1
|
Garmo LC, Herroon MK, Mecca S, Wilson A, Allen DR, Agarwal M, Kim S, Petriello MC, Podgorski I. The long-chain polyfluorinated alkyl substance perfluorohexane sulfonate (PFHxS) promotes bone marrow adipogenesis. Toxicol Appl Pharmacol 2024; 491:117047. [PMID: 39111555 DOI: 10.1016/j.taap.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.
Collapse
Affiliation(s)
- Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alexis Wilson
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - David R Allen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Manisha Agarwal
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
2
|
Liu W, Xiang S, Wu Y, Zhang D, Xie C, Hu H, Liu Q. Icariin promotes bone marrow mesenchymal stem cells osteogenic differentiation via the mTOR/autophagy pathway to improve ketogenic diet-associated osteoporosis. J Orthop Surg Res 2024; 19:127. [PMID: 38326818 PMCID: PMC10851475 DOI: 10.1186/s13018-024-04529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Icariin, a traditional Chinese medicine, has demonstrated anti-osteoporotic properties in ovariectomized mice. However, its effectiveness in preventing bone loss induced by ketogenic diet (KD), which mimics osteoporosis in human, remains unexplored. This study aims to investigate icariin's impact on KD-induced bone loss in mice. METHODS Thirty mice were divided into: sham, KD, and KD + icariin groups. Post a 12-week intervention, evaluation including bone microstructures, serum concentrations of tartrate-resistant acid phosphatase (TRAP) and bone-specific alkaline phosphatase (ALP), and femoral tissue expression levels of osteocalcin (OCN) and TRAP. The expression levels of mammalian target of rapamycin (mTOR), ALP, peroxisome proliferator-activated receptor gamma (PPAR-γ), phosphorylated mTOR (p-mTOR), and the autophagy adaptor protein (p62) were also analyzed. Alizarin granule deposition and cellular ALP levels were measured following the induction of bone marrow mesenchymal stem cells (BMSCs) into osteogenesis. RESULTS The study found that KD significantly impaired BMSCs' osteogenic differentiation, leading to bone loss. Icariin notably increased bone mass, stimulated osteogenesis, and reduced cancellous bone loss. In the KD + icariin group, measures such as bone tissue density (TMD), bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) were significantly higher than in the KD group. Additionally, bone trabecular separation (Tb.Sp) was markedly lower in the KD + icariin group. Moreover, icariin increased OCN and ALP levels while suppressing PPAR-γ, TRAP, p62, and p-mTOR. In cellular studies, icariin encouraged osteogenic development in BMSCs under KD conditions. CONCLUSIONS Icariin effectively counteracts bone thinning and improves bone microstructure. Its mechanism likely involves stimulating BMSCs osteogenic differentiation and inhibiting bone resorption, potentially through mTOR downregulation. These findings suggest icariin's potential as an alternative treatment for KD-induced bone loss.
Collapse
Affiliation(s)
- Wei Liu
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China
| | - Shouyu Xiang
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China
| | - Yingcong Wu
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China
| | - Dinghao Zhang
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China
| | - Chuhai Xie
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China
| | - Hailan Hu
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China.
| | - Qi Liu
- Division of Spinal Surgery, Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, No.250, Changgang East Road, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
3
|
Austin MJ, Kalampalika F, Cawthorn WP, Patel B. Turning the spotlight on bone marrow adipocytes in haematological malignancy and non-malignant conditions. Br J Haematol 2023; 201:605-619. [PMID: 37067783 PMCID: PMC10952811 DOI: 10.1111/bjh.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.
Collapse
Affiliation(s)
- Michael J. Austin
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - William P. Cawthorn
- BHF/University Centre for Cardiovascular Science, Edinburgh BioquarterUniversity of EdinburghEdinburghUK
| | - Bela Patel
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Wang Y, Gan Y, Dong Y, Zhou J, Zhu E, Yuan H, Li X, Wang B. Tax1 binding protein 3 regulates osteogenic and adipogenic differentiation through inactivating Wnt/β-catenin signalling. J Cell Mol Med 2023; 27:950-961. [PMID: 36892460 PMCID: PMC10064035 DOI: 10.1111/jcmm.17702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Tax1 binding protein 3 (Tax1bp3) is a PDZ domain-containing protein that is overexpressed in cancer. Previous studies recognized Tax1bp3 as an inhibitor of β-catenin. Till now it is not known whether Tax1bp3 regulates osteogenic and adipogenic differentiation of mesenchymal progenitor cells. In the current study, the data showed that Tax1bp3 was expressed in bone and was increased in the progenitor cells when induced toward osteoblast and adipocyte differentiation. The overexpression of Tax1bp3 in the progenitor cells inhibited osteogenic differentiation and conversely stimulated adipogenic differentiation, and the knockdown of Tax1bp3 affected the differentiation of the progenitor cells oppositely. Ex vivo experiments using the primary calvarial osteoblasts from osteoblast-specific Tax1bp3 knock-in mice also demonstrated the anti-osteogenic and pro-adipogenic function of Tax1bp3. Mechanistic investigations revealed that Tax1bp3 inhibited the activation of canonical Wnt/β-catenin and bone morphogenetic proteins (BMPs)/Smads signalling pathways. Taken together, the current study has provided evidences demonstrating that Tax1bp3 inactivates Wnt/β-catenin and BMPs/Smads signalling pathways and reciprocally regulates osteogenic and adipogenic differentiation from mesenchymal progenitor cells. The inactivation of Wnt/β-catenin signalling may be involved in the reciprocal role of Tax1bp3.
Collapse
Affiliation(s)
- Yi Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Yuan Dong
- College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| | - Xiaoxia Li
- College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien‐I Memorial Hospital & Institute of EndocrinologyTianjin Medical UniversityTianjinChina
| |
Collapse
|
5
|
Zhao C, Hu B, Liao Z, Wei H, Zhao Y, Liang J, Luo W, Nie Q, Luo Q, Zhang D, Zhang X, Li H. Growth Hormone Receptor Controls Adipogenic Differentiation of Chicken Bone Marrow Mesenchymal Stem Cells by Affecting Mitochondrial Biogenesis and Mitochondrial Function. Front Cell Dev Biol 2022; 10:827623. [PMID: 35350383 PMCID: PMC8957923 DOI: 10.3389/fcell.2022.827623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Growth hormone receptor (GHR) can activate several signaling pathways after binding to growth hormone (GH) to regulate cell growth and development. Sex-linked dwarf (SLD) chickens, normal protein functions are prevented because of exon mutations in the GHR gene, have more severe fat deposition. However, the specific molecular mechanisms responsible for this phenotype remains unclear. We therefore investigated the effect of the GHR gene on adipogenic differentiation of chicken bone marrow mesenchymal stem cells (BMSCs). We found that bone marrow fat deposition was more severe in SLD chickens compared to normal chickens, and the expression of genes related to adipogenic differentiation was enhanced in SLD chicken BMSCs. We also detected enhanced mitochondrial function of BMSCs in SLD chickens. In vitro, overexpression of GHR in chicken BMSCs increased mitochondrial membrane potential but decreased reactive oxygen and ATP contents, oxidative phosphorylation complex enzyme activity, and mitochondrial number. Expression of genes associated with mitochondrial biogenesis and function was repressed during adipogenic differentiation in chicken BMSCs, the adipogenic differentiation capacity of chicken BMSCs was also repressed. With knockdown of GHR, opposite results were observed. We concluded that GHR inhibited adipogenic differentiation of chicken BMSCs by suppressing mitochondrial biogenesis and mitochondrial function.
