1
|
Quan KY, Yap CG, Jahan NK, Pillai N. Review of early circulating biomolecules associated with diabetes nephropathy - Ideal candidates for early biomarker array test for DN. Diabetes Res Clin Pract 2021; 182:109122. [PMID: 34742785 DOI: 10.1016/j.diabres.2021.109122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/26/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the catastrophic complications of type 2 diabetes mellitus (T2DM). 45% of DN patients progressed to End Stage Renal Disease (ESRD) which robs casualties of the quality of live. The challenge in early diagnosis of DN is it is asymptomatic in the early phase. Current gold standard test for screening and diagnosis of DN are nonspecific and are not sensitive in detecting DN early enough and subsequently monitor renal function during management and intervention plans. Recent studies reported various biomolecules which are associated with the onset of DN in T2DM using cutting-edge technologies. These biomolecules could be potential early biomarkers for DN. This review selectively identified potential early serum biomolecules which are potential candidates for developing an Early Biomarker Array Test for DN. METHODS An advanced literature search was conducted on 4 online databases. Search terms used were "Diabetes Mellitus, Type 2", "Diabetic nephropathy", "pathogenesis" and "early biomarker. Filters were applied to capture articles published from 2010 to 2020, written in English, human or animal models and focused on serum biomolecules associated with DN. RESULTS Five serum biomolecules have been evidently described as contributing pivotal roles in the pathophysiology of DN. MiR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidates for designing an early biomarker array for screening and diagnosis of early stages of DN. The five shortlisted biomolecules originates from endogenous biochemical processes which are specific to the progressive pathophysiology of DN. CONCLUSION miR-377, miR-99b, CYP2E1, TGF-β1 and periostin are potential candidate biomolecules for diagnosing DN at the early phases and can be developed into a panel of endogenous biomarkers for early detection of DN in patients with T2DM. The outcomes of this study will be a stepping stone towards planning and developing an early biomarker array test for diabetic nephropathy. The proposed panel of early biomarkers for DN has potential of stratifying the stages of DN because each biomolecule appears at distinct stages in the pathophysiology of DN.
Collapse
Affiliation(s)
- Kok Ying Quan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| | - Nowrozy Kamar Jahan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| | - Naganathan Pillai
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Gravel S, Chiasson JL, Turgeon J, Grangeon A, Michaud V. Modulation of CYP450 Activities in Patients With Type 2 Diabetes. Clin Pharmacol Ther 2019; 106:1280-1289. [PMID: 31099895 DOI: 10.1002/cpt.1496] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
We conducted a comprehensive in vivo study evaluating the influence of type 2 diabetes (T2D) on major cytochrome P450 (CYP450) activities. These activities were assessed in 38 T2D and 35 non-T2D subjects after a single oral administration of a cocktail of probe drugs: 100 mg caffeine (CYP1A2), 100 mg bupropion (CYP2B6), 250 mg tolbutamide (CYP2C9), 20 mg omeprazole (CYP2C19), 30 mg dextromethorphan (CYP2D6), 2 mg midazolam (CYP3As), and 250 mg chlorzoxazone (alone; CYP2E1). Mean metabolic activity for CYP2C19, CYP2B6, and CYP3A was decreased in subjects with T2D by about 46%, 45%, and 38% (P < 0.01), respectively. CYP1A2 and CYP2C9 activities seemed slightly increased in subjects with diabetes, and no difference was observed for CYP2D6 or CYP2E1 activities. Several covariables, such as inflammatory markers (interleukin (IL)-1ß, IL-6, gamma interferon, and tumor necrosis factor alpha), genotypes, and diabetes-related and demographic-related factors were considered in our analyses. Our results indicate that low chronic inflammatory status associated with T2D modulates CYP450 activities in an isoform-specific manner.
