1
|
Miyano Y, Mikami M, Katsuragi H, Shinkai K. Effects of Sr 2+, BO 33-, and SiO 32- on Differentiation of Human Dental Pulp Stem Cells into Odontoblast-Like Cells. Biol Trace Elem Res 2023; 201:5585-5600. [PMID: 36917393 DOI: 10.1007/s12011-023-03625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
This study aimed to clarify the effects of strontium (Sr2+), borate (BO33-), and silicate (SiO32-) on cell proliferative capacity, the induction of differentiation into odontoblast-like cells (OLCs), and substrate formation of human dental pulp stem cells (hDPSCs). Sr2+, BO33-, and SiO32- solutions were added to the hDPSC culture medium at three different concentrations, totaling nine experimental groups. The effects of these ions on hDPSC proliferation, calcification, and collagen formation after 14, 21, and 28 days of culture were evaluated using a cell proliferation assay, a quantitative alkaline phosphatase (ALP) activity assay, and Alizarin Red S and Sirius Red staining, respectively. Furthermore, the effects of these ions on hDPSC differentiation into OLCs were assessed via quantitative polymerase chain reaction and immunocytochemistry. Sr2+ and SiO32- increased the expression of odontoblast markers; i.e., nestin, dentin matrix protein-1, dentin sialophosphoprotein, and ALP genes, compared with the control group. BO33- increased the ALP gene expression and activity. The results of this study suggested that Sr2+, BO33-, and SiO32- may induce hDPSC differentiation into OLCs.
Collapse
Affiliation(s)
- Yuko Miyano
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Nigata, Japan
| | - Masato Mikami
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Nigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-Cho, Chuo-Ku, Nigata, 951-8580, Japan.
| |
Collapse
|
2
|
Gong Y, Honda Y, Adachi T, Marin E, Yoshikawa K, Pezzotti G, Yamamoto K. Tailoring Silicon Nitride Surface Chemistry for Facilitating Odontogenic Differentiation of Rat Dental Pulp Cells. Int J Mol Sci 2021; 22:13130. [PMID: 34884934 PMCID: PMC8658470 DOI: 10.3390/ijms222313130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Silicon nitride (Si3N4) can facilitate bone formation; hence, it is used as a biomaterial in orthopedics. Nevertheless, its usability for dentistry is unexplored. The aim of the present study was to investigate the effect of Si3N4 granules for the proliferation and odontogenic differentiation of rat dental pulp cells (rDPCs). Four different types of Si3N4 granules were prepared, which underwent different treatments to form pristine as-synthesized Si3N4, chemically treated Si3N4, thermally treated Si3N4, and Si3N4 sintered with 3 wt.% yttrium oxide (Y2O3). rDPCs were cultured on or around the Si3N4 granular beds. Compared with the other three types of Si3N4 granules, the sintered Si3N4 granules significantly promoted cellular attachment, upregulated the expression of odontogenic marker genes (Dentin Matrix Acidic Phosphoprotein 1 and Dentin Sialophosphoprotein) in the early phase, and enhanced the formation of mineralization nodules. Furthermore, the water contact angle of sintered Si3N4 was also greatly increased to 40°. These results suggest that the sintering process for Si3N4 with Y2O3 positively altered the surface properties of pristine as-synthesized Si3N4 granules, thereby facilitating the odontogenic differentiation of rDPCs. Thus, the introduction of a sintering treatment for Si3N4 granules is likely to facilitate their use in the clinical application of dentistry.
Collapse
Affiliation(s)
- Yanan Gong
- Department of Operative Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (Y.G.); (K.Y.); (K.Y.)
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (E.M.); (G.P.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (E.M.); (G.P.)
- Department of Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (Y.G.); (K.Y.); (K.Y.)
| | - Giuseppe Pezzotti
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.A.); (E.M.); (G.P.)
- Department of Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Japan; (Y.G.); (K.Y.); (K.Y.)
| |
Collapse
|
3
|
Masuda Y, Sakagami H, Yokose S, Udagawa N. Effect of Small-molecule GSK3 Antagonist on Differentiation of Rat Dental Pulp Cells into Odontoblasts. In Vivo 2021; 34:1071-1075. [PMID: 32354894 DOI: 10.21873/invivo.11877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND It has been reported that glycogen synthase kinase 3 (GSK3) antagonist promoted the reparative formation of dentin. The aim of the present study was to evaluate whether treatment schedule of Tidegrusib® (TG), a small-molecule GSK3 antagonist, affected in vitro differentiation of dental pulp cells toward odontoblast-like cells. MATERIALS AND METHODS Pulp cells isolated from rat incisors were repeatedly exposed to TG for the first 6 h (intermittent exposure) or the full 48 h (continuous exposure) of each 48-h incubation cycle. Histological analysis of alkaline phosphatase and von Kossa staining were performed. The expression of dentin sialophosphoprotein (Dspp) and osteocalcin (Ocn) mRNA were examined by real-time polymerase chain reaction. Western blotting assays were used to monitor the expression of β-catenin and its phosphorylated form. RESULTS When pulp cells were intermittently exposed to TG for only the first 6 h of each incubation cycle, pulp cells differentiated into odontoblast-like cells, characterized by an increase in alkaline phosphatase activity, nodule formation, and mRNA expression of Dspp. and Ocn; this did not occur under the continuous exposure. Phosphorylation of β-catenin was enhanced by continuous exposure to TG compared with intermittent exposure. CONCLUSION These results suggest that the TG-induced odontoblast-like cell differentiation reflects in vivo reparative dentin formation and depends on the exposure time.
Collapse
Affiliation(s)
- Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Saitama, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
4
|
Kato Y, Yokose S. Oxytocin Facilitates Dentinogenesis of Rat Dental Pulp Cells. J Endod 2021; 47:592-599. [PMID: 33422572 DOI: 10.1016/j.joen.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Oxytocin (OT) is a neurohypophysial hormone that plays a role in lactation and parturition and exerts diverse biological actions via the OT receptor. Recently, several studies have reported that OT stimulates bone formation by osteoblasts in osteoporosis. We focused on OT and hypothesized that OT can stimulate the differentiation of odontoblasts as well as osteoblasts. The aim of this study was to verify whether OT is an essential factor in dentinogenesis; we examined the effects of OT on dentinogenesis using a long-term culture system of rat dental pulp cells. METHODS Using a culture system of rat dental pulp cells with Otr knocked out by CRISPR-Cas9 genome editing, we examined the effects of OT on odontoblastlike cell differentiation as reflected by dentin formation. RESULTS We confirmed that OT stimulated mineralized nodule formation and the expression of both dentin sialoprotein and bone Gla protein messenger RNAs (mRNAs) in the culture system. Interestingly, the cultured cells treated with OT also exhibited an increase of both Wnt10a and Lef-1 mRNA. The Otr knockout cells showed inhibition of nodule formation and mRNA expression, and these phenomena remained despite OT treatment. These results indicate the following: OT regulates odontoblastlike cell differentiation via the OT receptor, it stimulates dentin formation, and the Wnt canonical pathway is closely related to these effects. CONCLUSIONS The present results suggest that OT can promote odontoblastlike cell differentiation, resulting in increased dentin formation, and that OT could be an important factor for dentinogenesis.