Collapse
Affiliation(s)
- Changbin Zhao
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bowen Hu
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhiying Liao
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Haohui Wei
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yongxia Zhao
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Jinping Liang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen Luo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Dexiang Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics, Ministry of Agriculture, Guangzhou, China.,Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
7
|
Piotrowska K, Tarnowski M. Bone Marrow Adipocytes-Role in Physiology and Various Nutritional Conditions in Human and Animal Models. Nutrients 2021; 13:nu13051412. [PMID: 33922353 PMCID: PMC8146898 DOI: 10.3390/nu13051412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, adipose tissue has attracted a lot of attention. It is not only an energy reservoir but also plays important immune, paracrine and endocrine roles. BMAT (bone marrow adipose tissue) is a heterogeneous tissue, found mostly in the medullary canal of the long bones (tibia, femur and humerus), in the vertebrae and iliac crest. Adipogenesis in bone marrow cavities is a consequence of ageing or may accompany pathologies like diabetes mellitus type 1 (T1DM), T2DM, anorexia nervosa, oestrogen and growth hormone deficiencies or impaired haematopoiesis and osteoporosis. This paper focuses on studies concerning BMAT and its physiology in dietary interventions, like obesity in humans and high fat diet in rodent studies; and opposite: anorexia nervosa and calorie restriction in animal models.
Collapse
|
8
|
Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem 2021; 167:613-621. [PMID: 32463882 DOI: 10.1093/jb/mvaa011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic osteoporosis (DOP) is attributed to the aberrant physiological function of bone marrow mesenchymal stem cells (BMSCs) under high glucose (HG) environment. MicroRNAs (miRNAs) are involved in the pathological processes of DOP. We aimed to explore the underlying mechanism of miRNA in DOP. BMSCs were cultured in osteogenic medium with HG to induce osteogenic differentiation, and the interaction between miR-493-5p and ZEB2 was assessed by luciferase assay. Herein, we found miR-493-5p is gradually reduced during osteogenic differentiation in BMSCs. HG treatment inhibits osteogenic differentiation and induces an up-regulation of miR-493-5p leading to reduced level of its downstream target ZEB2. Inhibition of miR-493-5p attenuates HG-induced osteogenic differentiation defects by upregulation of ZEB2. Mechanistically, miR-493-5p/ZEB2 signalling mediates HG-inhibited osteogenic differentiation by inactivation of Wnt/β-catenin signalling. More importantly, knockdown of miR-493-5p therapeutically alleviated the DOP condition in mice. HG prevents BMSCs osteogenic differentiation via up-regulation of miR-493-5p, which results in reduced level of ZEB2 by directly targeting its 3'-untranslated region of mRNA. Thus, miR-493-5p/ZEB2 is a potential therapeutic target and provides novel strategy for the treatment and management of DOP.
Collapse
Affiliation(s)
- Zhongshu Zhai
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Wanhong Chen
- Department of Imaging, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, China
| | - Qiaosheng Hu
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Xin Wang
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Qing Zhao
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Muhadasi Tuerxunyiming
- Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing 100083, China
| |
Collapse
|
9
|
Chen P, Song M, Wang Y, Deng S, Hong W, Zhang X, Yu B. Identification of key genes of human bone marrow stromal cells adipogenesis at an early stage. PeerJ 2020; 8:e9484. [PMID: 32742785 PMCID: PMC7380279 DOI: 10.7717/peerj.9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow adipocyte (BMA), closely associated with bone degeneration, shares common progenitors with osteoblastic lineage. However, the intrinsic mechanism of cells fate commitment between BMA and osteogenic lineage remains unclear. Methods Gene Expression Omnibus (GEO) dataset GSE107789 publicly available was downloaded and analyzed. Differentially expressed genes (DEGs) were analyzed using GEO2R. Functional and pathway enrichment analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were conducted by The Database for Annotation, Visualization and Integrated Discovery and Gene set enrichment analysis software. Protein-protein interactions (PPI) network was obtained using STRING database, visualized and clustered by Cytoscape software. Transcriptional levels of key genes were verified by real-time quantitative PCR in vitro in Bone marrow stromal cells (BMSCs) undergoing adipogenic differentiation at day 7 and in vivo in ovariectomized mice model. Results A total of 2,869 DEGs, including 1,357 up-regulated and 1,512 down-regulated ones, were screened out from transcriptional profile of human BMSCs undergoing adipogenic induction at day 7 vs. day 0. Functional and pathway enrichment analysis, combined with modules analysis of PPI network, highlighted ACSL1, sphingosine 1-phosphate receptors 3 (S1PR3), ZBTB16 and glypican 3 as key genes up-regulated at the early stage of BMSCs adipogenic differentiation. Furthermore, up-regulated mRNA expression levels of ACSL1, S1PR3 and ZBTB16 were confirmed both in vitro and in vivo. Conclusion ACSL1, S1PR3 and ZBTB16 may play crucial roles in early regulation of BMSCs adipogenic differentiation.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Louvet L, Leterme D, Delplace S, Miellot F, Marchandise P, Gauthier V, Hardouin P, Chauveau C, Ghali Mhenni O. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone 2020; 136:115361. [PMID: 32289519 DOI: 10.1016/j.bone.2020.115361] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Sirtuin of type 1 (Sirt1), a class III HDAC, is known to be involved in the regulation of differentiation of skeletal stem cells (SSCs) into osteoblasts and adipocytes. In caloric restriction, it has been shown that the expression and activity of Sirt1 is a tissue-dependent regulation. However, at present, no study has focused on the link between Sirt1, bone marrow adiposity (BMA) and osteoporosis related to anorexia nervosa (AN). Thus, the aims of this work were to (i) determine BMA and bone changes in a mouse model replicating the phenotypes of AN (separation-based anorexia model (SBA)); (ii) determine the expression of Sirt1 in bone marrow stromal cells (BMSCs) extracted from these mice and identify their differentiation capacities; (iii) study the effects of pharmacological activation and inhibition of Sirt1 on the osteoblastogenesis and adipogenesis of these cells and (iiii) delineate the molecular mechanism by which Sirt1 could regulate osteogenesis in an SBA model. Our results demonstrated that SBA protocol induces an increase in BMA and alteration of bone architecture. In addition, BMSCs from restricted mice present a down-regulation of Sirt1 which is accompanied by an increase in adipogenesis at expense of osteogenesis. After a 10-day organotypic culture, tibias from SBA mice displayed low levels of Sirt1 mRNA which are restored by resveratrol treatment. Interestingly, this recovery of Sirt1 levels also returned the BMA, BV/TV and Tb.Th in cultured tibias from SBA mice to normal levels. In contrast of down-regulation of Sirt1 expression induced by sirtinol treatment, stimulation of Sirt1 expression by resveratrol lead to a decrease in adipogenesis and increase in osteogenesis. Finally, to investigate the molecular mechanisms by which Sirt1 could regulate osteogenesis in the SBA model, the acetylation levels of Runx2 and Foxo1 transcription factors were determined. Our data show that this chronic energy deficiency in female mice causes a decrease in BMSC activity, resulting in critical changes to Runx2 and Foxo1 acetylation levels and thus to their activity. Altogether, these data suggest that Sirt1 could be considered as a potential therapeutic target in osteoporosis related to AN.
Collapse
Affiliation(s)
- Loïc Louvet
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Damien Leterme
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Séverine Delplace
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Flore Miellot
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Pierre Marchandise
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Véronique Gauthier
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Pierre Hardouin
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Olfa Ghali Mhenni
- Marrow Adiposity and Bone Lab (MABLab, ex-PMOI) ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
11
|
Lin T, Pajarinen J, Kohno Y, Nabeshima A, Lu L, Nathan K, Yao Z, Wu JY, Goodman S. Increased NF-kB activity in osteoprogenitor-lineage cells impairs the balance of bone versus fat in the marrow of skeletally mature mice. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:69-77. [PMID: 32377560 DOI: 10.1007/s40883-019-00112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Senile osteoporosis" is defined as significant aging-associated bone loss, and is accompanied by increased fat in the bone marrow. The proportion of adipocytes in bone marrow is inversely correlated with bone formation, and is associated with increased risk of fracture. NF-κB is a transcription factor that functions as a master regulator of inflammation and bone remodeling. NF-κB activity increases during aging; furthermore, constitutive activation of NF-κB significantly impairs skeletal development in neonatal mice. However, the effects of NF-κB activation using a skeletally mature animal model have not been examined. In the current study, an osteoprogenitor (OP)-specific, doxycycline-regulated NF-κB activated transgenic mouse model (iNF-κB/OP) was generated to investigate the role of NF-κB in bone remodeling in skeletally mature mice. Reduced osteogenesis in the OP-lineage cells isolated from iNF-κB/OP mice was only observed in the absence of doxycycline in vitro. Bone mineral density in the metaphyseal regions of femurs and tibias was reduced in iNF-κB/OP mice. No significant differences in bone volume fraction and cortical bone thickness were observed. Osmium-stained bone marrow fat was increased in epiphyseal and metaphyseal areas in the tibias of iNF-κB/OP mice. These findings suggest that targeting NF-κB activity as a therapeutic strategy may improve bone healing and prevent aging-associated bone loss in aged patients.
