1
|
Loyo-Celis V, Patel D, Sanghvi S, Kaur K, Ponnalagu D, Zheng Y, Bindra S, Bhachu HR, Deschenes I, Gururaja Rao S, Singh H. Biophysical characterization of chloride intracellular channel 6 (CLIC6). J Biol Chem 2023; 299:105349. [PMID: 37838179 PMCID: PMC10641671 DOI: 10.1016/j.jbc.2023.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023] Open
Abstract
Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 μM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.
Collapse
Affiliation(s)
- Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Devendra Patel
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kamalpreet Kaur
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Pharmacology, The University of Washington, Seattle, Washington, USA
| | - Yang Zheng
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sahej Bindra
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Harmeet Rireika Bhachu
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabelle Deschenes
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Peng JM, Lin SH, Yu MC, Hsieh SY. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest 2021; 131:133525. [PMID: 33079727 DOI: 10.1172/jci133525] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted chloride intracellular channel 1 (CLIC1) spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a phosphatidylinositol 4,5-bisphosphate-rich (PIP2-rich) microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli, resulting in suppressed lung metastasis in mice. This study reveals what we believe is an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsuan Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|
4
|
Liu B, Billington CK, Henry AP, Bhaker SK, Kheirallah AK, Swan C, Hall IP. Chloride intracellular channel 1 (CLIC1) contributes to modulation of cyclic AMP-activated whole-cell chloride currents in human bronchial epithelial cells. Physiol Rep 2019; 6. [PMID: 29368798 PMCID: PMC5789713 DOI: 10.14814/phy2.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Chloride channels are known to play critical physiological roles in many cell types. Here, we describe the expression of anion channels using RNA Seq in primary cultures of human bronchial epithelial cells (hBECs). Chloride intracellular channel (CLIC) family members were the most abundant chloride channel transcripts, and CLIC1 showed the highest level of expression. In addition, we characterize the chloride currents in hBECs and determine how inhibition of CLIC1 via pharmacological and molecular approaches impacts these. We demonstrate that CLIC1 is able to modulate cyclic AMP‐induced chloride currents and suggest that CLIC1 modulation could be important for chloride homeostasis in this cell type.
Collapse
Affiliation(s)
- Bo Liu
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Amanda P Henry
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sangita K Bhaker
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Alexander K Kheirallah
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Caroline Swan
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Ian P Hall
- Division of Respiratory Medicine, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:11.21.1-11.21.17. [PMID: 30040212 PMCID: PMC6060641 DOI: 10.1002/cpph.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non-canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neel J Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Identification and Characterization of a Bacterial Homolog of Chloride Intracellular Channel (CLIC) Protein. Sci Rep 2017; 7:8500. [PMID: 28819106 PMCID: PMC5561075 DOI: 10.1038/s41598-017-08742-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Chloride intracellular channels (CLIC) are non-classical ion channels lacking a signal sequence for membrane targeting. In eukaryotes, they are implicated in cell volume regulation, acidification, and cell cycle. CLICs resemble the omega class of Glutathione S-transferases (GST), yet differ from them in their ability to form ion channels. They are ubiquitously found in eukaryotes but no prokaryotic homolog has been characterized. We found that indanyloxyacetic acid-94 (IAA-94), a blocker of CLICs, delays the growth of Escherichia coli. In silico analysis showed that the E. coli stringent starvation protein A (SspA) shares sequence and structural homology with CLICs. Similar to CLICs, SspA lacks a signal sequence but contains an omega GST fold. Electrophysiological analysis revealed that SspA auto-inserts into lipid bilayers and forms IAA-94-sensitive ion channels. Substituting the ubiquitously conserved residue leucine 29 to alanine in the pore-forming region increased its single-channel conductance. SspA is essential for cell survival during acid-induced stress, and we found that acidic pH increases the open probability of SspA. Further, IAA-94 delayed the growth of wild-type but not sspA null mutant E. coli. Our results for the first time show that CLIC-like proteins exist in bacteria in the form of SspA, forming functional ion channels.
Collapse
|
7
|
Ulmasov B, Bruno J, Oshima K, Cheng YW, Holly SP, Parise LV, Egan TM, Edwards JC. CLIC1 null mice demonstrate a role for CLIC1 in macrophage superoxide production and tissue injury. Physiol Rep 2017; 5:e13169. [PMID: 28275112 PMCID: PMC5350177 DOI: 10.14814/phy2.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
We generated and studied CLIC1 null (C1KO) mice to investigate the physiological role of this protein. C1KO and matched wild-type (WT) mice were studied in two models of acute toxic tissue injury. CLIC1 expression is upregulated following acute injury of WT kidney and pancreas and is absent in C1KOs. Acute tissue injury is attenuated in the C1KOs and this correlates with an absence of the rise in tissue reactive oxygen species (ROS) that is seen in WT mice. Infiltration of injured tissue by inflammatory cells was comparable between WT and C1KOs. Absence of CLIC1 increased PMA-induced superoxide production by isolated peritoneal neutrophils but dramatically decreased PMA-induced superoxide production by peritoneal macrophages. CLIC1 is expressed in both neutrophils and macrophages in a peripheral pattern consistent with either plasma membrane or the cortical cytoskeleton in resting cells and redistributes away from the periphery following PMA stimulation in both cell types. Absence of CLIC1 had no effect on redistribution or dephosphorylation of Ezrin/ERM cytoskeleton in macrophages. Plasma membrane chloride conductance is altered in the absence of CLIC1, but not in a way that would be expected to block superoxide production. NADPH oxidase redistributes from an intracellular compartment to the plasma membrane when WT macrophages are stimulated to produce superoxide and this redistribution fails to occur in C1KO macrophages. We conclude that the role of CLIC1 in macrophage superoxide production is to support redistribution of NADPH oxidase to the plasma membrane, and not through major effects on ERM cytoskeleton or by acting as a plasma membrane chloride channel.