Collapse
Affiliation(s)
- Yuka Kato
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan
| |
Collapse
|
5
|
Kadokura H, Yamazaki T, Masuda Y, Kato Y, Hasegawa A, Sakagami H, Yokose S. Establishment of a Primary Culture System of Human Periodontal Ligament Cells that Differentiate into Cementum Protein 1-expressing Cementoblast-like Cells. In Vivo 2019; 33:349-352. [PMID: 30804111 DOI: 10.21873/invivo.11480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM A better understanding of cementogenesis and cementoblast differentiation would be useful for periodontal therapy. The aim of this study was to establish a cell culture system that reflects cementum formation in periodontal tissue and determine whether or not isolated and cultured primary human periodontal ligament (PDL) cells could be used for the study of the differentiation of cementoblast. MATERIALS AND METHODS PDL cells were isolated from the outgrowths of tissue fragments of human PDL. PDL cells were incubated for up to 21 days in differentiation medium containing β-glycerophosphate and ascorbic acid. The changes in the cells were detected by alkaline phosphatase (ALP) and von Kossa staining. Real-time polymerase chain reaction was also performed for cementum protein 1 (CEMP1), which is a specific marker of cementoblasts and their progenitors. RESULTS On day 5, a small number of PDL cells, which were fibrous, were positive for ALP. On day 7, almost all cells were positive for ALP. On day 14, mineralization nodules appeared, as seen by positive von Kossa staining; the nodules increased in number and size by day 21. The expression of CEMP1 was detected on day 5, and its expression level increased gradually by day 7, reached a peak on day 14, and decreased by day 21. CONCLUSION Human PDL cells were used to establish a culture system that reflects cementum formation. Our results suggested that this culture method is convenient and useful for the study of cementogenesis and cementoblast differentiation.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Takahide Yamazaki
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiko Masuda
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Yuka Kato
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Akihiko Hasegawa
- Division of Internal Medicine, Department of Comprehensive Medical Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Department of Restorative and Biomaterial Sciences, Meikai University School of Dentistry, Saitama, Japan
| |
Collapse
|
6
|
Lin W, Gao L, Jiang W, Niu C, Yuan K, Hu X, Ma R, Huang Z. The role of osteomodulin on osteo/odontogenic differentiation in human dental pulp stem cells. BMC Oral Health 2019; 19:22. [PMID: 30670012 PMCID: PMC6341608 DOI: 10.1186/s12903-018-0680-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background Extracellular matrix secretion and odontoblastic differentiation in human dental pulp stem cells (hDPSCs) are the cellular bases for reparative dentinogenesis. Osteomodulin (OMD) is a member of the small leucine-rich proteoglycan family distributed in the extracellular matrix but little is known about its role in osteo/odontogenic differentiation. The objective of this study was to investigate the role of OMD during osteo/odontoblastic differentiation of hDPSCs. Methods hDPSCs were selected using immune-magnetic beads and their capability of multi-differentiation was identified. OMD knockdown was achieved using short hairpin RNA (shRNA) lentivirus and was confirmed by western blot. Gene expression was measured by real-time qPCR and osteo/odontoblastic differentiation of hDPSCs was determined by alizarin red S staining. Results Compared with uninduced cells, the transcription of OMD was up-regulated by 35-fold at the late stage of osteo/odontogenic differentiation. shRNA-mediated gene silencing of OMD decreased the expression of odontoblastic genes, such as alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1) and dentin sialophosphoprotein (DSPP). Besides, knockdown of OMD attenuated the mineralized nodules formation induced by osteo/odontogenic medium. Conclusions These results implied that OMD may play a pivotal role in modulating the osteo/odontoblastic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Wenzhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li Gao
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenxin Jiang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xuchen Hu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Li XY, Ban GF, Al-Shameri B, He X, Liang DZ, Chen WX. High-temperature Requirement Protein A1 Regulates Odontoblastic Differentiation of Dental Pulp Cells via the Transforming Growth Factor Beta 1/Smad Signaling Pathway. J Endod 2018; 44:765-772. [PMID: 29580722 DOI: 10.1016/j.joen.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dentinogenesis includes odontoblast differentiation and extracellular matrix maturation as well as dentin mineralization. It is regulated by numerous molecules. High-temperature requirement protein A1 (HtrA1) plays crucial roles in bone mineralization and development and is closely associated with the transforming growth factor beta (TGF-β) signal in osteogenesis differentiation. Simultaneously, the TGF-β1/small mother against decapentaplegic (Smad) signaling pathway is an important signaling pathway in various physiological processes and as a downstream regulation factor of HtrA1. However, the role of HtrA1 and its relationship with the TGF-β1/Smad signaling pathway in dentin mineralization is unknown. METHODS We detected the role of HtrA1 and its relationship with the TGF-β1/Smad signaling pathway in odontoblastic differentiation of human dental pulp cells (hDPCs) in this study. First, hDPCs were cultured in mineralized medium, and odontoblastic differentiation was confirmed by investigating mineralized nodule formation, alkaline phosphatase (ALP) activity, and the expression of mineral-associated genes, including ALP, collagen I, and dentin sialophosphoprotein. Then, the expression of HtrA1 and TGF-β1/Smad in hDPCs was investigated in hDPCs during mineralized induction. After HtrA1 knockdown by lentivirus, the mineralized nodule formation, ALP activity, and expression of mineral-associated genes and TGF-β1/Smad genes were investigated to confirm the effect of HtrA1 on odontoblastic differentiation and its relationship with the TGF-β1/Smad signaling pathway. RESULTS The expression of HtrA1 and TGF-β1 was increased during odontoblastic differentiation of hDPCs along with the messenger RNA expression of downstream factors of the TGF-β1/Smad signaling pathway. In addition, lentivirus-mediated HtrA1 knockdown inhibited the process of mineralization and the expression of HtrA1 and TGF-β1/Smad genes. CONCLUSIONS These findings suggest that HtrA1 might positively regulate odontoblastic differentiation of hDPCs through activation of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xian-Yu Li
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China
| | - Gui-Fei Ban
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China
| | - Basheer Al-Shameri
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China
| | - Xuan He
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China
| | - Deng-Zhong Liang
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China
| | - Wen-Xia Chen
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guagnxi, China.
| |
Collapse
|
8
|
Sato N, Isomura M, Kawai R, Yoshida W, Sugita Y, Kubo K, Funato A, Ueno N, Jinno M, Maeda H. Osteogenic Potential of Rat Dental Pulp-Derived Cells on Titanium Surfaces. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nobuaki Sato
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Madoka Isomura
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Ryoko Kawai
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Research Institute of Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University
| | - Waka Yoshida
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Research Institute of Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Research Institute of Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Research Institute of Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University
| | - Akiyoshi Funato
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Noriyuki Ueno
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Masato Jinno
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
- Research Institute of Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University
| |
Collapse
|
9
|
He X, Chen WX, Ban G, Wei W, Zhou J, Chen WJ, Li XY. A New Method to Develop Human Dental Pulp Cells and Platelet-rich Fibrin Complex. J Endod 2017; 42:1633-1640. [PMID: 27788772 DOI: 10.1016/j.joen.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Platelet-rich fibrin (PRF) has been used as a scaffold material in various tissue regeneration studies. In the previous methods to combine seed cells with PRF, the structure of PRF was damaged, and the manipulation time in vitro was also increased. The objective of this in vitro study was to explore an appropriate method to develop a PRF-human dental pulp cell (hDPC) complex to maintain PRF structure integrity and to find out the most efficient part of PRF. METHODS The PRF-hDPC complex was developed at 3 different time points during PRF preparation: (1) the before centrifugation (BC) group, the hDPC suspension was added to the venous blood before blood centrifugation; (2) the immediately after centrifugation (IAC) group, the hDPC suspension was added immediately after blood centrifugation; (3) the after centrifugation (AC) group, the hDPC suspension was added 10 minutes after blood centrifugation; and (4) the control group, PRF without hDPC suspension. The prepared PRF-hDPC complexes were cultured for 7 days. The samples were fixed for histologic, immunohistochemistry, and scanning electron microscopic evaluation. Real-time polymerase chain reaction was performed to evaluate messenger RNA expression of alkaline phosphatase and dentin sialophosphoprotein. Enzyme-linked immunosorbent assay quantification for growth factors was performed within the different parts of the PRF. RESULTS Histologic, immunohistochemistry, and scanning electron microscopic results revealed that hDPCs were only found in the BC group and exhibited favorable proliferation. Real-time polymerase chain reaction revealed that alkaline phosphatase and dentin sialophosphoprotein expression increased in the cultured PRF-hDPC complex. The lower part of the PRF released the maximum quantity of growth factors. CONCLUSIONS Our new method to develop a PRF-hDPCs complex maintained PRF structure integrity. The hDPCs were distributed in the buffy coat, which might be the most efficient part of PRF.
