
Pepe V, Oliviero S, Cristofolini L, Dall'Ara E. Regional Nanoindentation Properties in Different Locations on the Mouse Tibia From C57BL/6 and Balb/C Female Mice. Front Bioeng Biotechnol 2020; 8:478. [PMID: 32500069 PMCID: PMC7243342 DOI: 10.3389/fbioe.2020.00478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
The local spatial heterogeneity of the material properties of the cortical and trabecular bone extracted from the mouse tibia is not well-known. Nevertheless, its characterization is fundamental to be able to study comprehensively the effect of interventions and to generate computational models to predict the bone strength preclinically. The goal of this study was to evaluate the nanoindentation properties of bone tissue extracted from two different mouse strains across the tibia length and in different sectors. Left tibiae were collected from four female mice, two C57BL/6, and two Balb/C mice. Nanoindentations with maximum 6 mN load were performed on different microstructures, regions along the axis of the tibiae, and sectors (379 in total). Reduced modulus (Er) and hardness (H) were computed for each indentation. Trabecular bone of Balb/C mice was 21% stiffer than that of C57BL/6 mice (20.8 ± 4.1 GPa vs. 16.5 ± 7.1 GPa). Moreover, the proximal regions of the bones were 13-36% less stiff than the mid-shaft and distal regions of the same bones. No significant differences were found for the different sectors for E r and H for Balb/C mice. The bone in the medial sector was found to be 8-14% harder and stiffer than the bone in the anterior or posterior sectors for C57BL/6 mice. In conclusion, this study showed that the nanoindentation properties of the mouse tibia are heterogeneous across the tibia length and the trabecular bone properties are different between Balb/C and C57BL/6 mice. These results will help the research community to identify regions where to characterize the mechanical properties of the bone during preclinical optimisation of treatments for skeletal diseases.
Collapse
Affiliation(s)
- Valentina Pepe
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Carmeli-Ligati S, Shipov A, Dumont M, Holtze S, Hildebrandt T, Shahar R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019; 128:115035. [PMID: 31421251 DOI: 10.1016/j.bone.2019.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The naked mole-rat (NMR) is a small rodent with a remarkable array of properties, such as unique physiology, extremely long life-span and unusual social life. However, very little is known regarding its skeleton. The aim of this study was to describe the structure, composition and mechanical properties in an ontogenetic series of naked mole-rat bones. Since common small rodents like mice and rats have an unusual structure of cortical bone, which includes a central region of non-lamellar (disordered) bone, mineralized cartilaginous islands and total lack of remodeling, this study could also determine if these are features of all small rodents. Sixty-one NMRs were included in the study and were divided into the following four age groups: 0-0.5 years old (n = 17), 0.5-3 years old (n = 25), 3-10 years old (n = 13), and >10 years (n = 6). Femora, vertebrae and mandibulae were examined using micro-CT, light microscopy, polarized light microscopy and scanning electron microscopy, thermogravimetric analysis was used to determine their dry ash content and their derived elastic modulus and hardness were determined using micro-indentation. Our findings show that NMR bones are similar in composition and mechanical properties to those of other small rodents. However, in contrast to other small rodents, the cortical bone of NMRs is entirely circumferential-lamellar and lacks mineralized cartilage islands. Furthermore, despite their long life-span, their bones did not show evidence of remodeling at any of the age groups, thus proving that lack of cortical remodeling in small rodents is not caused by their short life-span, but characteristic of this order of mammals.