Collapse
Affiliation(s)
- Sophie Gravel
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Louis Chiasson
- Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jacques Turgeon
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Alexia Grangeon
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Veronique Michaud
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
3
|
Chen F, Li DY, Zhang B, Sun JY, Sun F, Ji X, Qiu JC, Parker RB, Laizure SC, Xu J. Alterations of drug-metabolizing enzymes and transporters under diabetic conditions: what is the potential clinical significance? Drug Metab Rev 2018; 50:369-397. [PMID: 30221555 DOI: 10.1080/03602532.2018.1497645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - De-Yi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Robert B. Parker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Yap CG, Zaini A, Othman I. Targeted CYP2E1 quantification and its correlation to currently acceptable clinical biochemical indices. ACTA ACUST UNITED AC 2016; 23:15. [PMID: 27376033 PMCID: PMC4929739 DOI: 10.1186/s40709-016-0052-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/13/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND The Cytochrome P450 enzymes are commonly known for their major role in metabolism. Besides its metabolic role, CYP2E1 gene expression has been associated with the onset of diabetic nephropathy. CYP2E1 protein elevation has also been reported to be responsible for the production of reactive oxygen species. The aims of this study were (i) to optimize and validate a targeted proteomic approach for quantitating CYP2E1 and validating it as a suitable clinical test, (ii) to investigate the concurrency between ESI-LCMS-MS quantitated circulating CYP2E1 and gold standard indices in the context of outpatient point-of-care clinical settings involving various groups of diabetic patients and (iii) to investigate the concurrency profile of circulating CYP2E1 protein, CYP2E1 gene expression and reactive oxygen species (ROS). This is a cross sectional study involving three groups of subjects (n = 166): control, pre-diabetes, and diabetes. We optimized a targeted proteomic approach for absolute quantification of CYP2E1. "YPEIEEK" and "GTVVVPTLYDNQEFPDPEK" were the representative peptides of CYP2E1 for our analytical method. Deuterated forms of "YPEIEEK" and "GTVVVPTLYDNQEFPDPEK" were used as internal standards. Lymphocytes were isolated from whole blood, microsomes were prepared, followed by in-solution digestion for production of tryptic peptides. Amounts of "YPEIEEK" and "GTVVVPTLYDNQEFPDPEK" from patients' samples were calculated from a calibration curve. RESULTS "YPEIEEK" is a unique and reliable representative peptide for CYP2E1 quantification. "GTVVVPTLYDNQEFPDPEK" showed poor reproducibility and sensitivity. Incremental amounts of CYP2E1 protein in the peripheral circulation clearly showed concurrency with CYP2E1 gene expression and ROS levels in our study population. Elevations of CYP2E1 were observed even when gold standard clinical indicator for glycemic control (HbA1c) was within normal reference limits. Quantitated amounts of CYP2E1 protein in the pre-diabetes and diabetes groups showed significant difference relative to control group (p < 0.001). No significant differences were observed between the medians of pre-diabetes and diabetes groups (p = 0.870). CONCLUSIONS CYP2E1 protein in peripheral blood can be reliably quantitated by the validated targeted proteomic approach method. Quantifiable amounts of CYP2E1 preceded abnormal HbA1C levels which indicates quantitation of CYP2E1 could be useful as an additional tool for early indication of diabetic risks and it complications.
Collapse
Affiliation(s)
- Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Pesiaran Lagoon Selatan, 46150 Petaling Jaya, Selangor Malaysia
| | - Anuar Zaini
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Pesiaran Lagoon Selatan, 46150 Petaling Jaya, Selangor Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Pesiaran Lagoon Selatan, 46150 Petaling Jaya, Selangor Malaysia
| |
Collapse
|
5
|
Ivanov AV, Smirnova OA, Petrushanko IY, Ivanova ON, Karpenko IL, Alekseeva E, Sominskaya I, Makarov AA, Bartosch B, Kochetkov SN, Isaguliants MG. HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma Huh7 cells. Viruses 2015; 7:2745-70. [PMID: 26035647 PMCID: PMC4488712 DOI: 10.3390/v7062745] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\(\upbeta\)1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37-191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\(\upalpha\). The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.
Collapse
Affiliation(s)
- Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Irina Y Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Ekaterina Alekseeva
- Latvian Biomedical Research and Study Center, Ratsupites 1, Riga LV1067, Latvia.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Center, Ratsupites 1, Riga LV1067, Latvia.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center of Lyon, University of Lyon, 151, Cours A Thomas, 69424 Lyon Cedex, Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon F-69000, France.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Maria G Isaguliants
- Ivanovsky Institute of Virology, Gamaleya str. 16, Moscow 123098, Russia.
- Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, Riga LV-1069, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobelsvägen 16, Stockholm 17177, Sweden.
| |
Collapse
|
6
|
|
7
|
Zakhari S. Bermuda Triangle for the liver: alcohol, obesity, and viral hepatitis. J Gastroenterol Hepatol 2013; 28 Suppl 1:18-25. [PMID: 23855291 DOI: 10.1111/jgh.12207] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
Despite major progress in understanding and managing liver disease in the past 30 years, it is now among the top 10 most common causes of death globally. Several risk factors, such as genetics, diabetes, obesity, excessive alcohol consumption, viral infection, gender, immune dysfunction, and medications, acting individually or in concert, are known to precipitate liver damage. Viral hepatitis, excessive alcohol consumption, and obesity are the major factors causing liver injury. Estimated numbers of hepatitis B virus (HBV) and hepatitis C virus (HCV)-infected subjects worldwide are staggering (370 and 175 million, respectively), and of the 40 million known human immunodeficiency virus positive subjects, 4 and 5 million are coinfected with HBV and HCV, respectively. Alcohol and HCV are the leading causes of end-stage liver disease worldwide and the most common indication for liver transplantation in the United States and Europe. In addition, the global obesity epidemic that affects up to 40 million Americans, and 396 million worldwide, is accompanied by an alarming incidence of end-stage liver disease, a condition exacerbated by alcohol. This article focuses on the interactions between alcohol, viral hepatitis, and obesity (euphemistically described here as the Bermuda Triangle of liver disease), and discusses common mechanisms and synergy.
Collapse
Affiliation(s)
- Samir Zakhari
- Division of Metabolism and Health Effects, NIAAA, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Dostalek M, Akhlaghi F, Puzanovova M. Effect of Diabetes Mellitus on Pharmacokinetic and Pharmacodynamic Properties of Drugs. Clin Pharmacokinet 2012. [DOI: 10.1007/bf03261926] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Dostalek M, Akhlaghi F, Puzanovova M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin Pharmacokinet 2012; 51:481-99. [PMID: 22668340 DOI: 10.2165/11631900-000000000-00000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of diabetes mellitus on the pharmacokinetics and pharmacodynamics of drugs have been well described in experimental animal models; however, only minimal data exist for humans and the current knowledge regarding the effects of diabetes on these properties remains unclear. Nevertheless, it has been observed that the pharmacokinetics and pharmacodynamics of drugs are changed in subjects with diabetes. It has been reported that diabetes may affect the pharmacokinetics of various drugs by affecting (i) absorption, due to changes in subcutaneous adipose blood flow, muscle blood flow and gastric emptying; (ii) distribution, due to non-enzymatic glycation of albumin; (iii) biotransformation, due to regulation of enzymes/transporters involved in drug biotransformation; and (iv) excretion, due to nephropathy. Previously published data also suggest that diabetes-mediated changes in the pharmacokinetics of a particular drug cannot be translated to others. Although clinical studies exploring the effect of diabetes on pharmacodynamics are still very limited, there is evidence that disease-mediated effects are not limited only to pharmacokinetics but also alter pharmacodynamics. However, for many drugs it remains unclear whether these influences reflect diabetes-mediated changes in pharmacokinetics rather than pharmacodynamics. In addition, even though diabetes-mediated pharmacokinetics and pharmacodynamics might be anticipated, it is important to study the effect on each drug and not generalize from observed data. The available data indicate that there is a significant variability in drug response in diabetic subjects. The discrepancies between individual clinical studies as well as between ex vivo and clinical studies are probably due to (i) the restricted and focused population of subjects in clinical studies; (ii) failure to consider type, severity and duration of the disease; (iii) histopathological characteristics generally being missing; and (iv) other factors such as varying medication use, dietary protein intake, age, sex and obesity. The obesity epidemic in the developed world has also inadvertently influenced the directions of pharmacological research. This review attempts to map new information gained since Gwilt published his paper in Clinical Pharmacokinetics in 1991. Although a large body of research has been conducted and significant progress has been made, we still have to conclude that the available information regarding the effect of diabetes on pharmacokinetics and pharmacodynamics remains unclear and further clinical studies are required before we can understand the clinical significance of the effect. An understanding of diabetes-mediated changes as well as of the source of the variability should lead to the improvement of the medical management and clinical outcomes in patients with this widespread disease.
