1
|
Chen X, Jin J, Chang R, Yang X, Li N, Zhu X, Ma L, Li Y. Targeting the sulfur-containing amino acid pathway in leukemia. Amino Acids 2024; 56:47. [PMID: 39060524 PMCID: PMC11281984 DOI: 10.1007/s00726-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024]
Abstract
sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.
Collapse
Affiliation(s)
- Xiaoyan Chen
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiahui Jin
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Rui Chang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xing Yang
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Na Li
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xi Zhu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China
| | - Linlin Ma
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong new area, Shanghai, 201318, China.
| |
Collapse
|
2
|
Maamari D, El-Khoury H, Saifi O, Muwakkit SA, Zgheib NK. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med 2020; 13:295-317. [PMID: 32848445 PMCID: PMC7429230 DOI: 10.2147/pgpm.s239602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Despite major advances in the management and high cure rates of childhood acute lymphoblastic leukemia (ALL), patients still suffer from many drug-induced toxicities, sometimes necessitating dose reduction, or halting of cytotoxic drugs with a secondary risk of disease relapse. In addition, investigators have noted significant inter-individual variability in drug toxicities and disease outcomes, hence the role of pharmacogenetics (PGx) in elucidating genetic polymorphisms in candidate genes for the optimization of disease management. In this review, we present the PGx data in association with main toxicities seen in children treated for ALL in addition to efficacy, with a focus on the most plausible germline PGx variants. We then follow with a summary of the highest evidence drug-gene annotations with suggestions to move forward in implementing preemptive PGx for the individualization of treatment regimens for children with ALL.
Collapse
Affiliation(s)
- Dimitri Maamari
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib El-Khoury
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omran Saifi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar A Muwakkit
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
3
|
Kodidela S, Dorababu P, Thakkar DN, Dubashi B, Sundaram R, Muralidharan N, Nidanapu RP, Aribandi A, Pradhan SC, Uppugunduri CRS. Association of NUDT15*3 and FPGS 2572C>T Variants with the Risk of Early Hematologic Toxicity During 6-MP and Low-Dose Methotrexate-Based Maintenance Therapy in Indian Patients with Acute Lymphoblastic Leukemia. Genes (Basel) 2020; 11:genes11060594. [PMID: 32481505 PMCID: PMC7349017 DOI: 10.3390/genes11060594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic variants influencing the pharmacokinetics and/or pharmacodynamics of the chemotherapeutic drugs used in Acute Lymphoblastic Leukemia (ALL) therapy often contribute to the occurrence of treatment related toxicity (TRT). In this study, we explored the association of candidate genetic variants with early hematological TRT (grade 3–4) occurring within the first 100 days of low-dose methotrexate and 6-mercaptopurine based maintenance therapy (n = 73). Fourteen variants in the following candidate genes were genotyped using allele discrimination assay by real-time PCR: ABCB1, DHFR, GGH, FPGS, MTHFR, RFC1, SLCO1B1, TPMT, and NUDT15. Methotrexate polyglutamate (MTXPG3-5) levels in red blood cells were measured by LC-MS/MS. Early hematological TRT (grade 3–4) was seen in 54.9% of patients. The NUDT15c.415T allele was associated with early TRT occurrence [HR: 3.04 (95% CI: 1.5–6.1); p = 0.007]. Sensitivity of early TRT prediction improved (from 30.7% to 89.7%) by considering FPGS variant (rs1544105’T’) carrier status along with NUDT15c.415T allele [HR = 2.7 (1.5–4.7, p = 0.008)]. None of the considered genetic variants were associated with MTXPG3-5 levels, which in turn were not associated with early TRT. NUDT15c.415T allele carrier status could be used as a stratifying marker for Indian ALL patients to distinguish patients at high or low risk of developing early hematological TRT.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, University of Tennessee Heath Science Center, Memphis, TN 38163, USA
- Correspondence: (S.K.); (C.R.S.U.)
| | - Patchava Dorababu
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Hyderabad 500090, India;
| | - Dimpal N. Thakkar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India;
| | - Rajan Sundaram
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Niveditha Muralidharan
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India;
| | - Ravi Prasad Nidanapu
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry 605006, India; (D.N.T.); (R.S.); (R.P.N.)
| | - Anil Aribandi
- Division of Haemato-Oncology, Care Hospitals, Hyderabad 500019, India;
- American Oncology Institute, Nallagandla Serilingampalli, Hyderabad 500019, India
| | - Suresh Chandra Pradhan
- Department of Pharmacology, Kalinga Institute of Medical Sciences, Bhubaneswar 751024, India;
| | - Chakradhara Rao Satyanarayana Uppugunduri
- Onco-Hematology Unit, Research Platform of Pediatric Onco-Hematology, Department of Paediatrics, Gynaecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1205 Geneva, Switzerland
- Correspondence: (S.K.); (C.R.S.U.)