Collapse
Affiliation(s)
- Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Joy Y Wu
- Dvision of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Viswanathan VK, Shetty AP, Rajasekaran S. Modic changes - An evidence-based, narrative review on its patho-physiology, clinical significance and role in chronic low back pain. J Clin Orthop Trauma 2020; 11:761-769. [PMID: 32879563 PMCID: PMC7452231 DOI: 10.1016/j.jcot.2020.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lumbar degenerative spinal ailments are the most important causes for chronic low back pain. Modic changes (MC) are vertebral bone marrow signal intensity changes seen on MRI, commonly in association with degenerative disc disease (DDD). Despite being widely studied, majority of issues concerning MC are still controversial. The current narrative, evidence-based review comprehensively discusses the various aspects related to MC. LITERATURE SEARCH An elaborate search was made using keywords "Modic changes", "lumbar Modic changes", "Modic changes in lumbar spine", and "vertebral Endplate Spinal Changes", on pubmed and google (scholar.google.com) databases on the 3rd of March 2020. We identified crucial questions regarding Modic changes and included relevant articles pertaining to these topics for this narrative review. RESULTS The initial search using the keywords "Modic changes", "lumbar Modic changes", "Modic changes in lumbar spine", and "vertebral Endplate Spinal Changes" on pubmed yielded a total of 568, 412, 394 and 216 articles on "pubmed" database, respectively. A similar search using the aforementioned keywords yielded a total of 3650, 3548, 3726 and 21570 articles on "google scholar" database. The initial screening involved exclusion of duplicate articles, articles unrelated to MC, animal or other non-clinical studies, and articles in non-English literature based on abstracts or the titles of articles. This initial screening resulted in the identification of 405 articles. Full manuscripts were obtained for all these selected articles and thoroughly scrutinised at the second stage of article selection. All articles not concerning Modic changes, not pertaining to concerned questions, articles concerning other degenerative phenomena, articles discussing cervical or thoracic MC, case reports or animal studies, articles in non-English language and duplicate articles were excluded. Review articles, randomised controlled trials and level 1 studies were given preference. Overall, 69 articles were included in this review. CONCLUSION Modic change (MC) is a dynamic phenomenon and its true etiology is still not definitely known. Disc/end plate injury, occult discitis and autoimmune reactions seem to trigger an inflammatory cascade, which leads to their development. Male sex, older age, diabetes mellitus, genetic factors, smoking, obesity, spinal deformities, higher occupational loads and DDD are known risk factors. There is no conclusive evidence on the causative role of MC in chronic low back pain (LBP) or any influence on the long term outcome in patients with LBP or lumbar disc herniations (LDH). Patients with MC have been reported to have less satisfactory outcome following conservative treatment or discectomy, although the evidence is still unclear.
Collapse
Affiliation(s)
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Medical Center and Hospitals, Coimbatore, India,Corresponding author.
| | - S. Rajasekaran
- Department of Spine Surgery, Ganga Medical Center and Hospitals, Coimbatore, India,Department of Orthopedics, Ganga Medical Center and Hospitals, Coimbatore, India
| |
Collapse
|
13
|
Jang H, Lim S, Kim J, Yoon S, Lee CY, Hwang H, Shin JW, Shin KJ, Kim HY, Park KI, Nam D, Lee JY, Yea K, Hirabayashi Y, Lee YJ, Chae YC, Suh P, Choi JH. Glucosylceramide synthase regulates adipo‐osteogenic differentiation through synergistic activation of PPARγ with GlcCer. FASEB J 2019; 34:1270-1287. [DOI: 10.1096/fj.201901437r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun‐Jun Jang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Seyoung Lim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jung‐Min Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Sora Yoon
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Chae Young Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hyeon‐Jeong Hwang
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jeong Woo Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Hye Yun Kim
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kwang Il Park
- Korean Medicine (KM) Application Center Korea Institute of Oriental Medicine Daegu Republic of Korea
| | - Dougu Nam
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology DGIST Daegu Republic of Korea
| | | | - Yu Jin Lee
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Young Chan Chae
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Pann‐Ghill Suh
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Jang Hyun Choi
- School of Life Sciences Ulsan National Institute of Science and Technology Ulsan Republic of Korea
| |
Collapse
|
14
|
Picke AK, Campbell GM, Blüher M, Krügel U, Schmidt FN, Tsourdi E, Winzer M, Rauner M, Vukicevic V, Busse B, Salbach-Hirsch J, Tuckermann JP, Simon JC, Anderegg U, Hofbauer LC, Saalbach A. Thy-1 (CD90) promotes bone formation and protects against obesity. Sci Transl Med 2019; 10:10/453/eaao6806. [PMID: 30089635 DOI: 10.1126/scitranslmed.aao6806] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/02/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Osteoporosis and obesity result from disturbed osteogenic and adipogenic differentiation and present emerging challenges for our aging society. Because of the regulatory role of Thy-1 in mesenchyme-derived fibroblasts, we investigated the impact of Thy-1 expression on mesenchymal stem cell (MSC) fate between osteogenic and adipogenic differentiation and consequences for bone formation and adipose tissue development in vivo. MSCs from Thy-1-deficient mice have decreased osteoblast differentiation and increased adipogenic differentiation compared to MSCs from wild-type mice. Consistently, Thy-1-deficient mice exhibited decreased bone volume and bone formation rate with elevated cortical porosity, resulting in lower bone strength. In parallel, body weight, subcutaneous/epigonadal fat mass, and bone fat volume were increased. Thy-1 deficiency was accompanied by reduced expression of specific Wnt ligands with simultaneous increase of the Wnt inhibitors sclerostin and dickkopf-1 and an altered responsiveness to Wnt. We demonstrated that disturbed bone remodeling in osteoporosis and dysregulated adipose tissue accumulation in patients with obesity were mirrored by reduced serum Thy-1 concentrations. Our findings provide new insights into the mutual regulation of bone formation and obesity and open new perspectives to monitor and to interfere with the dysregulated balance of adipogenesis and osteogenesis in obesity and osteoporosis.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Graeme M Campbell
- Institute of Biomechanics, Hamburg University of Technology, 21073 Hamburg, Germany
| | | | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Elena Tsourdi
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Maria Winzer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Vladimir Vukicevic
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, UL, 04103 Leipzig, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology of Medical Faculty of Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells. Biomimetics (Basel) 2019; 4:biomimetics4030048. [PMID: 31295946 PMCID: PMC6784299 DOI: 10.3390/biomimetics4030048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/22/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are progenitors for bone-forming osteoblasts and lipid-storing adipocytes, two major lineages co-existing in bone marrow. When isolated in vitro, these stem cells recapitulate osteoblast or adipocyte formation if treated with specialised media, modelling how these lineages interact in vivo. Osteogenic differentiation is characterised by mineral deposits accumulating in the extracellular matrix, typically assessed using histological techniques. Adipogenesis occurs with accumulation of intracellular lipids that can be routinely visualised by Oil Red O staining. In both cases, staining requires cell fixation and is thus limited to end-point assessments. Here, a vital staining approach was developed to simultaneously detect mineral deposits and lipid droplets in differentiating cultures. Stem cells induced to differentiate produced mixed cultures containing adipocytes and bone-like nodules, and after two weeks live cultures were incubated with tetracycline hydrochloride and Bodipy to label mineral- and lipid-containing structures, respectively. Fluorescence microscopy showed the simultaneous visualisation of mineralised areas and lipid-filled adipocytes in live cultures. Combined with the nuclear stain Hoechst 33258, this approach further enabled live confocal imaging of adipogenic cells interspersed within the mineralised matrix. This multiplex labelling was repeated at subsequent time-points, demonstrating the potential of this new approach for the real-time high-precision imaging of live stem cells.