Collapse
Affiliation(s)
- Xuan He
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Xia Chen
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| | - Guifei Ban
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wei
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Zhou
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Jin Chen
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xian-Yu Li
- Department of Operative Dentistry and Endodontology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A. Dentin Regeneration by Dental Pulp Stem Cell Therapy with Recombinant Human Bone Morphogenetic Protein 2. J Dent Res 2016; 83:590-5. [PMID: 15271965 DOI: 10.1177/154405910408300802] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine is based on stem cells, signals, and scaffolds. Dental pulp tissue has the potential to regenerate dentin in response to noxious stimuli, such as caries. The progenitor/stem cells are responsible for this regeneration. Thus, stem cell therapy has considerable promise in dentin regeneration. Culture of porcine pulp cells, as a three-dimensional pellet, promoted odontoblast differentiation compared with monolayers. The expression of dentin sialophosphoprotein (Dspp) and enamelysin/matrix metalloproteinase 20 (MMP20) mRNA confirmed the differentiation of pulp cells into odontoblasts and was stimulated by the morphogenetic signal, bone morphogenetic protein 2 (BMP2). Based on the in vitro experiments, an in vivo evaluation of pulp progenitor/stem cells in the dog was performed. The autogenous transplantation of the BMP2-treated pellet culture onto the amputated pulp stimulated reparative dentin formation. In conclusion, BMP2 can direct pulp progenitor/stem cell differentiation into odontoblasts and result in dentin formation.
Collapse
Affiliation(s)
- K Iohara
- Department of Clinical Oral Molecular Biology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Higashiku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res 2016; 108:1-9. [DOI: 10.1016/j.mvr.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022]
|
12
|
Cai S, Zhang W, Chen W. PDGFRβ +/c-kit + pulp cells are odontoblastic progenitors capable of producing dentin-like structure in vitro and in vivo. BMC Oral Health 2016; 16:113. [PMID: 27793148 PMCID: PMC5086066 DOI: 10.1186/s12903-016-0307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Background Successful pulp regeneration depends on identification of pulp stem cells capable of differentiation under odontoblastic lineage and producing pulp-dentinal like structure. Recent studies demonstrate that platelet-derived growth factor (PDGF) plays an important role in damage repair and tissue regeneration. The aim of this study was to identify a subpopulation of dental pulp cells responsive to PDGF and with dentin regeneration potential. Methods Pulp tissues were isolated from 12 freshly extracted human impacted third molars. Pulp cells were sorted by their expression of PDGFRβ and stem cell marker genes via flow cytometry. For the selected cells, proliferation was analyzed by a colorimetric cell proliferation assay, differentiation was assessed by real time PCR detection the expression of odontoblast marker genes, and mineralization was evaluated by Alizarin Red S staining. GFP marked PDGFRβ+/c-kit+ pulp cells were transplanted into emptied root canals of nude rat lower left incisors. Pulp-dentinal regeneration was examined by immunohistochemistry. Results PDGFRβ+/c-kit+ pulp cells proliferated significantly faster than whole pulp cells. In mineralization media, PDGFRβ+/c-kit+ pulp cells were able to develop under odontoblastic linage as demonstrated by a progressively increased expression of DMP1, DSPP, and osteocalcin. BMP2 seemed to enhance whereas PDGF-BB seemed to inhibit odontoblastic differentiation and mineralization of PDGFRβ+/c-kit+ pulp cells. In vivo root canal transplantation study revealed globular dentin and pulp-like tissue formation by PDGFRβ+/c-kit+ cells. Conclusions PDGFRβ+/c-kit+ pulp cells appear to have pulp stem cell potential capable of producing dentinal like structure in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12903-016-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiwei Cai
- Department of Endodontics, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA
| | - Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA.
| | - Wei Chen
- Department of Endodontics, University of Texas School of Dentistry at Houston, 7500 Cambridge Street, Suite 5366, Houston, TX, 77054, USA
| |
Collapse
|
13
|
Peng Z, Liu L, Wei X, Ling J. Expression of Oct-4, SOX-2, and MYC in dental papilla cells and dental follicle cells during in-vivo tooth development and in-vitro co-culture. Eur J Oral Sci 2015; 122:251-8. [PMID: 25039286 DOI: 10.1111/eos.12141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2014] [Indexed: 01/06/2023]
Abstract
During tooth development, the special structure of dental follicle and dental papilla enables dental papilla cells (DPCs) and dental follicle cells (DFCs) to make contact with each other. Octamer-binding transcription factor 4 (Oct-4), sex determining region Y box-2 (SOX-2), and cellular homologue of avian myelocytomatosis virus oncogene (MYC) (OSM) are associated with reprogramming and pluripotency. However, whether the expression of OSM could be activated through cell-cell communication is not known. In this study, the distribution of OSM in rat tooth germ was investigated by immunohistochemical staining. An in-vitro co-culture system of DPCs and DFCs was established. Cell proliferation, cell apoptosis, cell cycle stages, and expression of OSM were investigated by Cell Counting Kit 8 (CCK8) analysis, flow cytometry, real-time PCR, and immunohistochemical staining. We found that Oct-4 and SOX-2 were strongly expressed in tooth germ on days 7 and 9 after birth, whereas MYC was expressed only on day 9. Cell proliferation and apoptosis were inhibited, the cell cycle was arrested in the G0/G1 phase, and the propidium iodide (PI) value was downregulated. Expression of Oct-4 and SOX-2 was significantly elevated in both cell types after 3 d of co-culture, whereas expression of MYC was not significantly elevated until day 5. These results indicate that the optimized microenvironment with cell-cell communication enhanced the expression of reprogramming markers associated with reprogramming capacity in DPCs and DFCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhengjun Peng
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology Guangzhou, Sun Yat-Sen University, Guangdong, China
| | | | | | | |
Collapse
|
14
|
Calarco A, Di Salle A, Tammaro L, De Luca I, Mucerino S, Petillo O, Riccitiello F, Vittoria V, Peluso G. Long-Term Fluoride Release from Dental Resins Affects STRO-1+ Cell Behavior. J Dent Res 2015; 94:1099-105. [PMID: 25924857 DOI: 10.1177/0022034515584615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluoride-releasing restorative dental materials can be beneficial to remineralize dentin and help prevent secondary caries. However, the effects of fluoride release from dental materials on the activity of dental pulp stem cells are not known. Here we investigate whether different fluoride release kinetics from dental resins supplemented with modified hydrotalcite (RK-F10) or fluoride-glass filler (RK-FG10) could influence the behavior of a human dental pulp stem cell subpopulation (STRO-1(+) cells) known for its ability to differentiate toward an odontoblast-like phenotype. The 2 resins, characterized by similar physicochemical properties and fluoride content, exhibited different long-term fluoride release kinetics. Our data demonstrate that long-term exposure of STRO-1(+) cells to a continuous release of a low amount of fluoride by RK-F10 increases their migratory response to transforming growth factor β1 (TGF-β1) and stromal cell-derived factor 1 (SDF-1), both important promoters of pulp stem cell recruitment. Moreover, the expression patterns of dentin sialoprotein (dspp), dentin matrix protein 1 (dmp1), osteocalcin (ocn), and matrix extracellular phosphoglycoprotein (mepe) indicate a complete odontoblast-like cell differentiation only when STRO-1(+) cells were cultured on RK-F10. On the contrary, RK-FG10, characterized by an initial fluoride release burst and reduced lifetime of the delivery, did not elicit any significant effect on both STRO-1(+) cell migration and differentiation. Taken together, our results highlight the importance of taking into account fluoride release kinetics in addition to fluoride concentration when designing new fluoride-restorative materials.