Collapse
Affiliation(s)
- Shira Carmeli-Ligati
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maïtena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Kaya S, Basta-Pljakic J, Seref-Ferlengez Z, Majeska RJ, Cardoso L, Bromage T, Zhang Q, Flach CR, Mendelsohn R, Yakar S, Fritton SP, Schaffler MB. Lactation-Induced Changes in the Volume of Osteocyte Lacunar-Canalicular Space Alter Mechanical Properties in Cortical Bone Tissue. J Bone Miner Res 2017; 32:688-697. [PMID: 27859586 PMCID: PMC5395324 DOI: 10.1002/jbmr.3044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023]
Abstract
Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Luis Cardoso
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Timothy Bromage
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA
| | - Qihong Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Carol R Flach
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | | - Shoshana Yakar
- Department of Basic Science, New York University College of Dentistry, New York, NY, USA
| | - Susannah P Fritton
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
5
|
High-throughput phenotyping and genetic linkage of cortical bone microstructure in the mouse. BMC Genomics 2015; 16:493. [PMID: 26138817 PMCID: PMC4490749 DOI: 10.1186/s12864-015-1617-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
Background Understanding cellular structure and organization, which plays an important role in biological systems ranging from mechanosensation to neural organization, is a complicated multifactorial problem depending on genetics, environmental factors, and stochastic processes. Isolating these factors necessitates the measurement and sensitive quantification of many samples in a reliable, high-throughput, unbiased manner. In this manuscript we present a pipelined approach using a fully automated framework based on Synchrotron-based X-ray Tomographic Microscopy (SRXTM) for performing a full 3D characterization of millions of substructures. Results We demonstrate the framework on a genetic study on the femur bones of in-bred mice. We measured 1300 femurs from a F2 cross experiment in mice without the growth hormone (which can confound many of the smaller structural differences between strains) and characterized more than 50 million osteocyte lacunae (cell-sized hollows in the bone). The results were then correlated with genetic markers in a process called quantitative trait localization (QTL). Our findings provide a mapping between regions of the genome (all 19 autosomes) and observable phenotypes which could explain between 8–40 % of the variance using between 2–10 loci for each trait. This map shows 4 areas of overlap with previous studies looking at bone strength and 3 areas not previously associated with bone. Conclusions The mapping of microstructural phenotypes provides a starting point for both structure-function and genetic studies on murine bone structure and the specific loci can be investigated in more detail to identify single gene candidates which can then be translated to human investigations. The flexible infrastructure offers a full spectrum of shape, distribution, and connectivity metrics for cellular networks and can be adapted to a wide variety of materials ranging from plant roots to lung tissue in studies requiring high sample counts and sensitive metrics such as the drug-gene interactions and high-throughput screening. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1617-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Wang YT, Chang SY, Huang YC, Tsai TC, Chen CM, Lim CT. Nanomechanics insights into the performance of healthy and osteoporotic bones. NANO LETTERS 2013; 13:5247-5254. [PMID: 24063581 DOI: 10.1021/nl402719q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In situ nanoscopic observations of healthy and osteoporotic bone nanopillars under compression were performed. The structural-mechanical property relationship at the atomic scale suggests that cortical bone performance is correlated to the feature, arrangement, movement, distortion, and fracture of hydroxyapatite nanocrystals. Healthy bone comprising tightly bound mineral nanocrystals shows high structural stability with nanoscopic lattice distortions and dislocation activities. On the other hand, osteoporotic bone exhibits brittleness owing to the movements of dispersed minerals in and intergranular fracture along a weak organic matrix.
Collapse
Affiliation(s)
- Ying-Ting Wang
- Department of Materials Science and Engineering, National Chung Hsing University , Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
7
|
Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist. J Genet 2012; 91:119-28. [PMID: 22942082 DOI: 10.1007/s12041-012-0148-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis is a heterogeneous disease with clinical and biological polymorphisms. IL-1RN is a protein that binds to interleukin-1 (IL-1) receptors and inhibits the binding of IL-1-alpha and IL-1-beta. IL-1RN levels are elevated in the blood of patients with a variety of infectious, immune, and traumatic conditions. Balb/c mice deficient in IL-1ra (mouse gene of IL-1RN) develop spontaneous autoimmune arthritis while DBA/1 mice deficient in IL-1ra do not. Previously, we identified a major QTL that regulates the susceptibility to arthritis in Balb/c mice with IL-1ra deficiency. In this study, we found that the QTL may contain two peaks that are regulated by two sets of candidate genes. By haplotype analysis, the total genomic regions of candidate genes were reduced from about 19 Mbp to approximately 9 Mbp. The total number of candidate genes was reduced from 208 to 21.
Collapse
|
8
|
Pathak S, Vachhani SJ, Jepsen KJ, Goldman HM, Kalidindi SR. Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method. J Mech Behav Biomed Mater 2012; 13:102-17. [PMID: 22842281 DOI: 10.1016/j.jmbbm.2012.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
Abstract
In this work, we demonstrate the viability of using our recently developed data analysis procedures for spherical nanoindentation in conjunction with Raman spectroscopy for studying lamellar-level correlations between the local composition and local mechanical properties in mouse bone. Our methodologies allow us to convert the raw load-displacement datasets to much more meaningful indentation stress-strain curves that accurately capture the loading and unloading elastic moduli, the indentation yield points, as well as the post-yield characteristics in the tested samples. Using samples of two different inbred mouse strains, A/J and C57BL/6J (B6), we successfully demonstrate the correlations between the mechanical information obtained from spherical nanoindentation measurements to the local composition measured using Raman spectroscopy. In particular, we observe that a higher mineral-to-matrix ratio correlated well with a higher local modulus and yield strength in all samples. Thus, new bone regions exhibited lower moduli and yield strengths compared to more mature bone. The B6 mice were also found to exhibit lower modulus and yield strength values compared to the more mineralized A/J strain.