Collapse
|
16
|
Modulation of Bone and Marrow Niche by Cholesterol. Nutrients 2019; 11:nu11061394. [PMID: 31234305 PMCID: PMC6628005 DOI: 10.3390/nu11061394] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Bone is a complex tissue composing of mineralized bone, bone cells, hematopoietic cells, marrow adipocytes, and supportive stromal cells. The homeostasis of bone and marrow niche is dynamically regulated by nutrients. The positive correlation between cardiovascular disease and osteoporosis risk suggests a close relationship between hyperlipidemia and/or hypercholesterolemia and the bone metabolism. Cholesterol and its metabolites influence the bone homeostasis through modulating the differentiation and activation of osteoblasts and osteoclasts. The effects of cholesterol on hematopoietic stem cells, including proliferation, migration, and differentiation, are also well-documented and further relate to atherosclerotic lesions. Correlation between circulating cholesterol and bone marrow adipocytes remains elusive, which seems opposite to its effects on osteoblasts. Epidemiological evidence has demonstrated that cholesterol deteriorates or benefits bone metabolism depending on the types, such as low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol. In this review, we will summarize the latest progress of how cholesterol regulates bone metabolism and bone marrow microenvironment, including the hematopoiesis and marrow adiposity. Elucidation of these association and factors is of great importance in developing therapeutic options for bone related diseases under hypercholesterolemic conditions.
Collapse
|
17
|
Yin G, Liu H, Li J, Liu Y, Liu X, Luo E. Adenoviral delivery of adiponectin ameliorates osteogenesis around implants in ovariectomized rats. J Gene Med 2019; 21:e3069. [PMID: 30609197 DOI: 10.1002/jgm.3069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adiponectin (APN) has been reported to promote bone formation. However, it is difficult to utilize a conventional method that administers sufficient APN to the implant site. The present study investigated the efficacy of an APN transgene to accelerate the implant osseointegration in ovariectomized (OVX) rats. METHODS In vitro, bone marrow stromal cells were transduced with reconstructed adenovirus (Ad-APN-EGFP) and osteoclast precursor RAW264.7 cells were co-cultured with the conditioned medium secreted by transduced bone marrow stromal cells. Tartrate-resistant acid phosphatase staining and bone slice resorption assay were performed to evaluate the activity of osteoclastogenesis. In vivo, Ad-APN-EGFP was administered into the bone defect prior to implant placement in OVX rats. At 7 and 28 days post implantation, the femurs were harvested and prepared for a real-time reverse transcriptase-polymerase chain reaction, hemotoxylin and eosin staining, immunohistochemical staining, micro-computed tomography analysis and biomechanical testing. RESULTS The results showed the formation and function of osteoclasts were significantly suppressed in vitro. Successful transgene expression was confirmed, and a significant increase of OCN, Runx2 and ALP expression was detected in the Ad-APN-EGFP group in vivo. Interestingly, we also found that the overexpression of APN decreased the expression level of potent adipogenic transcription factors such as PPARγ2 and C/EBP-α. At 28 days after implantation, the Ad-APN-EGFP group revealed a significantly increased osseointegration and implant stability in OVX rats compared to the control groups (Ad-EGFP and PBS groups). CONCLUSIONS APN via direct adenovirus-mediated gene transfer could ameliorate osseointegration surrounding titanium implants in OVX-related osteoporosis rats. Furthermore, it may be an effective strategy for promoting bone regeneration under osteoporotic conditions.
Collapse
Affiliation(s)
- Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Grahnemo L, Gustafsson KL, Sjögren K, Henning P, Lionikaite V, Koskela A, Tuukkanen J, Ohlsson C, Wernstedt Asterholm I, Lagerquist MK. Increased bone mass in a mouse model with low fat mass. Am J Physiol Endocrinol Metab 2018; 315:E1274-E1285. [PMID: 30253110 DOI: 10.1152/ajpendo.00257.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mice with impaired acute inflammatory responses within adipose tissue display reduced diet-induced fat mass gain associated with glucose intolerance and systemic inflammation. Therefore, acute adipose tissue inflammation is needed for a healthy expansion of adipose tissue. Because inflammatory disorders are associated with bone loss, we hypothesized that impaired acute adipose tissue inflammation leading to increased systemic inflammation results in a lower bone mass. To test this hypothesis, we used mice overexpressing an adenoviral protein complex, the receptor internalization and degradation (RID) complex that inhibits proinflammatory signaling, under the control of the aP2 promotor (RID tg mice), resulting in suppressed inflammatory signaling in adipocytes. As expected, RID tg mice had lower high-fat diet-induced weight and fat mass gain and higher systemic inflammation than littermate wild-type control mice. Contrary to our hypothesis, RID tg mice had increased bone mass in long bones and vertebrae, affecting trabecular and cortical parameters, as well as improved humeral biomechanical properties. We did not find any differences in bone formation or resorption parameters as determined by histology or enzyme immunoassay. However, bone marrow adiposity, often negatively associated with bone mass, was decreased in male RID tg mice as determined by histological analysis of tibia. In conclusion, mice with reduced fat mass due to impaired adipose tissue inflammation have increased bone mass.
Collapse
Affiliation(s)
- L Grahnemo
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - K L Gustafsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - K Sjögren
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - P Henning
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - V Lionikaite
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - A Koskela
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine and Medical Research Center, University of Oulu , Oulu , Finland
| | - J Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine and Medical Research Center, University of Oulu , Oulu , Finland
| | - C Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - I Wernstedt Asterholm
- Unit of Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - M K Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
19
|
Liu C, Zhu R, Liu H, Li L, Chen B, Jia Q, Wang L, Ma R, Tian S, Wang M, Fu M, Niu J, Orekhov AN, Gao S, Zhang D, Zhao B. Aqueous Extract of Mori Folium Exerts Bone Protective Effect Through Regulation of Calcium and Redox Homeostasis via PTH/VDR/CaBP and AGEs/RAGE/Nox4/NF-κB Signaling in Diabetic Rats. Front Pharmacol 2018; 9:1239. [PMID: 30459613 PMCID: PMC6233025 DOI: 10.3389/fphar.2018.01239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: The present study is aimed to explore whether the aqueous extract of Mori Folium (MF) exhibits bone protective effect by regulating calcium and redox homeostasis in diabetic rats, and to identify the signaling pathways involved in this process. Methods: Diabetic rats were established using high-sugar and high-fat diet and streptozotocin (STZ) (30 mg/kg for 3 consecutive days). The serum levels of osteocalcin (OC), insulin-like growth factor-1 (IGF-1), tartrate-resistant acid phosphatase (TRAP), phosphorus (P), calcium (Ca), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], parathormone (PTH), advanced glycation end products (AGEs), superoxide dismutase (SOD), and malondialdehyde (MDA), total antioxidant capacity (TAC), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and interleukin 6 (IL-6) were determined by ELISA or biochemical assays. Histopathological alterations in the femurs were evaluated by the stainings of hematoxylin-eosin (H&E) and alizarin red S. In addition, femoral strength was detected by a three-point bending assay, bone microstructure was detected with micro-computer tomography. Bone material properties were examined by Fourier-transform infrared spectroscopy. Furthermore, the expressions of IGF-1, runt-related transcription factor 2 (Runx2), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), cathepsin K, AGEs, receptor of advanced glycation end products (RAGE), NADPH oxidase 4 (Nox4), and nuclear factor kappa-B (NF-κB) in the femurs and tibias, and the alterations in the levels of calcium-binding protein-28k (CaBP-28k), transient receptor potential V6 (TRPV6), and vitamin D receptor (VDR) in the kidneys and duodenums were determined by western blot and immunohistochemical analysis. Results: Treatment of diabetic rats with MF aqueous extract induces an increase in the levels of OC and IGF-1 as well as a decrease in TRAP level in serum. MF treatment also upregulates the expression of OPG, downregulates the expressions of AGEs, RAGE, Nox4, NF-κB, and RANKL, which leads to improve bone microstructure and strength exhibited by an increase in cortical area ratio, cortical thickness, and trabecular area ratio as well as ultimate load, elastic modulus, and bending stress in the femurs and tibias of diabetic rats. In addition, MF aqueous extract preserves bone material properties by decreasing the ratio of fatty acid/collagen and increasing the ratio of mineral/matrix in the femurs of diabetic rats. Moreover, MF treatment increases the levels of P, Ca, and 1,25(OH)2D3, and decreases the level of PTH in the serum, as well as upregulates the expressions of TRPV6 and VDR in the duodenums and CaBP-28k in the kidneys of diabetic rats. Additionally, MF has ability of rebuilding redox homeostasis and eliminating inflammatory stress by increasing the levels of SOD and TAC as well as decreasing the levels of IL-6, AGEs, MDA, and 8-OH-dG. Conclusions: MF treatment may improve bone quality through maintenance of calcium homeostasis via regulating the PTH/VDR/CaBP signaling, and elimination of oxidative stress via regulating the AGEs/RAGE/Nox4/NF-κB signaling. These results may suggest the potential of MF in preventing the development of diabetic osteoporosis.