| |
Collapse
|
4
|
Razali RH, Noorizhab MNF, Jamari H, James RJ, Teh KH, Ibrahim HM, Teh LK, Salleh MZ. Association of ABCC2 with levels and toxicity of methotrexate in Malaysian Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr Hematol Oncol 2020; 37:185-197. [PMID: 31870219 DOI: 10.1080/08880018.2019.1705949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Studies had shown that genetic polymorphism plays a significant role in the pharmacokinetics and pharmacodynamics variation of high dose methotrexate (MTX), 5000 mg/m2 regimen. The objective of this study was to investigate the genetic variations associated with the serum level and toxicity of MTX in Malaysian children with acute lymphoblastic leukemia (ALL). Thirty-eight patients were genotyped for rs717620 (ABCC2), rs4948496 (ARID5B), rs1801133 (MTHFR) and rs4149056 (SLCO1B1). Serum levels of MTX at 48 h post 24 h of intravenous infusion were analyzed by high-performance liquid chromatography-mass spectrometry. The ABCC2 genotype was significantly associated with the serum levels of MTX at 48 h after treatment (p = 0.017). Patients with CT and TT of rs717620 (ABCC2) and TC and CC of rs4948496 (ARID5B) were significantly associated with leukopenia grade I-IV (Fisher Exact Test; p = 0.03 and 0.02, respectively). The three most common MTX related toxicities were leukopenia (60.5%), increased alanine aminotransferase enzyme (47.4%), and thrombocytopenia (47.4%). Our results demonstrate that by prescreening of patients for ABCC2 and ARID5B associated with the serum levels and adverse effects of MTX would identify patients at risk and therefore help a pediatric oncologist to personalize chemotherapy drugs for precision health.
Collapse
Affiliation(s)
- Rizal Husaini Razali
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Selangor, Malaysia.,Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya, Malaysia
| | - Mohd Nur Fakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Selangor, Malaysia
| | - Hisyam Jamari
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia
| | - Richard Johari James
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Selangor, Malaysia
| | - Kok Hoi Teh
- Paediatric Haematology and Oncology Unit, Women & Children's Hospital, Kuala Lumpur, Ministry of Health Malaysia
| | - Hishamshah Mohd Ibrahim
- Paediatric Haematology and Oncology Unit, Women & Children's Hospital, Kuala Lumpur, Ministry of Health Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
6
|
Varma K A, Jayanthi M, Dubashi B, Shewade DG. Influence of DPYD*9A, DPYD*6 and GSTP1 ile105val Genetic Polymorphisms on Capecitabine and Oxaliplatin (CAPOX) Associated Toxicities in Colorectal Cancer (CRC) Patients. Asian Pac J Cancer Prev 2019; 20:3093-3100. [PMID: 31653159 PMCID: PMC6982684 DOI: 10.31557/apjcp.2019.20.10.3093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
AIM CAPOX treatment in CRC patients was reported to cause several dose-limiting toxicities, and are found responsible for treatment interruption or even discontinuation. Therefore there is a critical need for identifying the predictive biomarkers for such toxicities to prevent them. The aim of our present study is to find the influence of DPYD*9A, DPYD*6 and GSTP1 ile105val gene polymorphisms on CAPOX treatment-associated toxicities in south Indian patients with CRC. PATIENTS AND METHODS We have recruited 145 newly diagnosed and treatment naive CRC patients in the study. Each Patient received a standard treatment schedule of oxaliplatin 130 mg/m2 infusion over 2 hours on day 1 and oral capecitabine 1000mg/m2 in divided doses twice daily for the next 14 days of a 21-day cycle. 5 ml of the venous blood was collected from each patient and genomic DNA extraction and genotyping. The genotyping analysis of the selected genetic polymorphisms was carried out by real-time PCR using TaqMan SNP genotyping assays obtained from applied biosystems. RESULTS The major dose-limiting toxicities observed with CAPOX treatment were thrombocytopenia, HFS and PN. DPYD*9A carries were found to be at higher risk for HFS, diarrhoea and thrombocytopenia when compared to patients with wild allele. No significant association was found between DPYD*6, GSTP1 ile105val polymorphisms and CAPOX related toxicities except for thrombocytopenia. CONCLUSION A significant association was observed between DPYD*9A polymorphism and CAPOX induced dose-limiting toxicities strengthening its role as a predictive biomarker.