Collapse
Affiliation(s)
- A Calarco
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| | - A Di Salle
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| | - L Tammaro
- Department of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy
| | - I De Luca
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| | - S Mucerino
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| | - O Petillo
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| | - F Riccitiello
- Conservative Odontostomatology and Maxillofacial Surgery, University of Naples, Naples, Italy
| | - V Vittoria
- Department of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy
| | - G Peluso
- Institute of Bioscience and BioResources, CNR, Naples, Italy
| |
Collapse
|
15
|
Xiang L, Ma L, He Y, Wei N, Gong P. Osteogenic differentiation of human periodontal ligament cells after transfection with recombinant lentiviral vector containing follicular dendritic cell secreted protein. J Periodontal Res 2014; 49:554-62. [PMID: 24138099 DOI: 10.1111/jre.12135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Follicular dendritic cell secreted protein (FDC-SP), has been identified in human periodontal ligament (PDL) in a recent study. It is suggested that the expression of FDC-SP might be associated with the osteogenic differentiation and mineralization of human periodontal ligament cells (hPDLCs). However, the intrinsic mechanism regarding this is still unclear. The aim of this study was to establish hPDLCs with safe and efficient overexpression of FDC-SP and to elucidate the influence of FDC-SP transfection on hPDLC osteogenesis in periodontal regeneration. MATERIAL AND METHODS We first applied a recombinant lentiviral vector containing FDC-SP to transfect hPDLCs via different multiplicity of infection (MOI) levels (1, 10, 20, 50 and 100). Western blot was performed to confirm the expression of FDC-SP. MTT assay was employed to evaluate the proliferation status of transfected cells. Then, the extent of osteogenic differentiation was investigated by simultaneous monitoring of alkaline phosphatase (ALP) activity assessment, immunofluorescent staining, the expression patterns of osteoblastic markers and mineralization staining. RESULTS We found that hPDLCs transfected via MOI 20, 50 and 100 exhibited expression of FDC-SP protein compared with MOI 1 and 10. There was no significant effect of FDC-SP transfection (at different MOI levels of 1, 10 and 20) on the proliferation of hPDLCs, whereas higher MOI levels (50 and 100) inhibited cell proliferation ability. In addition, ALP activity decreased significantly in FDC-SP-transfected hPDLCs at day 7. When stained with alizarin red, cells overexpressing FDC-SP formed less mineralized nodules at 21 d post-induction of differentiation, compared with the control cultures. Osteogenic inhibition was also confirmed by ALP immunostaining. Moreover, mRNA expression levels of osteoblastic markers decreased after FDC-SP transfection, which were in accordance with western blot results. CONCLUSION Our data suggest that MOI 20 is optimal to transfect hPDLCs, which achieves safe and efficient overexpression of FDC-SP in transfected cells. Moreover, FDC-SP overexpression inhibits osteogenic differentiation of hPDLCs. The present study contributes to a better understanding of the biological functions governing FDC-SP-induced hPDLC differentiation.
Collapse
Affiliation(s)
- L Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
16
|
Yamaguchi H, Ozeki N, Kawai R, Tanaka T, Hiyama T, Nakata K, Mogi M, Nakamura H. RETRACTED: Proinflammatory cytokines induce stromelysin-1-mediated cell proliferation in dental pulp fibroblast-like cells. J Endod 2014; 40:89-94. [PMID: 24331997 DOI: 10.1016/j.joen.2013.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/26/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of a member of the author team as it contains fabricated/falsified data. All of the authors except Nobuaki Ozeki and Taiki Hiyama have agreed to retract the article; N Ozeki left Aichi Gakuin University in March 2018 and does not respond to coauthor inquiries. T Hiyama left Aichi Gakuin University and could not be reached.
Collapse
Affiliation(s)
- Hideyuki Yamaguchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan.
| | - Rie Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Tsuyoshi Tanaka
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Taiki Hiyama
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Aichi, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| |
Collapse
|
17
|
Ozeki N, Yamaguchi H, Hiyama T, Kawai R, Nakata K, Mogi M, Nakamura H. Retracted:
IL
‐1
β
‐induced matrix metalloproteinase‐3 regulates cell proliferation in rat dental pulp cells. Oral Dis 2013; 21:97-105. [DOI: 10.1111/odi.12219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/12/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- N Ozeki
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| | - H Yamaguchi
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| | - T Hiyama
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| | - R Kawai
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| | - K Nakata
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| | - M Mogi
- Department of Medicinal Biochemistry School of Pharmacy Aichi Gakuin University Nagoya Japan
| | - H Nakamura
- Department of Endodontics School of Dentistry Aichi Gakuin University NagoyaJapan
| |
Collapse
|
18
|
Gong W, Huang Z, Dong Y, Gan Y, Li S, Gao X, Chen X. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells. J Endod 2013; 40:83-8. [PMID: 24331996 DOI: 10.1016/j.joen.2013.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 01/16/2023]
Abstract
INTRODUCTION This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. METHODS Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. RESULTS All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. CONCLUSIONS Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration.
Collapse
Affiliation(s)
- Weiyu Gong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhiwei Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yehua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shenglin Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaofeng Chen
- National Engineering Research Center for Human Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Yamada M, Kojima N, Att W, Hori N, Suzuki T, Ogawa T. N-Acetyl cysteine restores viability and function of rat odontoblast-like cells impaired by polymethylmethacrylate dental resin extract. Redox Rep 2013; 14:13-22. [DOI: 10.1179/135100009x392430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Kim JH, Lee EH, Park HJ, Park EK, Kwon TG, Shin HI, Cho JY. The role of lysyl oxidase-like 2 in the odontogenic differentiation of human dental pulp stem cells. Mol Cells 2013; 35:543-9. [PMID: 23677379 PMCID: PMC3887878 DOI: 10.1007/s10059-013-0080-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022] Open
Abstract
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.
Collapse
Affiliation(s)
- Joo-Hyun Kim
- Department of Veterinary Biochemistry, Brain Korea 21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742,
Korea
- Department of Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | | | - Hye-jeong Park
- Department of Veterinary Biochemistry, Brain Korea 21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742,
Korea
| | - Eui-Kyun Park
- Department of Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | - Hong-In Shin
- Department of Pathology, School of Dentistry, Kyungpook National University, Daegu 700-412,
Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, Brain Korea 21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
21
|
Pérard M, Le Clerc J, Watrin T, Meary F, Pérez F, Tricot-Doleux S, Pellen-Mussi P. Spheroid model study comparing the biocompatibility of Biodentine and MTA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1527-1534. [PMID: 23515903 DOI: 10.1007/s10856-013-4908-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
The primary objective of this study was to assess the biological effects of a new dentine substitute based on Ca₃SiO₅ (Biodentine™) for use in pulp-capping treatment, on pseudo-odontoblastic (MDPC-23) and pulp (Od-21) cells. The secondary objective was to evaluate the effects of Biodentine and mineral trioxide aggregate (MTA) on gene expression in cultured spheroids. We used the acid phosphatase assay to compare the biocompatibility of Biodentine and MTA. Cell differentiation was investigated by RT-qPCR. We investigated the expression of genes involved in odontogenic differentiation (Runx2), matrix secretion (Col1a1, Spp1) and mineralisation (Alp). ANOVA and PLSD tests were used for data analysis. MDPC-23 cells cultured in the presence of MTA had higher levels of viability than those cultured in the presence of Biodentine and control cells on day 7 (P = 0.0065 and P = 0.0126, respectively). For Od-21 cells, proliferation rates on day 7 were significantly lower in the presence of Biodentine or MTA than for control (P < 0.0001). Col1a1 expression levels were slightly lower in cells cultured in the presence of MTA than in those cultured in the presence of Biodentine and in control cells. Biodentine and MTA may modify the proliferation of pulp cell lines. Their effects may fluctuate over time, depending on the cell line considered. The observed similarity between Biodentine and MTA validates the indication for direct pulp-capping claimed by the manufacturers.