Collapse
Affiliation(s)
- Chenyue Liu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Ma
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Simin Tian
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC, Canada
| | - Jianzhao Niu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration. Stem Cells Int 2018; 2018:7098456. [PMID: 29955232 PMCID: PMC6000863 DOI: 10.1155/2018/7098456] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/13/2018] [Indexed: 02/05/2023] Open
Abstract
Marrow adipose tissue (MAT) is a unique fat depot in the bone marrow and exhibits close relationship with hematopoiesis and bone homeostasis. MAT is distinct from peripheral adipose tissue in respect of its heterogeneous origin, site-specific distribution, and complex and perplexing function. Though MAT is indicated to function in hematopoiesis, skeletal remodeling, and energy metabolism, its explicit characterization still requires further research. In this review, we highlight recent advancement made in MAT regarding the origin and distribution of MAT, the local interaction with bone homeostasis and hematopoietic niche, the systemic endocrine regulation of metabolism, and MAT-based strategies to enhance bone formation.
Collapse
|
21
|
Shiran SI, Shabtai L, Ben-Sira L, Ovadia D, Wientroub S. T1-weighted MR imaging of bone marrow pattern in children with adolescent idiopathic scoliosis: a preliminary study. J Child Orthop 2018; 12:181-186. [PMID: 29707058 PMCID: PMC5902753 DOI: 10.1302/1863-2548.12.180035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Distinct normal physiological patterns of fat conversion in vertebrae were described both for children and adults. Our aim was to evaluate the T1-weighted bone marrow pattern of the vertebral bodies in various sites along the scoliotic spine of children with adolescent idiopathic scoliosis (AIS). METHODS We retrospectively evaluated spine MRI studies of children with AIS. Scoliosis radiographs were assessed for type of curvature according to the Lenke classification. A paediatric neuroradiologist assessed the T1-weighted signal of vertebral bodies in comparison with the adjacent disc and distinct patterns of fatty conversion within the apical and stable vertebral bodies. Statistical assessment was performed. RESULTS MRI study of the spines of 75 children with AIS were assessed, 59 (79%) of whom were female, with an age range of nine to 19 years. The relative overall T1-weighted signal intensity of the vertebral body bone marrow relative to the intervertebral disc was hyperintense in 76% and isointense in 24%. Fatty conversion grade of the stable vertebra was higher than the apex vertebra (p = 0.0001). A significant tendency to have more advanced fat conversion patterns in the apex vertebra up to age 13.5 years old compared with adolescents above that (p = 0.015) was seen. CONCLUSION This preliminary study suggests a different pattern of bone marrow conversion in AIS from the normal physiologic pattern described in the literature. Whether these changes are secondary to the biomechanics of the curved spine or may suggest that bone marrow maturation rate and content have a role in the pathogenesis of AIS remains to be further researched. LEVEL OF EVIDENCE Level III (Diagnostic Study).
Collapse
Affiliation(s)
- S. I. Shiran
- Department of Radiology, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, Correspondence should be sent to S. I. Shiran, Department of Radiology, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel or 6 Weizman Street, Tel Aviv, 64239Israel. E-mail:
| | - L. Shabtai
- Department of Paediatric Orthopaedics, Cohen Children’s Hospital, Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, New York, USA
| | - L. Ben-Sira
- Department of Radiology, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D. Ovadia
- Department of Paediatric Orthopaedics, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S. Wientroub
- Department of Paediatric Orthopaedics, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|
23
|
Penha ESD, Lacerda-Santos R, Carvalho MGFD, Oliveira PTD. Effect ofChenopodium ambrosioideson the healing process of the in vivo bone tissue. Microsc Res Tech 2017; 80:1167-1173. [DOI: 10.1002/jemt.22913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 06/06/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Elizandra Silva da Penha
- Department of Pediatric Dentistry; Dental School, Federal University of Campina Grande - UFCG; Av. Universitária, s/n - Jatobá, Patos Paraíba 58708-110 Brazil
| | - Rogério Lacerda-Santos
- Department of Orthodontics and Pediatric Dentistry; Dental School, Federal University of Juiz de Fora - UFJF; Av. Doutor Raimundo Monteiro Rezende, 330, Centro, Governador Valadares Minas Gerais 35010-177 Brazil
| | - Maria Goretti Freire de Carvalho
- Department of Patology; Dental School, Potiguar University - UP; Av. Floriano Peixoto, 295, Petrópolis, Natal, Rio Grande do Norte 59020-010 Brazil
| | - Patrícia Teixeira de Oliveira
- Graduate Program in Oral Pathology; Department of Dentistry, Federal University of Rio Grande do Norte - UFRN, Av. Senador Salgado Filho; 1787, Lagoa Nova, Natal, Rio Grande do Norte 59056-000 Brazil
| |
Collapse
|
24
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic analyses of the anti-adipogenic effects of oleuropein in human mesenchymal stem cells. Food Funct 2017; 8:1254-1270. [PMID: 28243663 DOI: 10.1039/c7fo00045f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extra virgin olive oil has positive effects on health. Oleuropein is a polyphenolic compound present in olive-tree leaves, fruits (olives) and olive oil. It is responsible for the relevant organoleptic and biological properties of olive oil, including antiadipogenic properties. Thus, the effects of oleuropein on the adipogenesis of human bone-marrow mesenchymal stem cells were studied by transcriptomics and differential gene-expression analyses. Oleuropein could upregulate expression of 60% of adipogenesis-repressed genes. Besides, it could activate signaling pathways such as Rho and β-catenin, maintaining cells at an undifferentiated stage. Our data suggest that mitochondrial activity is reduced by oleuropein, mostly during adipogenic differentiation. These results shed light on oleuropein activity on cells, with potential application as a "nutraceutical" for the prevention and treatment of diseases such as obesity and osteoporosis.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain. and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Campus Rabanales C5-1-O1, 14071 Córdoba, Spain
| | - Sören Müller
- GenXPro, Altenhoferallee 3, 60438 Frankfurt Main, Germany
| | - Peter Winter
- GenXPro, Altenhoferallee 3, 60438 Frankfurt Main, Germany
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain. and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| |
Collapse
|
25
|
Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients 2017; 9:nu9050506. [PMID: 28513571 PMCID: PMC5452236 DOI: 10.3390/nu9050506] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
Abstract
With people aging, osteoporosis is expected to increase notably. Nutritional status is a relatively easily-modified risk factor, associated with many chronic diseases, and is involved in obesity, diabetes, and coronary heart disease (CHD), along with osteoporosis. Nutrients, such as fats, sugars, and proteins, play a primary function in bone metabolism and maintaining bone health. In Western nations, diets are generally high in saturated fats, however, currently, the nutritional patterns dominating in China continue to be high in carbohydrates from starch, cereals, and sugars. Moreover, high fat or high sugar (fructose, glucose, or sucrose) impart a significant impact on bone structural integrity. Due to diet being modifiable, demonstrating the effects of nutrition on bone health can provide an approach for osteoporosis prevention. Most researchers have reported that a high-fat diet consumption is associated with bone mineral density (BMD) and, as bone strength diminishes, adverse microstructure changes occur in the cancellous bone compartment, which is involved with lipid metabolism modulation disorder and the alteration of the bone marrow environment, along with an increased inflammatory environment. Some studies, however, demonstrated that a high-fat diet contributes to achieving peak bone mass, along with microstructure, at a younger age. Contrary to these results, others have shown that a high-fructose diet consumption leads to stronger bones with a superior microarchitecture than those with the intake of a high-glucose diet and, at the same time, research indicated that a high-fat diet usually deteriorates cancellous bone parameters, and that the incorporation of fructose into a high-fat diet did not aggravate bone mass loss. High-fat/high-sucrose diets have shown both beneficial and detrimental influences on bone metabolism. Combined, these studies showed that nutrition exerts different effects on bone health. Thus, a better understanding of the regulation between dietary nutrition and bone health might provide a basis for the development of strategies to improve bone health by modifying nutritional components.