Collapse
Affiliation(s)
- Siddhartha Pathak
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
9
|
DONG XNEIL, LENG HUIJIE, RAN QITAO, WANG XIAODU. FINDING OF MICRODAMAGE MORPHOLOGY DIFFERENCES IN MOUSE FEMORAL BONES WITH DISTINCT MINERALIZATION LEVELS. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519410003757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microdamage progression in bone is dependent on the ultrastructure of the tissue. Thus, any pathological changes in bone ultrastructure may be reflected in the pattern and capacity of microdamage accumulation. A previous numerical study of microdamage progression in bone using a probabilistic failure analysis approach predicts that the microdamage morphology (either linear microcracks or diffuse damage) is very sensitive to the level of mineralization in bone, which is also implicated in some experimental observations. To examine the prediction, femurs from two strains of mice (C57BL/6J, N = 10 and C3H/HeJ, N = 11) that have distinct mineralization levels were fatigued under four-point bending to create damage in the bone tissues. After testing, the microdamage morphology of the bone samples was examined using bulk-staining technique with basic fuchsin. The results demonstrate that more linear microcracks are observed in femurs of C3H/HeJ (higher mineralization), whereas more diffuse-like damage is found in C57BL/6J femurs (less mineralized). Compared with linear microcracks, the formation of diffuse damage tends to dissipate more energy and help bone to avoid catastrophic failures. Therefore, results from this study may help explain why highly mineralized bone tends to be more brittle. Observations from this study are consistent with the numerical prediction from the previous study, suggesting that mineralization has a significant effect on the microdamage morphology of bone.
Collapse
Affiliation(s)
- X. NEIL DONG
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - HUIJIE LENG
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China, 100191, China
| | - QITAO RAN
- Department of Cellular & Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - XIAODU WANG
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
10
|
Identifying a major locus that regulates spontaneous arthritis in IL-1ra-deficient mice and analysis of potential candidates. Genet Res (Camb) 2011; 93:95-103. [PMID: 21414240 DOI: 10.1017/s0016672310000704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genetic loci that regulate spontaneous arthritis in interleukin-1 receptor antagonist (IL-1ra)-deficient mice, an F2 population was created from a cross between Balb/c IL-1ra-deficient mice and DBA/1 IL-1ra-deficient mice. Spontaneous arthritis in the F2 population was examined and recorded. Genotypes of those F2 mice were determined using microsatellite markers. Quantitative trail locus (QTL) analysis was conducted with R/qtlbim. Functions of genes within QTL chromosomal regions were evaluated using a bioinformatics tool, PGMapper, and microarray analysis. Potential candidate genes were further evaluated using GeneNetwork. A total of 137 microsatellite markers with an average of 12 cM spacing along the whole genome were used for determining the correlation of arthritis phenotypes with genotypes of 191 F2 progenies. By whole-genome mapping, we obtained QTLs on chromosomes 1 and 6 that were above the significance threshold for strong Bayesian evidence. The QTL on chromosome 1 had a peak near D1Mit55 and D1Mit425 at 82·6 cM. It may account for as much as 12% of the phenotypic variation in susceptibility to spontaneous arthritis. The QTL region contained 208 known transcripts. According to their functions, Mr1, Pla2g4a and Fasl are outstanding candidate genes. From microarray analysis, 11 genes were selected as favourable candidates based on their function and expression profiles. Three of those 11 genes, Prg4, Ptgs2 and Mr1, correlated with the IL-1ra pathway. Those genes were considered to be the best candidates.