Collapse
Affiliation(s)
- Matthieu Pérard
- Faculté d'Odontologie, Univ Rennes1, UEB, Bât. 15, 2 Av du Professeur Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Park SJ, Li Z, Hwang IN, Huh KM, Min KS. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 2013; 39:1001-7. [PMID: 23880267 DOI: 10.1016/j.joen.2013.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hydrogels have been widely studied as tissue engineering scaffolds over the past 2 decades because of their favorable biological properties. Recently, a new biodegradable glycol chitin-based thermoresponsive hydrogel scaffold (GC-TRS) was developed that can be easily applied as a mild viscous solution at room temperature but quickly transforms into a durable hydrogel under physiological conditions. The aim of this study was to investigate the effects of GC-TRS on the proliferation and odontogenic differentiation of colony-forming human dental pulp cells (hDPCs) in the presence of enamel matrix derivative. METHODS Glycol chitin was synthesized by N-acetylation of glycol chitosan. The morphology of the thermoresponsive hydrogel scaffold was observed by using scanning electron microscopy. The sol gel phase transition of the aqueous solution of glycol chitin was investigated by using the tilting method and rheometer studies. hDPCs were isolated based on their ability to generate clonogenic adherent cell clusters. The effect of GC-TRS and collagen on cell viability was examined by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of markers for odontogenic/osteogenic differentiation (ie, dentin sialophosphoprotein, dentin matrix protein-1, osteonectin, and osteopontin) was analyzed by performing real-time polymerase chain reaction. RESULTS GC-TRS exhibited a highly macroporous and well-interconnected porous structure. The polymer solution existed in a mildly viscous sol state, but it transitioned to a gel state and did not flow above approximately 37°C. Rheometer studies showed that the glycol chitin solution exhibited a fast sol gel transition approximately at body temperature. GC-TRS and collagen did not inhibit cell viability until 7 days. Dentin sialophosphoprotein and dentin matrix protein-1 were expressed by cells cultured in GC-TRS at a higher level than that in cells cultured in collagen (P < .05). In both the scaffold groups, dentin sialophosphoprotein, dentin matrix protein-1, and osteopontin messenger RNA was up-regulated significantly in EMD-treated hDPCs when compared with the nontreated cells (P < .05). CONCLUSIONS GC-TRS allowed the proliferation and odontogenic differentiation of hDPCs. Furthermore, the differentiation was facilitated by EMD. These results suggest that GC-TRS has the potential to be used in tissue engineering techniques for dentin regeneration.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | | | | | | | | |
Collapse
|
23
|
Kawai G, Ohno T, Kawaguchi T, Nagano A, Saito M, Takigami I, Matsuhashi A, Yamada K, Hosono K, Tezuka KI, Kunisada T, Hara A, Shimizu K. Human Dental Pulp Facilitates Bone Regeneration in a Rat Bone Defect Model. ACTA ACUST UNITED AC 2013. [DOI: 10.4137/btri.s10687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this work was to investigate the osteogenetic ability of the human dental pulp stem cells (hDPSCs) derived from human third molars. We induced alkaline phosphatase (ALP) activity and bone morphogenetic protein 2 (BMP-2) mRNA expression, the markers for bone formation, in hDPSCs by using osteoinductive factors. The implantation of hDPSCs with collagen sponge promoted osteogenesis and fracture healing in the femur of an immunocompromised rat, which was a bone defect model for pseudoarthrosis. Histological analyses revealed that after implantation of the hDPSCs, the size and number of osteoblasts and the rates of osteoid production and mineralization increased to an appreciable extent, whereas the rate of bone resorption decreased. We believe that hDPSC implantation is a simple and safe procedure that can be beneficial in bone regeneration therapy in clinical practice.
Collapse
Affiliation(s)
- Gou Kawai
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takatoshi Ohno
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoko Kawaguchi
- Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu, Japan
- Oral and Maxillofacial Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihito Nagano
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Iori Takigami
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Aya Matsuhashi
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazunari Yamada
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Hosono
- Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ken-Ichi Tezuka
- Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Kunisada
- Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Katsuji Shimizu
- Department of Orthopedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
24
|
Dai LG, Huang GS, Hsu SH. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 2012. [PMID: 23192007 DOI: 10.3727/096368912x658953] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell transplantation is a useful therapy for treating peripheral nerve injuries. The clinical use of Schwann cells (SCs), however, is limited because of their limited availability. An emerging solution to promote nerve regeneration is to apply injured nerves with stem cells derived from various tissues. In this study, different types of allogeneic cells including SCs, adipose-derived adult stem cells (ASCs), dental pulp stem cells (DPSCs), and the combination of SCs with ASCs or DPSCs were seeded on nerve conduits to test their efficacy in repairing a 15-mm-long critical gap defect of rat sciatic nerve. The regeneration capacity and functional recovery were evaluated by the histological staining, electrophysiology, walking track, and functional gait analysis after 8 weeks of implantation. An in vitro study was also performed to verify if the combination of cells led to synergistic neurotrophic effects (NGF, BDNF, and GDNF). Experimental rats receiving conduits seeded with a combination of SCs and ASCs had the greatest functional recovery, as evaluated by the walking track, functional gait, nerve conduction velocity (NCV), and histological analysis. Conduits seeded with cells were always superior to the blank conduits without cells. Regarding NCV and the number of blood vessels, conduits seeded with SCs and DPSCs exhibited better values than those seeded with DPSCs only. Results from the in vitro study confirmed the synergistic NGF production from the coculture of SCs and ASCs. It was concluded that coculture of SCs with ASCs or DPSCs in a conduit promoted peripheral nerve regeneration over a critical gap defect.
Collapse
Affiliation(s)
- Lien-Guo Dai
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | | | | |
Collapse
|
25
|
Choi YJ, Lee JY, Chung CP, Park YJ. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. Int J Nanomedicine 2012; 7:5091-106. [PMID: 23049256 PMCID: PMC3459692 DOI: 10.2147/ijn.s31723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Human dental pulp stem cells (DPSCs) have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1) was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP), and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation. Results LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide. Conclusion Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Masuda YM, Yamada Y, Kimura Y. In vitro guidance of dental pulp cells by Nd:YAG laser-irradiated endothelial cells. Photomed Laser Surg 2012; 30:315-9. [PMID: 22506550 DOI: 10.1089/pho.2011.3173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE After endothelial cells were ablated by neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation, we investigated the response of pulp cells by examining the expression of transforming growth factor beta-1 (TGF-β1). BACKGROUND DATA The reaction of stimulated blood vessels is related to the initiation of dentinogenesis. After artificial injury of endothelial cells, pulp cells migrate to the site of the injured endothelial cells. MATERIALS AND METHODS Rat aortic endothelial cells were cultured in the lower compartment of the experimental assembly, and a pulsed Nd:YAG laser was used to ablate these cells. Pulp cells were fluorescence labeled and cultured in the upper compartment. After 7-14 days of laser irradiation, total RNA was extracted from the cells in the lower chamber, and RT-PCR was performed to examine the expression of TGF-β1 and osteocalcin mRNA. TGF-β1 was also examined with immunohistochemistry. RESULTS Seven days after laser irradiation, migrating pulp cells that expressed TGF-β1 were observed in the lower compartment, and the expression of TGF-β1 mRNA and osteocalcin mRNA was altered. Without laser irradiation, few migrating pulp cells were observed, and the expression of TGF-β1 mRNA and osteocalcin mRNA was weak. These results suggested that TGF-β1 mRNA expression is detected earlier in pulp cells rather than in endothelial cells following injury to endothelial cells. CONCLUSIONS Using the Nd:YAG laser as an ablative stimulant, this study model was useful for investigating pulp-endothelial cell interactions in reparative dentinogenesis.
Collapse
Affiliation(s)
- Yoshiko Murakami Masuda
- Department of Endodontology, Showa University School of Dentistry, Kitasenzoku, Ohta-ku, Tokyo, Japan.
| | | | | |
Collapse
|
27
|
Khan SZ, Kokubu E, Matsuzaka K, Inoue T. Behaviour of rat-cultured dental pulp cells in three-dimensional collagen type-1 gel in vitro and in vivo. AUST ENDOD J 2012; 39:137-45. [PMID: 24279661 DOI: 10.1111/j.1747-4477.2012.00351.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the growth and differentiation potential of dental pulp cells (DPCs) in three-dimensional (3-D) collagen type-1 scaffold in vitro and in vivo. Third passage DPCs were cultured in a 3-D collagen and expression of both bone- or dentin-related mRNA (alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteopontin (OPN)) and morphological changes evaluated in vitro. In the in vivo study, two types of grafts were transplanted into the rectus abdominus muscles of rats and harvested after 7 days: DPCs in α-minimal essential medium and DPCs mixed with a collagen gel. ALP, BSP and OPN were used as primary antibodies for immunohistochemical study. Histological and immunohistochemical results showed that DPCs in collagen gel were spindle shaped and showed significantly greater expression of ALP, BSP and OPN in vitro than the controls. Transplanted DPCs in collagen type-1 gel showed greater positive immunoreactivity for ALP, BSP and OPN than the controls. It was concluded that the collagen gel scaffold encouraged the differentiation of DPCs into osteoblastic cells.