Collapse
Affiliation(s)
- Miroslav Dostalek
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | | |
Collapse
|
10
|
Sharma A, Saurabh K, Yadav S, Jain SK, Parmar D. Ethanol induced induction of cytochrome P450 2E1 and activation of mitogen activated protein kinases in peripheral blood lymphocytes. Xenobiotica 2011; 42:317-26. [PMID: 21999510 DOI: 10.3109/00498254.2011.624648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1), which induces oxidative stress that leads to alcohol-mediated toxicity in liver, is expressed in peripheral blood lymphocytes. To validate blood lymphocyte CYP2E1 as a biomarker of alcohol-induced diseases, studies were initiated to investigate similarities in CYP2E1 induction and associated cell signalling pathways in freshly prepared blood lymphocytes with the liver in rats exposed to alcohol. Acute or chronic treatment of ethanol produced significant increase in enzyme activity and lipid peroxidation in blood lymphocytes. As observed in liver, this increase was associated with the enrichment of CYP2E1 protein and mRNA. Similar pattern of increase in the mRNA and protein expression of c-jun and c-fos was also observed in blood lymphocytes and liver. Acute exposure to ethanol activated ERK and JNK MAP kinases and c-jun in the blood lymphocytes and liver. The present data demonstrating similarities in the induction of CYP2E1 and lipid peroxidation and activation of MAP Kinases in blood lymphocytes with liver after acute or chronic exposure of ethanol have suggested that blood lymphocytes could be used to monitor ethanol induced CYP2E1 induction and associated oxidative stress in liver.
Collapse
Affiliation(s)
- Amit Sharma
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M.G. Marg, Lucknow, UP, India
| | | | | | | | | |
Collapse
|
11
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
12
|
Khan AJ, Sharma A, Choudhuri G, Parmar D. Induction of blood lymphocyte cytochrome P450 2E1 in early stage alcoholic liver cirrhosis. Alcohol 2011; 45:81-7. [PMID: 20843640 DOI: 10.1016/j.alcohol.2010.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 10/19/2022]
Abstract
To validate the induction of blood lymphocyte cytochrome P450 2E1 (CYP2E1) expression in alcoholic liver cirrhosis and mRNA and protein expression of CYP2E1 in freshly prepared blood lymphocytes of alcoholic liver cirrhotic (ACP), nonalcoholic cirrhotic patients (NACP), alcoholic controls (ACs), and nonalcoholic controls (NACs) were investigated. Registered ACP and NACP patients at Sanjay Gandhi Postgraduate Institute of Medical Science, Lucknow, India along with NACs and ACs were included in the study. Real time polymerase chain reaction, enzyme-linked immunosorbent assay, and CYP2E1-dependent enzyme activity were determined in blood lymphocytes isolated from cases and controls. Significant increases in CYP2E1 mRNA and protein expression were observed in freshly prepared blood lymphocytes isolated from ACs and ACP patients as compared with respective NACs or NACP patients. A concomitant increase in N-nitrosodimethyamine demethylase activity was evident in the blood lymphocytes of ACs and ACP patients. Interestingly, the comparative increase observed in CYP2E1 expression was of greater magnitude in the blood lymphocytes isolated from ACP patients, although they abstained from alcohol drinking. Findings suggest that significant increase in the CYP2E1 mRNA and protein expression in the blood lymphocytes, isolated from early stage ACP patients, can be used to predict alcohol-induced toxicity.
Collapse
|
13
|
van Lunteren E, Moyer M. Gene expression profiling in the type 1 diabetes rat diaphragm. PLoS One 2009; 4:e7832. [PMID: 19915678 PMCID: PMC2773011 DOI: 10.1371/journal.pone.0007832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/14/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. METHODOLOGY/PRINCIPAL FINDINGS Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least +/-2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change -2.0 to -8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change -2.2 to -3.7) and organogenesis (P = 0.032, n = 7, fold change -2.1 to -3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. CONCLUSIONS/SIGNIFICANCE These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
14
|
Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta 2009; 399:8-23. [PMID: 18845133 DOI: 10.1016/j.cca.2008.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/22/2022]
|
15
|
van Lunteren E, Moyer M. Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart. Am J Physiol Endocrinol Metab 2007; 293:E759-68. [PMID: 17566115 DOI: 10.1152/ajpendo.00191.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes has far-ranging effects on cardiac structure and function. Previous gene expression studies of the heart in animal models of type 1 diabetes concur that there is altered expression of genes involved in lipid and protein metabolism, but they diverge with regard to expression changes involving many other functional groups of genes of mechanistic importance in diabetes-induced cardiac dysfunction. To obtain additional information about these controversial areas, genome-wide expression was assessed using microarrays in left ventricle from streptozotocin-diabetic and normal rats. There were 261 genes with statistically significant altered expression of at least +/-1.5-fold, of which 124 were increased and 137 reduced by diabetes. Gene ontology assignment testing identified several statistical significantly overrepresented groups among genes with altered expression, which differed for increased compared with reduced expression. Relevant gene groups with increased expression by diabetes included lipid metabolism (P < 0.001, n = 13 genes, fold change 1.5 to 14.6) and oxidoreductase activity (P < 0.001, n = 17, fold change 1.5 to 4.6). Groups with reduced expression by diabetes included morphogenesis (P < 0.00001, n = 28, fold change -1.5 to -5.1), extracellular matrix (P < 0.02, n = 9, fold change -1.5 to -3.9), cell adhesion (P < 0.05, n = 10, fold change -1.5 to -2.7), and calcium ion binding (P < 0.01, n = 13, fold change -1.5 to -3.0). Array findings were verified by quantitative PCR for 36 genes. These data combined with previous findings strengthen the evidence for diabetes-induced cardiac gene expression changes involved in cell growth and development, oxidoreductase activity, and the extracellular matrix and also point out other gene groups not previously identified as being affected, such as those involved in calcium ion homeostasis.