Collapse
|
26
|
Zhao Q, Lu Y, Yu H, Gan X. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS One 2017; 12:e0172954. [PMID: 28253368 PMCID: PMC5333869 DOI: 10.1371/journal.pone.0172954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
Low magnitude high frequency vibration (LMHFV) has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm), 15min/d, on multipotent stem cells (MSCs), which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs) and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhi Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (HY); (XG)
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (HY); (XG)
| |
Collapse
|
27
|
Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 2016; 43:236-242. [PMID: 28043032 DOI: 10.1016/j.intimp.2016.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.
Collapse
|
28
|
Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC. Pathobiology of Modic changes. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:3723-3734. [PMID: 26914098 PMCID: PMC5477843 DOI: 10.1007/s00586-016-4459-7] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/06/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Low back pain (LBP) is the most disabling condition worldwide. Although LBP relates to different spinal pathologies, vertebral bone marrow lesions visualized as Modic changes on MRI have a high specificity for discogenic LBP. This review summarizes the pathobiology of Modic changes and suggests a disease model. METHODS Non-systematic literature review. RESULTS Chemical and mechanical stimulation of nociceptors adjacent to damaged endplates are likely a source of pain. Modic changes are adjacent to a degenerated intervertebral disc and have three generally interconvertible types suggesting that the different Modic change types represent different stages of the same pathological process, which is characterized by inflammation, high bone turnover, and fibrosis. A disease model is suggested where disc/endplate damage and the persistence of an inflammatory stimulus (i.e., occult discitis or autoimmune response against disc material) create predisposing conditions. The risk to develop Modic changes likely depends on the inflammatory potential of the disc and the capacity of the bone marrow to respond to it. Bone marrow lesions in osteoarthritic knee joints share many characteristics with Modic changes adjacent to degenerated discs and suggest that damage-associated molecular patterns and marrow fat metabolism are important pathogenetic factors. There is no consensus on the ideal therapy. Non-surgical treatment approaches including intradiscal steroid injections, anti-TNF-α antibody, antibiotics, and bisphosphonates have some demonstrated efficacy in mostly non-replicated clinical studies in reducing Modic changes in the short term, but with unknown long-term benefits. New diagnostic tools and animal models are required to improve painful Modic change identification and classification, and to clarify the pathogenesis. CONCLUSION Modic changes are likely to be more than just a coincidental imaging finding in LBP patients and rather represent an underlying pathology that should be a target for therapy.
Collapse
Affiliation(s)
- Stefan Dudli
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA.
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Jaro Karppinen
- Department of Physical and Rehabilitation Medicine, Medical Research Center Oulu, Finnish Institute of Occupational Health, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Ave, S-1164, San Francisco, CA, 94143-0514, USA
| |
Collapse
|
29
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic Analyses of Adipocyte Differentiation From Human Mesenchymal Stromal-Cells (MSC). J Cell Physiol 2016; 232:771-784. [PMID: 27349923 DOI: 10.1002/jcp.25472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis is a physiological process required for fat-tissue development, mainly involved in regulating the organism energetic-state. Abnormal distribution-changes and dysfunctions in such tissue are associated to different pathologies. Adipocytes are generated from progenitor cells, via a complex differentiating process not yet well understood. Therefore, we investigated differential mRNA and miRNA expression patterns of human mesenchymal stromal-cells (MSC) induced and not induced to differentiate into adipocytes by next (second)-generation sequencing. A total of 2,866 differentially expressed genes (101 encoding miRNA) were identified, with 705 (46 encoding miRNA) being upregulated in adipogenesis. They were related to different pathways, including PPARG, lipid, carbohydrate and energy metabolism, redox, membrane-organelle biosynthesis, and endocrine system. Downregulated genes were related to extracellular matrix and cell migration, proliferation, and differentiation. Analyses of mRNA-miRNA interaction showed that repressed miRNA-encoding genes can act downregulating PPARG-related genes; mostly the PPARG activator (PPARGC1A). Induced miRNA-encoding genes regulate downregulated genes related to TGFB1. These results shed new light to understand adipose-tissue differentiation and physiology, increasing our knowledge about pathologies like obesity, type-2 diabetes and osteoporosis. J. Cell. Physiol. 232: 771-784, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus de Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
30
|
Simann M, Le Blanc S, Schneider V, Zehe V, Lüdemann M, Schütze N, Jakob F, Schilling T. Canonical FGFs Prevent Osteogenic Lineage Commitment and Differentiation of Human Bone Marrow Stromal Cells Via ERK1/2 Signaling. J Cell Biochem 2016; 118:263-275. [PMID: 27305863 DOI: 10.1002/jcb.25631] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
Controlling the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) in favor of osteogenesis represents a promising approach for osteoporosis therapy and prevention. Previously, Fibroblast Growth Factor 1 (FGF1) and its subfamily member FGF2 were scored as leading candidates to exercise control over skeletal precursor commitment and lineage decision albeit literature results are highly inconsistent. We show here that FGF1 and 2 strongly prevent the osteogenic commitment and differentiation of hBMSCs. Mineralization of extracellular matrix (ECM) and mRNA expression of osteogenic marker genes Alkaline Phosphatase (ALP), Collagen 1A1 (COL1A1), and Integrin-Binding Sialoprotein (IBSP) were significantly reduced. Furthermore, master regulators of osteogenic commitment like Runt-Related Transcription Factor 2 (RUNX2) and Bone Morphogenetic Protein 4 (BMP4) were downregulated. When administered under adipogenic culture conditions, canonical FGFs did not support osteogenic marker expression. Moreover despite the presence of osteogenic differentiation factors, FGFs even disabled the pro-osteogenic lineage decision of pre-differentiated adipocytic cells. In contrast to FGF Receptor 2 (FGFR2), FGFR1 was stably expressed throughout osteogenic and adipogenic differentiation and FGF addition. Moreover, FGFR1 and Extracellular Signal-Regulated Kinases 1 and 2 (ERK1/2) were found to be responsible for underlying signal transduction using respective inhibitors. Taken together, we present new findings indicating that canonical FGFR-ERK1/2 signaling entrapped hBMSCs in a pre-committed state and arrested further maturation of committed precursors. Our results might aid in unraveling and controlling check points relevant for ageing-associated aberrant adipogenesis with consequences for the treatment of degenerative diseases such as osteoporosis and for skeletal tissue engineering strategies. J. Cell. Biochem. 118: 263-275, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meike Simann
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Solange Le Blanc
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Verena Schneider
- Chair Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Zehe
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Martin Lüdemann
- Orthopedic Department König-Ludwig-Haus, Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Norbert Schütze
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| | - Tatjana Schilling
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Martin E, Qureshi A, Dasa V, Freitas M, Gimble J, Davis T. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome. Biochimie 2016; 124:98-111. [DOI: 10.1016/j.biochi.2015.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
|
32
|
Forcioli-Conti N, Estève D, Bouloumié A, Dani C, Peraldi P. The size of the primary cilium and acetylated tubulin are modulated during adipocyte differentiation: Analysis of HDAC6 functions in these processes. Biochimie 2016; 124:112-123. [DOI: 10.1016/j.biochi.2015.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
|
33
|
Ge C, Cawthorn WP, Li Y, Zhao G, Macdougald OA, Franceschi RT. Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ Transcription Factors. J Cell Physiol 2016. [PMID: 26206105 DOI: 10.1002/jcp.25102] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In many skeletal diseases, including osteoporosis and disuse osteopenia, defective osteoblast differentiation is associated with increased marrow adipogenesis. The relative activity of two transcription factors, RUNX2 and PPARγ, controls whether a mesenchymal cell will differentiate into an osteoblast or adipocyte. Herein we show that the ERK/MAP kinase pathway, an important mediator of mechanical and hormonal signals in bone, stimulates osteoblastogenesis and inhibits adipogenesis via phosphorylation of RUNX2 and PPARγ. Induction of osteoblastogenesis in ST2 mesenchymal cells was associated with increased MAPK activity and RUNX2 phosphorylation. Under these conditions PPARγ phosphorylation also increased, but adipogenesis was inhibited. In contrast, during adipogenesis MAPK activity and phosphorylation of both transcription factors was reduced. RUNX2 phosphorylation and transcriptional activity were directly stimulated by MAPK, a response requiring phosphorylation at S301 and S319. MAPK also inhibited PPARγ-dependent transcription via S112 phosphorylation. Stimulation of MAPK increased osteoblastogenesis and inhibited adipogenesis, while dominant-negative suppression of activity had the opposite effect. In rescue experiments using Runx2(-/-) mouse embryo fibroblasts (MEFs), wild type or, to a greater extent, phosphomimetic mutant RUNX2 (S301E,S319E) stimulated osteoblastogenesis while suppressing adipogenesis. In contrast, a phosphorylation-deficient RUNX2 mutant (S301A,S319A) had reduced activity. Conversely, wild type or, to a greater extent, phosphorylation-resistant S112A mutant PPARγ strongly stimulated adipogenesis and inhibited osteoblastogenesis in Pparg(-/-) MEFs, while S112E mutant PPARγ was less active. Competition between RUNX2 and PPARγ was also observed at the transcriptional level. Together, these studies highlight the importance of MAP kinase signaling and RUNX2/PPARγ phosphorylation in the control of osteoblast and adipocyte lineages.