Collapse
Affiliation(s)
- Sultan Zeb Khan
- Department of Clinical Pathophysiology, Tokyo Dental College, Chiba, Japan HRC-7, Tokyo Dental College, Chiba, Japan Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | | | | | | |
Collapse
|
28
|
Liu M, Sun Y, Liu Y, Yuan M, Zhang Z, Hu W. Modulation of the differentiation of dental pulp stem cells by different concentrations of β-glycerophosphate. Molecules 2012; 17:1219-32. [PMID: 22293843 PMCID: PMC6269000 DOI: 10.3390/molecules17021219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 01/09/2023] Open
Abstract
Dentinogenesis is a necessary prerequisite for dental tissue engineering. One of the steps for dentinogenesis is to obtain large quantities of highly purified odontoblasts. Therefore, we have undertaken an experiment applying different concentrations of β-glycerophosphate (β-GP) to induce the differentiation of dental pulp stem cells (DPSCs) in a long-term 28-day culture. In the meanwhile, we have studied the time- and maturation-dependent expression of matrix extracellular phosphoglycoprotein (MEPE) and that of the odontoblast-like marker-dentin sialoprotein (DSP), in order to investigate an optimized mineralized condition. Western blot results revealed that the expression of DSP became lower when accompanied by the increase of the β-GP concentration, and there was also an influence on MEPE expression when different concentrations of β-GP were applied. Meanwhile, the mineralized groups had an inhibitory function on the expression of MEPE as compared with the control group. Above all, all experimental groups successfully generated mineralized nodules by Alizarin Red S and the 5 mM β-GP group formed more mineralized nodules quantitated using the CPC extraction method. In conclusion, there is a significant modulation of the β-GP during the differentiation of the DPSCs. The degree of odontoblast differentiation is β-glycerophosphate concentration dependent. A low concentration of β-GP (5 mM) has been shown to be the optimal concentration for stimulating the maturation of the DPSCs. Moreover, MEPE accompanied with DSP clearly demonstrates the degree of the differentiation.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Prosthodontics, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; (M.L.); (M.Y.)
| | - Yao Sun
- Institute of Hard Tissue Development and Regeneration, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China;
| | - Yang Liu
- Department of Stomatology, Mianyang Central Hospital, Mianyang, Sichuan 150086, China;
| | | | - Zhihui Zhang
- School of Stomatology, Peking University, Beijing, 100081, China;
| | - Weiping Hu
- Department of Prosthodontics, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; (M.L.); (M.Y.)
- Author to whom correspondence should be addressed; ; Tel.: +86-451-8629-7060; Fax: +86-451-8660-5307
| |
Collapse
|
29
|
Lin H, Xu L, Liu H, Sun Q, Chen Z, Yuan G, Chen Z. KLF4 Promotes the Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod 2011; 37:948-54. [DOI: 10.1016/j.joen.2011.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/27/2023]
|
30
|
Wei N, Yu H, Yang S, Yang X, Yuan Q, Man Y, Gong P. Effect of FDC-SP on the phenotype expression of cultured periodontal ligament cells. Arch Med Sci 2011; 7:235-41. [PMID: 22291762 PMCID: PMC3258727 DOI: 10.5114/aoms.2011.22073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/13/2010] [Accepted: 08/31/2010] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Recently, a novel protein, follicular dendritic cell secreted protein (FDC-SP), has been identified in human periodontal ligament (PDL) tissue and a biomolecular study suggested that the expression of FDC-SP might be associated with the expression of the PDL phenotype. The purpose of this study was to test the effect of FDC-SP on the proliferation and phenotype of PDL cells. MATERIAL AND METHODS Periodontal ligament cells obtained following the 3(rd) passage were exposed to various concentrations of FDC-SP. The cell proliferation was monitored by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay. Then, as a measure of osteogenic activity, the alkaline phosphatase (ALP) activity was recorded after 4, 7, and 14 days using p-nitrophenylphosphate as a substrate. Finally, total RNA was extracted and RT-PCR was performed for gene analysis. RESULTS The results indicated that PDL cells exposed to 50 ng/ml FDC-SP could proliferate more rapidly. RT-PCR results showed that the mRNA expression of epidermal growth factor receptor (EGFR) was obviously upregulated and the mRNA expression of osteocalcin (OCN) and bone sialoprotein (BSP) were downregulated in PDL cells exposed to FDC-SP. Moreover, two groups of PDL cells exposed to FDC-SP showed a significant decrease of ALP activity during all the culture days. CONCLUSIONS In sum, the findings observed in this study suggest that FDC-SP in PDL cells could positively affect the proliferation and act as a fibroblastic phenotype stabilizer by inhibiting their differentiation into mineralized tissue-forming cells.
Collapse
Affiliation(s)
- Na Wei
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, China
- Department of Dental Implants, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, China
| | - Shulin Yang
- The Seventh People’s Hospital, Chengdu, China
| | - Xingmei Yang
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, China
| | - Yi Man
- Department of Dental Implants, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, China
- Corresponding author: Prof. Ping Gong No. 14, Third Section Renmin Nan Road Chengdu, Sichuan
610041, China, Phone: +86 28 85 503 579, Fax: +86 28 85 582 167. E-mail:
| |
Collapse
|
31
|
Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum Cell 2011; 24:43-50. [PMID: 21547695 DOI: 10.1007/s13577-011-0010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/19/2010] [Indexed: 12/15/2022]
Abstract
Despite the frequent use of primary dental pulp cells in dental regenerative research, few systematic studies of stemness for osteogenic and dentinogenic differentiation of human adult pulp cells have been reported. To investigate the stemness of human adult dental pulp cells, pulp tissues were obtained from extracted third molars and used as a source of pulp cells. In FACS analysis and immunophenotyping, the general mesenchymal stem cell markers CD44, CD90, and CD146 were highly expressed in early passages of the pulp cell culture. The stem cell population was dramatically decreased in an expansion culture of human dental pulp cells. When pulp cells were treated with additives such as β-glycerophosphate, ascorbic acid, and dexamethasone, nodule formation was facilitated and mineralization occurred within 2 weeks. Expression of osteogenic markers such as alkaline phosphatase, osteocalcin, and osteonectin was relatively low in undifferentiated cells, but increased significantly under differentiation conditions in whole passages. Dentinogenic markers such as dentin sialophosphoprotein and dentin matrix protein-1 appeared to decrease in their expression with increasing passage number; however, peak levels of expression occurred at around passage 5. These data suggested that stem cells with differentiation potential might exist in the dental pulp primary culture, and that their phenotypes were changed during expansion culture over 8-9 passages. Under these conditions, a dentinogenic population of pulp cells occurred in limited early passages, whereas osteogenic cells occurred throughout the whole passage range.
Collapse
|
32
|
Effect of glypican-1 gene on the pulp cells during the reparative dentine process. Cell Biol Int 2011; 34:1069-74. [PMID: 20515442 DOI: 10.1042/cbi20090062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GPC-1 (glypican-1) is a cell surface heparan sulfate proteoglycan that acts as a co-receptor for heparin-binding growth factors and members of the TGF-β (transforming growth factor beta-1) family. The function of cell-surface proteoglycans in the reparative dentine process has been under investigation. Gpc-1 was detected with similar frequency as tgf-β1 in the cDNA library using mRNA from the odontoblast-like cell-enriched pulp of rat incisors. The aim of this study was to test our hypothesis that gpc-1 may be related to reparative dentine formation. We examined the expression of this gene during the reparative dentine process, as well as the effect of gpc-1 on odontoblast-like cell differentiation using siRNA (small interfering RNA) to down-regulate gpc-1 expression. Immunohistological examination showed that GPC-1 was expressed in pulp cells entrapped by fibrodentine and odontoblast-like cells as well as TGF-β1. The mRNAs for gpc-1, -3 and -4, except for gpc-2, were expressed during odontoblast-like cell differentiation in pulp cells. The relative levels of gpc-1 mRNA were increased prior to the differentiation stages and were decreased during the secretory and maturation stages of pulp cells. Down-regulation of gpc-1 expression resulted in a 3.9-fold increase in tgf-β1 expression in pulp cells and a 0.3-fold decrease in dspp (dentine sialophosphoprotein) expression compared with control. These results suggested that gpc-1 and tgfβ-1 expression are necessary for the onset of differentiation, but should be down-regulated before other molecules are implicated in the formation of reparative dentine. In conclusion, gpc-1 expression in odontoblast-like cells is associated with the early differentiation but not with the formation of reparative dentine.