Collapse
Affiliation(s)
- Erik van Lunteren
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | | |
Collapse
|
16
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
17
|
Haufroid V, Ligocka D, Wallemacq P, Lison D, Horsmans Y. Comparison of cytochrome P4502E1 (CYP2E1) activity and hepatic and lymphocyte mRNA expression in patients with chronic hepatitis C. Toxicol Lett 2005; 155:171-7. [PMID: 15585372 DOI: 10.1016/j.toxlet.2004.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 09/19/2004] [Accepted: 09/23/2004] [Indexed: 01/21/2023]
Abstract
The induction of cytochrome P4502E1 (CYP2E1) is believed to play a role in the development of fibrosis in hepatitis C patients. However, information about CYP2E1 activity in chronic hepatitis C patients is fragmentary and the relationship between CYP2E1 activity and mRNA expression is unknown in this disease. The purpose of this study was (a) to characterise CYP2E1 activity in those patients and (b) to analyse its relationship with CYP2E1 mRNA expression in the liver and in peripheral blood lymphocytes (PBLs), previously proposed as a surrogate to assess changes in CYP2E1 activity. Fourteen chronic hepatitis C patients were submitted to a routine transcutaneous liver biopsy. CYP2E1 activity was assessed by using chlorzoxazone (CZX) pharmacokinetic parameters and hepatic and PBLs CYP2E1 mRNA expression was measured by real-time RT-PCR. The mean oral clearance of CZX (CLT: 21.5+/-10.1L/h) was within the normal range and the chlorzoxazone metabolic ratio (CMR) at t = 2 h was closely related to other CZX pharmacokinetic parameters. None of the pharmacokinetic parameters did significantly correlate with CYP2E1 mRNA, neither in the liver nor in PBLs. Furthermore, there was no significant relationship between CYP2E1 mRNA levels in paired liver and PBL samples. Our data indicate that early stages of chronic hepatitis C are not associated with CYP2E1 induction. In this disease, the determination of the CMR at t = 2 h represents a reliable index to assess CYP2E1 activity. The measurement of CYP2E1 expression, at the mRNA level, in PBLs or in liver is not useful for that purpose.
Collapse
Affiliation(s)
- Vincent Haufroid
- Industrial and Environmental Toxicology Unit, Université catholique de Louvain, Clos Chapelle-aux-Champs 30/54, B-1200, St. Luc Hospital, Brussels B-1200, Belgium.