Collapse
Affiliation(s)
- Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - William P Cawthorn
- Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Yan Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Guisheng Zhao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Ormond A Macdougald
- Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Renny T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan.,Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
34
|
Guo Y, Wang L, Ma R, Mu Q, Yu N, Zhang Y, Tang Y, Li Y, Jiang G, Zhao D, Mo F, Gao S, Yang M, Kan F, Ma Q, Fu M, Zhang D. JiangTang XiaoKe granule attenuates cathepsin K expression and improves IGF-1 expression in the bone of high fat diet induced KK-Ay diabetic mice. Life Sci 2016; 148:24-30. [PMID: 26892148 DOI: 10.1016/j.lfs.2016.02.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 12/19/2022]
Abstract
AIM To assess the beneficial effects of JiangTang XiaoKe (JTXK) granule on the bone metabolism in high fat diet (HFD) fed KK-Ay diabetic mice. MATERIALS AND METHODS The KK-Ay mice were used as a diabetic model, while C57BL/6 mice were utilized as the non-diabetic control. The left tibia was used for determining bone mineral density (BMD) and bone ash coefficient. The HE and alizarin red S staining of femur were employed to evaluate bone pathology and calcium deposition. The expressions of alkaline phosphatase (ALP), insulin growth factor 1 (IGF-1) and cathepsin K were assessed by western blotting and immunohistochemical staining. KEY FINDINGS JTXK granule significantly improved the bone ash coefficient, the distribution of trabecular bone and the calcification nodules deposition in KK-Ay mice with diabetes. IGF-1 and ALP expressions were significantly decreased, and cathepsin K expression was dramatically increased in the HFD fed KK-Ay diabetic model mice, which can be reversed by JTXK granule treatment. JTXK granule at medium or high dosage was more efficient in improving diabetic bone quality when compared with that in mice with a low dosage. However, the BMD values in each group of KK-Ay diabetic mice were not significantly different. SIGNIFICANCE We demonstrate that cathepsin K expression is increased in KK-Ay diabetic mouse model. JTXK granule treatment inhibits osteoclastic bone resorption and promotes the new bone formation by decreasing cathepsin K activity and increasing IGF-1 and ALP levels. These changes may contribute to the increase of bone strength and thus reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Yubo Guo
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rufeng Ma
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianqian Mu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Na Yu
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqing Tang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Li
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Meijuan Yang
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Feifei Kan
- Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qun Ma
- Chinese Material Medical School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Fu
- McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
35
|
McGee-Lawrence ME, Carpio LR, Schulze RJ, Pierce JL, McNiven MA, Farr JN, Khosla S, Oursler MJ, Westendorf JJ. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. J Bone Miner Res 2016; 31. [PMID: 26211746 PMCID: PMC4758691 DOI: 10.1002/jbmr.2602] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Meghan E McGee-Lawrence
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Lomeli R Carpio
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Ryan J Schulze
- Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Pierce
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Gastroenterology and Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Hardouin P, Rharass T, Lucas S. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue? Front Endocrinol (Lausanne) 2016; 7:85. [PMID: 27445987 PMCID: PMC4928601 DOI: 10.3389/fendo.2016.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues.
Collapse
Affiliation(s)
- Pierre Hardouin
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Tareck Rharass
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Stéphanie Lucas
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
- *Correspondence: Stéphanie Lucas,
| |
Collapse
|
37
|
Soares CD, Carvalho MGFD, Carvalho RAD, Trindade SRP, Rêgo ACMD, Araújo-Filho I, Marques MM. Chenopodium ambrosioides L. extract prevents bone loss. Acta Cir Bras 2015; 30:812-8. [DOI: 10.1590/s0102-865020150120000004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
|
38
|
Cao J, Ou G, Yang N, Ding K, Kream BE, Hamrick MW, Isales CM, Shi XM. Impact of targeted PPARγ disruption on bone remodeling. Mol Cell Endocrinol 2015; 410:27-34. [PMID: 25666993 PMCID: PMC4444378 DOI: 10.1016/j.mce.2015.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/21/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), known as the master regulator of adipogenesis, has been regarded as a promising target for new anti-osteoporosis therapy due to its role in regulating bone marrow mesenchymal stem/progenitor cell (BMSC) lineage commitment. However, the precise mechanism underlying PPARγ regulation of bone is not clear as a bone-specific PPARγ conditional knockout (cKO) study has not been conducted and evidence showed that deletion of PPARγ in other tissues also have profound effect on bone. In this study, we show that mice deficiency of PPARγ in cells expressing a 3.6 kb type I collagen promoter fragment (PPAR(fl/fl):Col3.6-Cre) exhibits a moderate, site-dependent bone mass phenotype. In vitro studies showed that adipogenesis is abolished completely and osteoblastogenesis increased significantly in both primary bone marrow culture and the BMSCs isolated from PPARγ cKO mice. Histology and histomorphometry studies revealed significant increases in the numbers of osteoblasts and surface in the PPARγ cKO mice. Finally, we found that neither the differentiation nor the function of osteoclasts was affected in the PPARγ cKO mice. Together, our studies indicate that PPARγ plays an important role in bone remodeling by increasing the abundance of osteoblasts for repair, but not during skeletal development.