Collapse
|
33
|
Yokose S, Naka T. Lymphocyte enhancer-binding factor 1: an essential factor in odontoblastic differentiation of dental pulp cells enzymatically isolated from rat incisors. J Bone Miner Metab 2010; 28:650-8. [PMID: 20425127 DOI: 10.1007/s00774-010-0185-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Lymphocyte enhancer-binding factor 1 (Lef1), a HMG-domain protein, is thought to play important roles in inductive tissue interaction during tooth development. Lef1 knockdown in mice causes arrest at the bud stage in tooth development. As this gene participates in the regulation of a large and diverse set of peptide growth factors in ectomesenchymal cell differentiation of dental papilla, Lef1 appears to be a key factor in odontoblast differentiation. However, the relationship between Lef1 and odontoblast differentiation is still unclear. To analyze the biological roles of Lef1 in regulating odontoblast differentiation, we transiently overexpressed or suppressed Lef1 in cultured dental pulp cells. Lef1-overexpressing cells expressed higher levels of dentin sialoprotein (DSPP), osteocalcin and alkaline phosphatase (ALP) mRNA and formed larger numbers of mineralized nodules compared to control cells. However, Msx-1 expression or cell proliferation was unaffected by overexpression of Lef1. To further examine the role of Lef1 in dental pulp cells, we knocked down Lef1 expression in dental pulp cells using short interfering RNA (siRNA). Transient expression of siRNA against Lef1 markedly reduced Lef1 mRNA levels, and Lef1-suppressed cells expressed lower levels of DSPP, osteocalcin and ALP mRNA compared to control cells. Furthermore, the formation of mineralized nodules was inhibited by siRNA against Lef1; however, neither Msx-1 expression or cell proliferation was inhibited by siRNA against Lef1. These results outline the role of Lef1 in accelerating odontoblast differentiation by regulating DSP and osteocalcin mRNA expression in dental pulp cells, confirming that Lef1 is a key factor for odontoblast differentiation.
Collapse
Affiliation(s)
- Satoshi Yokose
- Division of Operative Dentistry, Department of Conservative Dentistry, School of Dentistry, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, Japan.
| | | |
Collapse
|
34
|
Liu H, Li J, Lei H, Zhu T, Gan Y, Ge L. Genetic Etiology and Dental Pulp Cell Deficiency of Hypophosphatasia. J Dent Res 2010; 89:1373-7. [PMID: 20924064 DOI: 10.1177/0022034510379017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypophosphatasia is caused by mutations of the tissue-non-specific alkaline phosphatase ( TNSALP) gene with deficiency of dentin structure. The aim of this study was to examine whether TNSALP mutation in dental pulp cells contributes to dentin dysplasia in hypophosphatasia. Mutation analysis showed that compound heterozygous mutations of TNSALP were identified in three hypophosphatasia patients, including 3 novel mutation sites. Exfoliated teeth from the patients showed abnormal dentin mineralization and loss of cementum, as assessed by ground sections and scanning electron microscope analysis. Dental pulp cells isolated from one of the patients showed a significantly reduced TNSALP activity and mineralization capacity when compared with those in dental pulp cells from the unaffected individuals. Our results suggested that dentin dysplasia in hypophosphatasia may be associated with the decreased mineralization ability of dental pulp cells.
Collapse
Affiliation(s)
- H. Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - J. Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - H. Lei
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - T. Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y. Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - L. Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
35
|
Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Kokubu E, Wang X, Inoue T. Formation of bone-like tissue by dental follicle cells co-cultured with dental papilla cells. Cell Tissue Res 2010; 342:221-31. [DOI: 10.1007/s00441-010-1046-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 01/14/2023]
|
36
|
Masuda-Murakami Y, Kobayashi M, Wang X, Yamada Y, Kimura Y, Hossain M, Matsumoto K. Effects of mineral trioxide aggregate on the differentiation of rat dental pulp cells. Acta Histochem 2010; 112:452-8. [PMID: 19560800 DOI: 10.1016/j.acthis.2009.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/16/2009] [Accepted: 05/01/2009] [Indexed: 11/24/2022]
Abstract
The effect of mineral trioxide aggregate (MTA) on the odontoblast-like differentiation of pulp cells was evaluated using heat-shock protein 25 (hsp25) as a marker for odontoblast differentiation. The cells were cultured with tooth-colored MTA or calcium hydroxide-containing cement (Dycal). The effects of the materials on the pulp cells were observed using a confocal laser scanning microscope. The cells were labelled immunocytochemically using polyclonal antibodies against hsp25 and actin. The mRNA expression of hsp25 and dspp in the pulp cells at 2 days were examined by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Most of the cells cultured with MTA showed an intense immunolabelling for hsp25 and the mRNA expressions of hsp25 and dspp at 2 days were higher than those cultured with Dycal. These findings indicate that MTA is an effective pulp capping material and is able to induce the differentiation of odontoblast-like cells and the formation of reparative tertiary dentin with minimum apoptosis.
Collapse
|
37
|
Huang FM, Yang SF, Zhao JH, Chang YC. Platelet-rich fibrin increases proliferation and differentiation of human dental pulp cells. J Endod 2010; 36:1628-32. [PMID: 20850666 DOI: 10.1016/j.joen.2010.07.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Platelet-rich fibrin (PRF) by Choukroun's technique is derived from an autogenous preparation of concentrated platelets without any manipulation. When delicately pressed between 2 gauzes, the PRF clot becomes a strong membrane with high potential in clinical application. However, the effect of PRF on dental pulp cells (DPCs) remains to be elucidated. This study was to determine the biological effects of PRF on DPCs. METHODS PRF samples were obtained from 6 healthy volunteers. Human DPCs were derived from healthy individuals undergoing extraction for third molars. Cell proliferation resulting from PRF was evaluated by colorimetric assay. Western blot was used to evaluate the expression of osteoprotegerin (OPG). Alkaline phosphatase (ALP) activity was examined by substrate assay. RESULTS PRF did not interfere with cell viability of DPCs (P > .05). DPCs were observed to attach at the edges of PRF by phase-contrast microscopy. PRF was found to increase DPC proliferation during 5-day incubation period (P < .05). PRF was found to increase OPG expression in a time-dependent manner (P < .05). ALP activity was also significantly up-regulated by PRF (P < .05). CONCLUSIONS PRF was demonstrated to stimulate cell proliferation and differentiation of DPCs by up-regulating OPG and ALP expression. These findings might serve as a basis for preclinical studies that address the role of PRF in reparative dentin formation.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
38
|
The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology 2010; 62:143-55. [PMID: 20464482 DOI: 10.1007/s10616-010-9271-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 04/04/2010] [Indexed: 12/22/2022] Open
Abstract
Dental pulp cells (DPCs) can differentiate into osteoblasts and are deemed a promising cell source for bone regeneration. Static magnetic field (SMF) stimulates osteoblast differentiation but the effect in DPCs remains unknown. The aim of this study was to investigate the effect of SMF exposure on the osteogenic differentiation and mineralization of rat DPCs in vitro. Cells were continuously exposed to SMF at 290 mT in the presence/absence of osteogenic induction [dexamethasone (Dex)/beta-glycerophosphate (beta-GP)]. Results showed that SMF alone did not impair the cell cycle and proliferation. On the other hand, obvious condensation in the metachromatic staining of the extracellular matrix with toluidine blue was observed for SMF-exposed cells as well as the Dex/beta-GP treated cells. SMF in combination with Dex/beta-GP significantly increased the mRNA expression of osteogenic genes, as well as the ALP activity and extracellular calcium concentration at the early stage, followed by obvious calcium deposits later. Besides, SMF exposure increased the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) at 3 h and accelerated the mRNA expression of osteogenic transcription factor, Cbfa1, advancing its activation time from 168 to 72 h under osteogenic induction. In summary, SMF exposure in combination of Dex/beta-GP induction could significantly accelerate the osteogenic differentiation and mineralization of DPCs.
Collapse
|
39
|
Yasuda Y, Ohtomo E, Tsukuba T, Okamoto K, Saito T. Carbon dioxide laser irradiation stimulates mineralization in rat dental pulp cells. Int Endod J 2009; 42:940-6. [PMID: 19751293 DOI: 10.1111/j.1365-2591.2009.01598.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To examine the effect of carbon dioxide laser irradiation on mineralization in dental pulp cells. METHODOLOGY Rat dental pulp cells were irradiated with a carbon dioxide laser at 2 W output power for 20, 40 and 60 s, and were cultured in ascorbic acid and beta-glycerophosphate containing media. Cell viability was examined 24 h after laser irradiation by a modified MTT assay. Alizarin Red S staining was performed 10 days after laser irradiation. The amounts of secreted collagen from the cells after irradiation were quantified following Sirius Red staining. The expression levels of collagen type I and HSP47, collagen-binding stress protein, were analysed by real-time PCR. HSP47 protein expression was examined by Western blotting. Statistical analysis was performed using one-way analysis of variance (anova) followed by the Tukey's multiple comparison test. RESULTS The cell viability was not affected by laser irradiation at 2 W for up to 40 s. However, it was significantly decreased by 20% at 60 s (P < 0.05). The amount of mineralization after 10 days of irradiation at 2 W for 40 s was significantly increased in comparison to the other conditions (P < 0.05). The extracellular collagen production was significantly increased by 73% on day 2 and 38% on day 4 after laser irradiation (P < 0.05). Although collagen type I gene expression was not changed by laser irradiation, HSP47 gene and protein expression was induced within 12 and 24 h, respectively. CONCLUSIONS These results suggested that carbon dioxide laser irradiation stimulated mineralization in dental pulp cells. The laser irradiation also increased HSP47 expression but not collagen gene expression.