| | | | | | | | | |
Collapse
|
18
|
Sweeney LM, Kirman CR, Morgott DA, Gargas ML. Estimation of interindividual variation in oxidative metabolism of dichloromethane in human volunteers. Toxicol Lett 2004; 154:201-16. [PMID: 15501612 DOI: 10.1016/j.toxlet.2004.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 08/02/2004] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
A modified version of the original physiologically based pharmacokinetic (PBPK) model by Andersen et al. (1987) has been developed and used in conjunction with previously published human kinetic data for dichloromethane (DCM) metabolism and to assess interindividual variability in the rate of oxidative metabolism. Time-course data for 13 volunteers (10 males, 3 females) exposed to one or more concentrations of DCM (50 ppm, 100 ppm, 150 ppm, or 200 ppm) for 7.5h were used to optimize the maximal rate of hepatic metabolism (V(maxC)) through the cytochrome P450 pathway for each individual. DCM breath and blood concentrations were used, along with carboxyhemoglobin concentrations in blood and carbon monoxide (CO) concentrations in exhaled breath, to estimate the model parameters. Significant improvements in model fit were achieved when extrahepatic oxidative metabolism of DCM was added to the model structure. The 13 individual V(maxC) values ranged from 7.1 to 23.6 mg/h/kg0.7 and appeared to be bimodally distributed. The distribution was not sex related and may be related to differential CYP2E1 induction. A comparison of the observed variation in V(maxC) values to other estimates of variability in the rate of oxidative metabolism and human CYP2E1 activity suggest a relatively narrow range in human hepatic activity toward DCM.
Collapse
Affiliation(s)
- Lisa M Sweeney
- The Sapphire Group, 2661 Commons Boulevard, First Floor, Dayton, OH 45431, USA.
| | | | | | | |
Collapse
|
19
|
Lees Murdock DJ, Barnett YA, Barnett CR. DNA damage and cytotoxicity in pancreatic β-cells expressing human CYP2E1. Biochem Pharmacol 2004; 68:523-30. [PMID: 15242818 DOI: 10.1016/j.bcp.2004.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 04/14/2004] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have identified nitrosamines as a risk factor for Type I (insulin dependent) diabetes mellitus. These compounds require bioactivation by cytochrome P450 2E1 (CYP2E1) for exertion of their toxic effects. Two mammalian insulin secreting pancreatic beta-cell lines BRIN BD11h2E1 and INS-1h2E1, which express human full length CYP2E1 cDNA, were used to elucidate the role of CYP2E1-mediated nitrosamine bioactivation in pancreatic beta-cell dysfunction and destruction. These cell lines were shown to metabolise dimethylnitrosamine to produce formaldehyde at rates of 3.41 +/- 0.24 and 3.65 +/- 0.26 nmol/minmg microsomal protein, respectively. Following incubation with various concentrations of the nitrosamines dimethylnitrosamine, N-nitrosopyrrolidine and 1-nitrospiperidine, all of which are bioactivated by CYP2E1, cytotoxicity and DNA damage were assessed using either the neutral red assay or comet assay respectively. Exposure of CYP2E1 expressing cells to nitrosamines resulted in significant dose-dependent decreases in cell viability, which were not seen in cells which did not express CYP2E1. Following culture with nitrosamine concentrations as low as 2.5mM 1-nitrosopiperidine, cell viability was significantly lower in BRIN BD11h2E1 and INS-1h2E1 cell lines in comparison to the BRIN BD11 and INS-1 parental cell lines (72.5 +/- 4.96 and 66.4 +/- 3.09% in BRIN BD11h2E1 and INS-1h2E1 versus 109.0 +/- 3.40 and 100.0 +/- 3.25% in BRIN BD11 and INS-1 respectively, P < 0.001). The highest dose of any of the nitrosamines tested failed to significantly reduce cell viability in the cells which lacked CYP2E1. Expression of CYP2E1 did not cause any change in the basal level of DNA damage in any of the cell lines. However, 16 h exposure to various nitrosamines resulted in significant dose-dependent DNA damage in the BRIN BD11h2E1 and INS-1h2E1 cells compared to their respective non CYP2E1-expressing parental controls, e.g. DNA damage increased from 34.38 +/- 1.25 to 44.01 +/- 1.56% DNA in comet tail in BRIN BD11h2E1 cells incubated with 10 or 40 mM N-nitrosopyrrolidine, respectively (P < 0.001). Similar treatment of the BRIN BD11 and INS-1 cell lines did not result in a significant increase in DNA damage (20.33 +/- 1.0 and 22.4 +/- 0.98% DNA in comet tail). The pancreatic beta-cell is richly vascularised and expresses CYP2E1. This study suggests that expression of human CYP2E1 in pancreatic beta-cells make them highly susceptible to cytotoxicity and DNA damage by nitrosamines and other agents bioactivated by CYP2E1.
Collapse
Affiliation(s)
- Diane J Lees Murdock
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, N. Ireland, UK.
| | | | | |
Collapse
|
20
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:950-954. [DOI: 10.11569/wcjd.v12.i4.950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|