Collapse
Affiliation(s)
- Jay Cao
- USDA ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Guomin Ou
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Nianlan Yang
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Kehong Ding
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Barbara E Kream
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Mark W Hamrick
- Department of Cell Biology, Georgia Regents University, Augusta, GA, United States
| | - Carlos M Isales
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Xing-Ming Shi
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
39
|
Ytteborg E, Todorcevic M, Krasnov A, Takle H, Kristiansen IØ, Ruyter B. Precursor cells from Atlantic salmon (Salmo salar) visceral fat holds the plasticity to differentiate into the osteogenic lineage. Biol Open 2015; 4:783-91. [PMID: 25948755 PMCID: PMC4571100 DOI: 10.1242/bio.201411338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the potential plasticity of Atlantic salmon (Salmo salar) precursor cells (aSPCs) from the adipogenic mesenchyme cell lineage to differentiate to the osteogenic lineage, aSPCs were isolated and cultivated under either osteogenic or adipogenic promoting conditions. The results strengthen the hypothesis that aSPCs most likely are predestined to the adipogenic lineage, but they also hold the flexibility to turn into other lineages given the right stimuli. This assumption is supported by the fact that the transcription factor pparγ , important for regulation of adiopogenesis, was silent in aSPCs grown in osteogenic media, while runx2, important for osteogenic differentiation, was not expressed in aSPCs cultivated in adipogenic media. After 2 weeks in osteogenic promoting conditions the cells started to deposit extracellular matrix and after 4 weeks, the cells started mineralizing secreted matrix. Microarray analyses revealed large-scale transcriptome responses to osteogenic medium after 2 days, changes remained stable at day 15 and decreased by magnitude at day 30. Induction was observed in many genes involved in osteogenic differentiation, growth factors, regulators of development, transporters and production of extracellular matrix. Transcriptome profile in differentiating adipocytes was markedly different from differentiating osteoblasts with far fewer genes changing activity. The number of regulated genes slowly increased at the mature stage, when adipocytes increased in size and accumulated lipids. This is the first report on in vitro differentiation of aSPCs from Atlantic salmon to mineralizing osteogenic cells. This cell model system provides a new valuable tool for studying osteoblastogenesis in fish.
Collapse
|
40
|
Syrbe U, Callhoff J, Conrad K, Poddubnyy D, Haibel H, Junker S, Frommer KW, Müller-Ladner U, Neumann E, Sieper J. Serum adipokine levels in patients with ankylosing spondylitis and their relationship to clinical parameters and radiographic spinal progression. Arthritis Rheumatol 2015; 67:678-85. [PMID: 25417763 DOI: 10.1002/art.38968] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adipokines have metabolic and inflammatory functions but can also affect bone metabolism. The purpose of this study was to determine the relationship between serum levels of adiponectin, resistin, and visfatin and markers of inflammation, disease activity, and radiographic spinal progression in patients with ankylosing spondylitis (AS). METHODS Levels of adiponectin, resistin, and visfatin in the serum of 86 AS patients and 25 healthy controls were measured by enzyme-linked immunosorbent assay at baseline. Radiographic spinal progression was determined by the scoring of radiographs of the spine obtained at baseline and after 2 years. RESULTS Mean (±SD) baseline levels of resistin and visfatin were significantly higher in AS patients than in healthy controls (11.6 ± 10.6 ng/ml versus 6.6 ± 3.2 ng/ml [P = 0.01] for resistin, and 20.9 ± 48.3 ng/ml versus 3.4 ± 2.6 ng/ml [P = 0.001] for visfatin). Adipokine serum levels did not correlate with disease activity or functional indices. Only resistin serum levels correlated with markers of inflammation. Baseline levels of visfatin, but not resistin or adiponectin, were significantly higher in patients with worsening of the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) by ≥2 units after 2 years (n = 19) as compared to patients without mSASSS worsening (37.7 ± 57.8 ng/ml versus 16.1 ± 44.6 ng/ml; P = 0.029) and in patients with syndesmophyte formation/progression (n = 22) as compared to patients without such progression (37.1 ± 55.3 ng/ml versus 15.3 ± 44.8 ng/ml; P = 0.023). Visfatin levels of >8 ng/ml at baseline were predictive of subsequent radiographic spinal progression (adjusted odds ratio 3.6 for mSASSS progression and 5.4 for syndesmophyte formation/progression). CONCLUSION Serum levels of resistin and visfatin are elevated in AS patients. Elevated visfatin levels at baseline are predictive of subsequent progression of radiographic damage in AS patients.
Collapse
Affiliation(s)
- Uta Syrbe
- Charité Berlin, Campus Benjamin Franklin, and Deutsches Rheumaforschungszentrum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone.
Collapse
Affiliation(s)
- Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- *Correspondence: Ann V. Schwartz, Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, Box 0560, San Francisco, CA 94143, USA e-mail:
| |
Collapse
|
42
|
Abstract
Obesity markedly increases susceptibility to a range of diseases and simultaneously undermines the viability and fate selection of haematopoietic stem cells (HSCs), and thus the kinetics of leukocyte production that is critical to innate and adaptive immunity. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from the bone marrow microenvironment, it is not surprising that conditions that disturb bone marrow structure inevitably disrupt both the numbers and lineage-fates of these key blood cell progenitors. In addition to the increased adipose burden in visceral and subcutaneous compartments, obesity causes a marked increase in the size and number of adipocytes encroaching into the bone marrow space, almost certainly disturbing HSC interactions with neighbouring cells, which include osteoblasts, osteoclasts, mesenchymal cells and endothelial cells. As the global obesity pandemic grows, the short-term and long-term consequences of increased bone marrow adiposity on HSC lineage selection and immune function remain uncertain. This Review discusses the differentiation and function of haematopoietic cell populations, the principal physicochemical components of the bone marrow niche, and how this environment influences HSCs and haematopoiesis in general. The effect of adipocytes and adiposity on HSC and progenitor cell populations is also discussed, with the goal of understanding how obesity might compromise the core haematopoietic system.
Collapse
Affiliation(s)
- Benjamin J Adler
- Department of Biomedical Engineering, Bioengineering Building, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Kenneth Kaushansky
- Department of Medicine, Health Sciences Centre, Stony Brook University, Stony Brook, NY 11794-8430, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Bioengineering Building, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
43
|
|
44
|
Baltes J, Larsen JV, Radhakrishnan K, Geumann C, Kratzke M, Petersen CM, Schu P. σ1B adaptin regulates adipogenesis by mediating the sorting of sortilin in adipose tissue. J Cell Sci 2014; 127:3477-87. [PMID: 24928897 DOI: 10.1242/jcs.146886] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, we describe altered sorting of sortilin in adipocytes deficient for the σ1B-containing AP-1 complex, leading to the inhibition of adipogenesis. The AP-1 complex mediates protein sorting between the trans-Golgi network and endosomes. Vertebrates express three AP1 σ1 subunit isoforms - σ1A, σ1B and σ1C (also known as AP1S1, AP1S2 and AP1S3, respectively). σ1B-deficient mice display impaired recycling of synaptic vesicles and lipodystrophy. Here, we show that sortilin is overexpressed in adipose tissue from σ1B(-/-) mice, and that its overexpression in wild-type cells is sufficient to suppress adipogenesis. σ1B-specific binding of sortilin requires the sortilin DxxD-x12-DSxxxL motif. σ1B deficiency does not lead to a block of sortilin transport out of a specific organelle, but the fraction that reaches lysosomes is reduced. Sortilin binds to the receptor DLK1, an inhibitor of adipocyte differentiation, and the overexpression of sortilin prevents DLK1 downregulation, leading to enhanced inhibition of adipogenesis. DLK1 and sortilin expression are not increased in the brain tissue of σ1B(-/-) mice, although this is the tissue with the highest expression of σ1B and sortilin. Thus, adipose-tissue-specific and σ1B-dependent routes for the transport of sortilin exist and are involved in the regulation of adipogenesis and adipose-tissue mass.
Collapse
Affiliation(s)
- Jennifer Baltes
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Jakob Vejby Larsen
- MIND Center Department of Biomedicine, Ole Worms Allé 3, Aarhus University, 8000 Aarhus, Denmark
| | - Karthikeyan Radhakrishnan
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Constanze Geumann
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Manuel Kratzke
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Claus Munck Petersen
- MIND Center Department of Biomedicine, Ole Worms Allé 3, Aarhus University, 8000 Aarhus, Denmark
| | - Peter Schu
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
45
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
46
|
Zaher W, Harkness L, Jafari A, Kassem M. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 2014; 88:1069-82. [PMID: 24691703 DOI: 10.1007/s00204-014-1232-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.
Collapse
Affiliation(s)
- Walid Zaher
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | | | | |
Collapse
|