Collapse
Affiliation(s)
- Y Yasuda
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan.
| | | | | | | | | |
Collapse
|
40
|
Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol 2009; 54:898-908. [DOI: 10.1016/j.archoralbio.2009.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 01/09/2023]
|
41
|
The behavior of rat tooth germ cells on poly(vinyl alcohol). Acta Biomater 2009; 5:1064-74. [PMID: 19136319 DOI: 10.1016/j.actbio.2008.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 11/03/2008] [Accepted: 11/19/2008] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to evaluate the behaviors of rat tooth germ (TG) cells cultured on poly(vinyl alcohol) (PVA). It was found that TG cells suspended and aggregated to form three-dimensional spheroids on PVA. Compared with traditional monolayered cells on tissue culture polystyrene, TG cell spheroids on PVA obviously increased the alkaline phosphatase activity, the degree of mineralization, and upregulated both osteopontin and dentin matrix protein 1 genes, regardless of the seeding density. Surprisingly, PVA appears to activate the alkaline phosphatase activity and mineralization effects on TG cell spheroids in the absence of a differentiation medium. Furthermore, the present study indicates that integrins may play an important role in the mineralization on TG cell spheroids by adding Arg-Gly-Asp (RGD) peptides. Therefore, the information presented here should help to clarify the role of PVA in the regulation of the mineralization, differentiation and integrin-mediation of TG cells.
Collapse
|
42
|
Hepatocyte Growth Factor Exerts Promoting Functions on Murine Dental Papilla Cells. J Endod 2009; 35:382-8. [DOI: 10.1016/j.joen.2008.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/22/2022]
|
43
|
Induction of differentiation and mineralization in rat tooth germ cells on PVA through inhibition of ERK1/2. Biomaterials 2009; 30:541-7. [DOI: 10.1016/j.biomaterials.2008.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/30/2008] [Indexed: 12/31/2022]
|
44
|
The regulation of the gap junction of human mesenchymal stem cells through the internalization of quantum dots. Biomaterials 2009; 30:1937-46. [PMID: 19135246 DOI: 10.1016/j.biomaterials.2008.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/16/2008] [Indexed: 01/21/2023]
Abstract
The delivery mechanism of CdSe/ZnS quantum dots (QDs) into cells was previously found to critically determine the biocompatibility of QDs to human adult mesenchymal stem cells, but the associated mechanism remained unknown. The present study tried to establish a link between the above phenomenon and the change in gap junction upon QD internalization. By comparing Pep-1- and PolyFect-mediated QD internalizations, the connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) of human adipose-derived adult stem cells was investigated in monolayer and in three-dimensional (3D) culture (alginate hollow spheres). The latter system offered cells more mobility, which was more similar as in vivo. The results showed that Pep-1-coated QDs, which escaped from the endo-/lysosome degradation, could activate the F-actin assembly and the ERK-dependent phosphorylation of Cx43. The consequence was a reduction in Cx43-mediated GJIC. When the cells were grown in high density 3D alginate hollow spheres instead of in monolayer, the decrease of GJIC caused by the QD internalization was restored. These results indicated that the adaptability in QDs-mediated regulation of GJIC with different delivery coatings depended on the culture systems. The study also suggested that the regulation of gap junction may play a key role in QD cytotoxicity.
Collapse
|
45
|
Han MJ, Seo YK, Yoon HH, Song KY, Park JK. Effect of mechanical tension on the human dental pulp cells. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0146-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Balic A, Rodgers B, Mina M. Mineralization and expression of Col1a1-3.6GFP transgene in primary dental pulp culture. Cells Tissues Organs 2008; 189:163-8. [PMID: 18781059 DOI: 10.1159/000154813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and beta-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and beta-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Conn. 06030, USA
| | | | | |
Collapse
|
47
|
Gong N, Ma Z, Li Q, Li Q, Yan Z, Xie L, Zhang R. Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:457-465. [PMID: 18363069 DOI: 10.1007/s10126-008-9081-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/12/2007] [Accepted: 01/06/2008] [Indexed: 05/26/2023]
Abstract
In this study, we established and characterized a long-term primary mantle tissue culture from the marine pearl oyster Pinctada fucata for in vitro investigation of nacre biomineralization. In this culture system, the viability of mantle tissue cells lasted up to 2 months. The tissue cells were demonstrated to express nacre matrix proteins by RT-PCR, and a soluble shell matrix protein, nacrein, was detected in the culture medium by Western blot analysis. On the other hand, 15 days after initiating culture, a large amount of calcium deposits with major elements, including calcium, carbon, and oxygen, were generated in the mantle explants and cell outgrowth area. The quantity and size of calcium deposits increased with the prolonged cultivation, and their location and nanogranular structure suggested their biogenic origin. These calcium deposits specifically appeared in mantle tissue cultures, but not in heart tissue cultures. Taken together, these results demonstrate that the mantle tissue culture functions similarly to mantle cells in vivo. This study provides a reliable approach for the further investigation on nacre biomineralization at the cellular level.
Collapse
Affiliation(s)
- Ningping Gong
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Adiponectin Induces Dentin Sialophosphoprotein in Rat Dental Pulp Cells: An In Vitro Study. J Endod 2008; 34:679-83. [DOI: 10.1016/j.joen.2008.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 02/24/2008] [Accepted: 02/27/2008] [Indexed: 02/07/2023]
|
49
|
Zhang Q, Wang X, Chen Z, Liu G, Chen Z. Semi-quantitative RT-PCR analysis of LIM mineralization protein 1 and its associated molecules in cultured human dental pulp cells. Arch Oral Biol 2007; 52:720-6. [PMID: 17368558 DOI: 10.1016/j.archoralbio.2007.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE LIM mineralization protein 1 (LMP-1), an intracellular signaling molecule, regulates osteoblast differentiation and maturation, as well as bone formation. However, the role of LMP-1 in the differentiation of human dental pulp cells and formation of dentin has not been determined. The study was to investigate the expression of LMP-1, the related proteins, such as bone morphogenetic proteins 2, 6 and 7 (BMP-2, BMP-6 and BMP-7), and core binding factor alpha 1 (Cbfa1) during the differentiation of cultured human dental pulp cells and the formation of mineralized nodules. DESIGN Differentiation of human dental pulp cells was induced by dexamethasone, asorbic acid and beta-glycerophosphate. The formation of mineralized nodules, was determined by Von Kossa staining and immunocytochemistry detection of dentin sialoprotein. Expression of LMP-1, the related proteins and the differentiation marker alkaline phosphatase (ALP) was analysed by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS The expression of LMP-1, BMP-2, BMP-6, BMP-7 and Cbfa1 was significantly increased in the process of dental pulp cells differentiation and the formation of mineralized nodules, while the pattern of the expression was distinct. CONCLUSIONS The elevated level of LMP-1, BMPs and Cbfa1 expression indicated they might play a role in the differentiation of human dental pulp cells and the formation of mineralized nodules.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education and Department of Cariology & Endodontics, Luoyu Road 237, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province 430079, PR China
| | | | | | | | | |
Collapse
|
50
|
Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007; 59:308-24. [PMID: 17499385 PMCID: PMC4035021 DOI: 10.1016/j.addr.2007.03.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Paul A. Clark
- University of Wisconsin — Madison, UW-Hospitals and Clinics, Department of Neurological Surgery, CSC K4/879, 600 Highland Ave., Madison, WI 53792, USA
| | - Xuejun Xin
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Shan Lal
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Jeremy J. Mao
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| |
Collapse
|