Collapse
Affiliation(s)
- Ashok Varma K
- Department of Pharmacology,JIPMER, Puducherry, India
| | - M Jayanthi
- Department of Pharmacology,JIPMER, Puducherry, India
| | | | - D G Shewade
- Department of Pharmacology,JIPMER, Puducherry, India
| |
Collapse
|
7
|
Gervasini G, Mota-Zamorano S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr Drug Metab 2019; 20:313-330. [DOI: 10.2174/1389200220666190130161758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Background:In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.Methods:We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.Results:This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.Conclusion:In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| |
Collapse
|
8
|
Gong Y, Haque S, Chowdhury P, Cory TJ, Kodidela S, Yallapu MM, Norwood JM, Kumar S. Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment. Expert Opin Drug Metab Toxicol 2019; 15:417-427. [PMID: 30951643 DOI: 10.1080/17425255.2019.1604685] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Drugs used in HIV treatment; all protease inhibitors, some non-nucleoside reverse transcriptase inhibitors, and pharmacoenhancers ritonavir and cobicistat can inhibit cytochrome P450 (CYP) enzymes. CYP inhibition can cause clinically significant drug-drug interactions (DDI), leading to increased drug exposure and potential toxicity. Areas covered: A complete understanding of pharmacodynamics and CYP-mediated DDI is crucial to prevent adverse side effects and to achieve optimal efficacy. We summarized the pharmacodynamics of all the CYP inhibitors used for HIV treatment, followed by a discussion of drug interactions between these CYP inhibitors and other drugs, and a discussion on the effect of CYP polymorphisms. We also discussed the potential advancements in improving the pharmacodynamics of these CYP inhibitors by using nanotechnology strategy. Expert opinion: The drug-interactions in HIV patients receiving ARV drugs are complicated, especially when patients are on CYP inhibitors-based ART regimens. Therefore, evaluation of CYP-mediated drug interactions is necessary prior to prescribing ARV drugs to HIV subjects. To improve the treatment efficacy and minimize DDI, novel approaches such as nanotechnology may be the potential alternative approach. However, further studies with large cohort need to be conducted to provide strong evidence for the use of nano-formulated ARVs to effectively treat HIV patients.
Collapse
Affiliation(s)
- Yuqing Gong
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sanjana Haque
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Pallabita Chowdhury
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Theodore J Cory
- b Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Sunitha Kodidela
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali M Yallapu
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - John M Norwood
- c Department of Infectious Disease , College of Medicine, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Santosh Kumar
- a Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
9
|
Kodidela S, Pradhan SC, Dubashi B, Basu D. Interethnic Differences in Single and Haplotype Structures of Folylpolyglutamate Synthase and Gamma-glutamyl Hydrolase Variants and Their Influence on Disease Susceptibility to Acute Lymphoblastic Leukemia in the Indian Population: An Exploratory Study. Indian J Med Paediatr Oncol 2018. [DOI: 10.4103/ijmpo.ijmpo_32_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractAim: We aim to establish the genotype and haplotype frequencies of folylpolyglutamate synthase (FPGS rs10106 and rs1544105) and gamma-glutamyl hydrolase (GGH rs3758149 and rs11545078) variants in the South Indian population (SI) and to study the association of these variants with susceptibility to acute lymphoblastic leukemia (ALL). We also aim to compare the genotype and haplotype frequencies of studied variants with those of superpopulations from the 1000 Genomes Project collected in phase-3 and other published studies in the literature. Materials and Methods: A total of 220 unrelated healthy volunteers and 151 patients with ALL of both sexes were recruited for the study. Extracted DNA was subjected to genotyping by allelic discrimination using quantitative real-time-polymerase chain reaction. Genotype details of the studied variants in other ethnicities were obtained from 1000 genomes project Phase 3 data. Haploview software was used to construct haplotypes. Results:: In our study, the frequencies of FPGS rs1006'G' and rs1544105'A' alleles were found to be 37% and 37.2%, respectively, and the frequencies of GGH rs3758149'T' and GGH rs11545078'T' alleles were found to be 29.8% and 16.7%, respectively. Among the studied variants, FPGS rs1544105'AA' genotype carriers were found to be susceptible to the risk of ALL (odds ratio: 2.16; 95% confidence interval [CI]: 1.15–4.07; P = 0.02). Haplotype structures of FPGS and GGH variants in SI population were significantly different from other ethnicities (P < 0.05), except the South Asian superpopulation. Conclusion: FPGS rs1544105'AA' genotype was found to influence the risk for ALL. Intra and interethnic differences exist in the distribution of studied variants. Therefore, the impact of each variant on the susceptibility and outcome of diseases may differ between populations.