Collapse
|
11
|
Jepsen KJ, Courtland HW, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res 2010; 25:1581-93. [PMID: 20200957 PMCID: PMC3154000 DOI: 10.1002/jbmr.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/26/2009] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
12
|
Jiao F, Chiu H, Jiao Y, de Rijk WG, Li X, Eckstein EC, Beamer WG, Gu W. Quantitative trait loci for tibial bone strength in C57BL/6J and C3H/HeJ inbred strains of mice. J Genet 2010; 89:21-7. [PMID: 20505243 DOI: 10.1007/s12041-010-0007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-point bending technology has been widely used in the measurement of bone strength. Quantitative trait loci (QTLs) for bone strength have been identified using mouse femurs. In this study, we investigate the use of mouse tibiae in identification of QTLs that regulate bone strength. Mouse tibiae were from a F(2) population derived from C57BL/6J (B6) and C3H/HeJ (C3H). Three-point bending was measured using ISO 4049, with the support width adjustable to accommodate specimen sizes outside the scope of ISO 4049. The strain rate is selectable from 0.05 to 500 mm per min. All stress strain diagrams are recorded and retrieved in digital electronic form. Genome scan was performed in The Jackson Laboratory (TJL). QTL mapping was conducted using Map Manager QTX software. Data show that (i) both elastic modulus (stiffness) and maximum loading (strength) value appear as normal distributions, suggesting that multiple genetic factors control the bone strength; (ii) 11 QTLs, accounting for 90% of variation for strength, have been detected. More than half QTLs of three-point bending are located on the same locations of bone density earlier identified from mouse femurs; (iii) a major QTL of femoral and vertebral bone mineral density (BMD) was not detected for bone strength of tibiae; (iv) the QTL on chromosome 4 has extremely high LOD score of 31.8 and represents 60% of the variation of bone strength; and (v) four QTLs of stiffness (chromosomes 2, 11, 15 and 19) have been identified.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Orthopedic Surgery-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Saless N, Lopez Franco GE, Litscher S, Kattappuram RS, Houlihan MJ, Vanderby R, Demant P, Blank RD. Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone 2010; 46:1251-9. [PMID: 20102754 PMCID: PMC2854180 DOI: 10.1016/j.bone.2010.01.375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/27/2023]
Abstract
Skeletal fragility is an important health problem with a large genetic component. We performed a 603 animal F2 reciprocal intercross of the recombinant congenic strains HcB-8 and HcB-23 to genetically map quantitative trait loci (QTLs) for tissue-level femoral biomechanical performance. These included elastic and post-yield strain, Young's modulus, elastic and maximum stress, and toughness and were calculated from 3-point bend testing of femora by the application of standard beam equations. We mapped these with R/qtl and QTL Cartographer and established significance levels empirically by permutation testing. Significant QTLs for at least one trait are present on chromosomes 1, 6, and 10 in the full F2 population, with additional QTLs evident in subpopulations defined by sex and cross direction. On chromosome 10, we find a QTL for post-yield strain and toughness, phenotypes that have not been mapped previously. Notably, the HcB-8 allele at this QTL increases post-yield strain and toughness, but decreases bone mineral density (BMD), while the material property QTLs on chromosomes 1, 6, and at a second chromosome 10 QTL are independent of BMD. We find significant sex x QTL and cross direction x QTL interactions. A robust, pleiotropic chromosome 4 QTL that we previously reported at the whole-bone level showed no evidence of linkage at the tissue-level, supporting our interpretation that modeling capacity is its primary phenotype. Our data demonstrate an inverse relationship between femoral perimeter and Young's modulus, with R(2)=0.27, supporting the view that geometric and material bone properties are subject to an integrated set of regulatory mechanisms. Mapping QTLs for tissue-level biomechanical performance advances understanding of the genetic basis of bone quality.
Collapse
Affiliation(s)
- Neema Saless
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | - Gloria E. Lopez Franco
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | - Suzanne Litscher
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
| | | | | | | | | | - Robert D. Blank
- University of Wisconsin, Madison, WI USA
- William S. Middleton Memorial Veterans Hospital, Madison WI USA
- Corresponding author at: Robert D. Blank, MD, PhD, H4/556 CSC (5148), 600 Highland Ave., Madison, WI 53792-5148, USA, 608-262-5586 (phone), 608-263-9983 (fax),
| |
Collapse
|
14
|
Moisan MP. Genotype-phenotype associations in understanding the role of corticosteroid-binding globulin in health and disease animal models. Mol Cell Endocrinol 2010; 316:35-41. [PMID: 19643164 DOI: 10.1016/j.mce.2009.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a plasma glycoprotein discovered more than 60 years ago for its high-affinity for glucocorticoids. Although its molecular structure and its biochemical properties have been described, its various biological roles and its importance are not yet fully understood. This review focuses first on studies that have used no-hypothesis-driven genetic approaches in animal models to reveal the higher than expected importance of CBG in particular in glucocorticoid stress responses. Then the dissection of some CBG physiological roles in an animal model of genetic CBG deficiency is reported. Finally, studies on the role of CBG genetic variability in human obesity traits are reviewed and discussed.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, UMR 1286 PsyNuGen, CNRS 5226, Universite de Bordeaux 2, Bordeaux, France.
| |
Collapse
|
15
|
Middleton KM, Goldstein BD, Guduru PR, Waters JF, Kelly SA, Swartz SM, Garland T. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running. J Anat 2010; 216:121-31. [PMID: 20402827 PMCID: PMC2807980 DOI: 10.1111/j.1469-7580.2009.01175.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 12/17/2022] Open
Abstract
The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling.
Collapse
Affiliation(s)
- Kevin M Middleton
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Thurner PJ. Atomic force microscopy and indentation force measurement of bone. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:624-49. [DOI: 10.1002/wnan.56] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Jiao Y, Cai C, Kermany MH, Yan J, Cai Q, Miller D, Goldowitz D, Li X, Yoo TJ, Gu W. ENU induced single mutation locus on chr 16 leads to high-frequency hearing loss in mice. Genes Genet Syst 2009; 84:219-24. [PMID: 19745570 DOI: 10.1266/ggs.84.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The hallmark of age-related (presbycusis) and noise-induced hearing loss is high-frequency (> 20 kHz) hearing loss. Through a collaborative study with TMGC (Tennessee Mouse Genome Consortium), seventeen ENU-induced mouse mutation strains with high-frequency hearing loss have been identified, but affected genes are yet identified. As a first step in identifying the gene/s underlying the ENU mutations, we created a F2 population between a representative mutation strain, 118 TNE and a wild type strain, CAST/EJ (CAST). Phenotypic analysis showed that there is a 3:1 ratio of segregation between normal and hearing loss in the F2 population, suggestion a single locus regulation. However, the linkage mapping identified 2 QTLs, each on chromosomes 15 and 16. Further statistical analysis of marker segregation patterns revealed that the locus on Chr 16 was ENU induced while the one on Chr 15 was derived from the parental strain, CAST.
Collapse
Affiliation(s)
- Yan Jiao
- Departments of Orthopaedic Surgery-Campbell Clinic and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chattah NLT, Sharir A, Weiner S, Shahar R. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties. Bone 2009; 45:84-90. [PMID: 19332167 DOI: 10.1016/j.bone.2009.03.664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 12/20/2022]
Abstract
Mice phenotypes are invaluable for understanding bone formation and function, as well as bone disease. The elastic modulus is an important property of bones that can provide insights into bone quality. The determination of the elastic modulus of mouse cortical bone is complicated by the small dimensions of the bones. Whole bone bending tests are known to under estimate the elastic modulus compared to nanoindentation tests. The latter however provides information on extremely localized areas that do not necessarily correspond to the bulk elastic modulus under compression. This study presents a novel method for determining the bulk or effective elastic modulus of mouse cortical bone using the femur. We use Electronic Speckle Pattern Interferometry (ESPI), an optical method that enables the measurement of displacements on the bone surface, as it is compressed under water. This data is combined with geometric information obtained from micro-CT to calculate the elastic modulus. Roughly tubular cortical bone segments (2 mm) were cut from the diaphyses of femora of four week old C57BL/6 (B6) female mice and compressed axially using a mechanical tension-compression device. Displacements in the loading direction were mapped on the bone surface after loading the specimen. A linear regression of the displacement vs. axial-position enabled the calculation of the effective strain. Effective stress was calculated using force (N) data from the system's load cell and the mean cross-sectional area of the sample as determined by micro-CT. The effective elastic modulus (E) was calculated from the stress to strain ratio. The method was shown to be accurate and precise using a standard material machined to similar dimensions as those of the mouse femoral segments. Diaphyses of mouse femora were shown to have mean elastic moduli of 10.4+/-0.9 GPa for femora frozen for eight months, 8.6+/-1.4 GPa for femora frozen for two weeks and 8.9+/-1.1 GPa for the fresh femora. These values are much higher than those measured using three-point bending, and lower than values reported in the literature based on nanoindentation tests from mice bones of the same age. We show that this method can be used to accurately and precisely measure the effective elastic modulus of mouse cortical bone.