Collapse
Affiliation(s)
- Sunitha Kodidela
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Suresh Chandra Pradhan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Debdatta Basu
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
10
|
Ceppi F, Gagné V, Douyon L, Quintin CJ, Colombini A, Parasole R, Buldini B, Basso G, Conter V, Cazzaniga G, Krajinovic M. DNA variants in DHFR gene and response to treatment in children with childhood B ALL: revisited in AIEOP-BFM protocol. Pharmacogenomics 2017; 19:105-112. [PMID: 29210328 DOI: 10.2217/pgs-2017-0153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM We have previously reported an association of dihydrofolate reductase promoter polymorphisms with reduced event-free survival in childhood acute lymphoblastic leukemia (ALL) patients treated with Dana Farber Cancer Institute protocol. Here, we assessed whether these associations are applicable to other protocol, based on different methotrexate doses. METHODS Genotypes for six tag polymorphisms and resulting haplotypes were analyzed for an association with ALL outcome. RESULTS The association was found with the polymorphisms A-680C, A-317G and C-35T in high-risk group patients. Carriers of haplotype *1 had a remarkably higher risk of events compared with noncarriers and a lower probability of event-free survival (21.4 vs 81.3%). CONCLUSION The role of DHFR variants in predicting the outcome of childhood ALL extends beyond single-treatment protocol and can be useful biomarker in personalizing treatment.
Collapse
Affiliation(s)
- Francesco Ceppi
- Pediatric Hematology-Oncology Unit & Pediatric Hematology-Oncology Research Laboratory, Division of Pediatrics, Department of Woman-Mother-Child, University Hospital of Lausanne, 1004 Lausanne, Switzerland
| | - Vincent Gagné
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Laurance Douyon
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Camille J Quintin
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada
| | - Antonella Colombini
- Department of Pediatrics, University of Milano-Bicocca, Ospedale S Gerardo, 20835 Monza, Italy
| | - Rosanna Parasole
- Department of Pediatric Hemato-Oncology, Santobono-Pausilipon Hospital, 80129 Naples, Italy
| | - Barbara Buldini
- Department of Woman & Child Health, Laboratory of Haematology-Oncology, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Woman & Child Health, Laboratory of Haematology-Oncology, University of Padova, 35128 Padova, Italy
| | - Valentino Conter
- Department of Pediatrics, University of Milano-Bicocca, Ospedale S Gerardo, 20835 Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Pediatrics, University Milano Bicocca, 20835 Monza, Italy
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, QC, H3T1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC, H4A 3J1, Canada.,Department of Pharmacology & Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
11
|
Dihydrofolate Reductase Genetic Polymorphisms Affect Methotrexate Dose Requirements in Pediatric Patients With Acute Lymphoblastic Leukemia on Maintenance Therapy. J Pediatr Hematol Oncol 2017; 39:589-595. [PMID: 28719513 DOI: 10.1097/mph.0000000000000908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have aimed to determine the effect of polymorphisms in regulatory regions of the DHFR gene in relation to methotrexate (MTX) dose adjustments and drug-induced toxicity in children on maintenance therapy for acute lymphoblastic leukemia (ALL). In total, 41 children diagnosed with ALL were screened for 3 tag-single nucleotide polymorphisms in the DHFR promoter (C-1610G, C-680G/T, A-317G) and an intronic 19-bp insertion/deletion. Genotypes were analyzed in relation to dose requirements and toxicity. The percentage of MTX dose administered (with respect to protocol-recommended values) was affected by DHFR polymorphisms. Carriers of the -680AA genotype displayed a median percentage of 44.08 (interquartile range=34.69), compared with 77.98 (interquartile range=33.90) for CC and CA carriers (P=0.01). The number of counts within white blood cell therapeutic range (2.0 to 3.0×10/L) was higher for -680AA carriers than for CC/CA carriers (P=0.003). With regard to toxicity, carriers of the -680AA genotype displayed more treatment interruptions than CC/CG carriers (P=0.03), as well as more episodes of severe neutropenia (P=0.04) and higher number of blood counts with elevated levels (>400 mg/dL) of lactate dehidrogenase (P=0.04). Overall, our findings suggest that the identification of DHFR polymorphisms in the promoter region of the gene may be helpful in tailoring MTX doses for ALL pediatric patients on maintenance therapy.
Collapse
|
12
|
Xie L, Zhao T, Cai J, Su Y, Wang Z, Dong W. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells. Onco Targets Ther 2016; 9:7115-7122. [PMID: 27895503 PMCID: PMC5119623 DOI: 10.2147/ott.s116387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX) in human choriocarcinoma cells regarding DNA damage response. METHODS Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. RESULTS Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63) but not in MTX-resistant cancer cells (A2780 and Hela) after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR) repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. CONCLUSION The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma.
Collapse
Affiliation(s)
- Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Tiancen Zhao
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology; Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - You Su
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
13
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|