Collapse
|
19
|
Jepsen KJ. Systems analysis of bone. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:73-88. [PMID: 20046860 PMCID: PMC2790199 DOI: 10.1002/wsbm.15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genetic variants contributing to variability in skeletal traits has been well studied, and several hundred QTLs have been mapped and several genes contributing to trait variation have been identified. However, many questions remain unanswered. In particular, it is unclear whether variation in a single gene leads to alterations in function. Bone is a highly adaptive system and genetic variants affecting one trait are often accompanied by compensatory changes in other traits. The functional interactions among traits, which is known as phenotypic integration, has been observed in many biological systems, including bone. Phenotypic integration is a property of bone that is critically important for establishing a mechanically functional structure that is capable of supporting the forces imparted during daily activities. In this paper, bone is reviewed as a system and primarily in the context of functionality. A better understanding of the system properties of bone will lead to novel targets for future genetic analyses and the identification of genes that are directly responsible for regulating bone strength. This systems analysis has the added benefit of leaving a trail of valuable information about how the skeletal system works. This information will provide novel approaches to assessing skeletal health during growth and aging and for developing novel treatment strategies to reduce the morbidity and mortality associated with fragility fractures.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
20
|
Lewis G, Nyman JS. The use of nanoindentation for characterizing the properties of mineralized hard tissues: state-of-the art review. J Biomed Mater Res B Appl Biomater 2008; 87:286-301. [PMID: 18395829 DOI: 10.1002/jbm.b.31092] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of nanoindentation to determine nanomechanical properties of mineralized tissues has been investigated extensively. A detailed, critical, and comprehensive review of this literature is the subject of the present work. After stating the motivation for the review, a succinct presentation of the challenges, advantages, and disadvantages of the various quasi-static nanoindentation test methods (to obtain elastic modulus, E, and hardness, H) and dynamic test methods (to obtain storage and loss moduli and/or loss/damping factor) is given in the form of a primer. Explicative summaries of literature reports on various intrinsic and extrinsic factors that significantly influence E and H, followed by 15 suggested topics for future research, are included additionally. This review is designed to present a compact guide to the principles of the nanoindentation technique and to emphasize considerations when determining material properties of mineralized tissues.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, The University of Memphis, Memphis, Tennessee 38152, USA.
| | | |
Collapse
|
21
|
van Lenthe GH, Voide R, Boyd SK, Müller R. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone 2008; 43:717-23. [PMID: 18639658 DOI: 10.1016/j.bone.2008.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 12/01/2022]
Abstract
Current practice to determine bone tissue modulus of murine cortical bone is to estimate it from three-point bending tests, using Euler-Bernoulli beam theory. However, murine femora are not perfect beams; hence, results can be inaccurate. Our aim was to assess the accuracy of beam theory, which we tested for two commonly used inbred strains of mice, C57BL/6 (B6) and C3H/He (C3H). We measured the three-dimensional structure of male and female B6 and C3H femora (N=20/group) by means of micro-computed tomography. For each femur five micro-finite element (micro-FE) models were created that simulated three-point bending tests with varying distances between the supports. Tissue modulus was calculated from beam theory using micro-FE results. The accuracy of beam theory was assessed by comparing the beam theory-derived moduli with the modulus as used in the micro-FE analyses. An additional set of fresh-frozen femora (10 B6 and 12 C3H) was biomechanically tested and subjected to the same micro-FE analyses. These combined experimental-computational analyses enabled an unbiased assessment of specimen-specific tissue modulus. We found that by using beam theory, tissue modulus was underestimated for all femora. Femoral geometry and size had strong effects on beam theory-derived tissue moduli. Owing to their relatively thin cortex, underestimation was markedly higher for B6 than for C3H. Underestimation was dependent on support width in a strain-specific manner. From our combined experimental-computational approach we calculated tissue moduli of 12.0+/-1.3 GPa and 13.4+/-2.1 GPa for B6 and C3H, respectively. We conclude that tissue moduli in murine femora are strongly underestimated when calculated from beam theory. Using image-based micro-FE analyses we could precisely quantify this underestimation. We showed that previously reported murine inbred strain-specific differences in tissue modulus are largely an effect of geometric differences, not accounted for by beam theory. We suggest a re-evaluation of the tissue properties obtained from three-point bending tests, especially in mouse genetics.
Collapse
|