Collapse
Affiliation(s)
- Barbara Ulmasov
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - Jonathan Bruno
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
- UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yao-Wen Cheng
- UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen P Holly
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Leslie V Parise
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri
| | - John C Edwards
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri
- UNC Kidney Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
8
|
Cui XS, Shen XH, Lee CK, Kang YK, Wakayama T, Kim NH. Analysis of proteomic profiling of mouse embryonic stem cells derived from fertilized, parthenogenetic and androgenetic blastocysts. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/scd.2011.11001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Qiu MR, Jiang L, Matthaei KI, Schoenwaelder SM, Kuffner T, Mangin P, Joseph JE, Low J, Connor D, Valenzuela SM, Curmi PMG, Brown LJ, Mahaut-Smith M, Jackson SP, Breit SN. Generation and characterization of mice with null mutation of the chloride intracellular channel 1 gene. Genesis 2010; 48:127-36. [PMID: 20049953 DOI: 10.1002/dvg.20590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CLIC1 belongs to a family of highly conserved and widely expressed intracellular chloride ion channel proteins existing in both soluble and membrane integrated forms. To study the physiological and biological role of CLIC1 in vivo, we undertook conditional gene targeting to engineer Clic1 gene knock-out mice. This represents creation of the first gene knock-out of a vertebrate CLIC protein family member. We first generated a Clic1 Knock-in (Clic1(FN)) allele, followed by Clic1 knock-out (Clic1(-/-)) mice by crossing Clic1(FN) allele with TNAP-cre mice, resulting in germline gene deletion through Cre-mediated recombination. Mice heterozygous or homozygous for these alleles are viable and fertile and appear normal. However, Clic1(-) (/-) mice show a mild platelet dysfunction characterized by prolonged bleeding times and decreased platelet activation in response to adenosine diphosphate stimulation linked to P2Y(12) receptor signaling.
Collapse
Affiliation(s)
- Min Ru Qiu
- St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital and University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Two decades with dimorphic Chloride Intracellular Channels (CLICs). FEBS Lett 2010; 584:2112-21. [DOI: 10.1016/j.febslet.2010.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 01/11/2023]
|
11
|
Yang JY, Jung JY, Cho SW, Choi HJ, Kim SW, Kim SY, Kim HJ, Jang CH, Lee MG, Han J, Shin CS. Chloride intracellular channel 1 regulates osteoblast differentiation. Bone 2009; 45:1175-85. [PMID: 19703605 DOI: 10.1016/j.bone.2009.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 12/15/2022]
Abstract
We have identified chloride intracellular channel 1 (CLIC1) through proteomic approach, which was increased in response to canonical wnt signaling while being almost shut-off by adipogenic treatment in mouse mesenchymal C3H10T1/2 cells. We found that CLIC1 was expressed in mouse (MC3T3-E1), rat (ROS 17/2.8 and UMR-106) or human (MG63 and SaOS2) osteoblastic cell lines as well as primary culture of mouse calvarial cells by RT-PCR or Western blot analysis. The expression level of CLIC1 is increased upon treatment of osteogenic medium, whereas it almost disappeared in adipogenic condition, confirming the proteomic data. The expression of CLIC1 was localized mainly in nuclear membrane and vesiculo-cytoplasmic, the latter of which was colocalized with mitochondria. Retroviral overexpression of CLIC1 did not increase whole-cell current but induces hyperpolarization of mitochondrial membrane potential estimated using the fluorescent dye TMRE. Moreover, overexpression of CLIC1 resulted in increase in osteoblastic differentiation of C3H10T1/2 cells as measured by ALP activities or osteoblastic gene expression (osterix, ALP and osteocalcin), although it did not result in induction of Runx2 transcription activities at mouse osteocalcin (OG2) promoter. Finally, in vitro knock-down of CLIC1 using stable siRNA CLIC1 significantly suppressed osteoblastic differentiation. Taken together, these results suggest that CLIC1 may play a role in the regulation of osteoblastic differentiation from mesenchymal progenitors, although its physiologic role in osteoblasts remains to be determined.
Collapse
Affiliation(s)
- Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Singh H, Cousin MA, Ashley RH. Functional reconstitution of mammalian 'chloride intracellular channels' CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J 2007; 274:6306-16. [PMID: 18028448 DOI: 10.1111/j.1742-4658.2007.06145.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chloride intracellular channels (CLICs) are soluble, signal peptide-less proteins that are distantly related to Omega-type glutathione-S-transferases. Although some CLICs bypass the classical secretory pathway and autoinsert into cell membranes to form ion channels, their cellular roles remain unclear. Many CLICs are strongly associated with cytoskeletal proteins, but the role of these associations is not known. In this study, we incorporated purified, recombinant mammalian CLIC1, CLIC4 and (for the first time) CLIC5 into planar lipid bilayers, and tested the hypothesis that the channels are regulated by actin. CLIC5 formed multiconductance channels that were almost equally permeable to Na(+), K(+) and Cl(-), suggesting that the 'CLIC' nomenclature may need to be revised. CLIC1 and CLIC5, but not CLIC4, were strongly and reversibly inhibited (or inactivated) by 'cytosolic' F-actin in the absence of any other protein. This inhibition effect on channels could be reversed by using cytochalasin to disrupt the F-actin. We suggest that actin-regulated membrane CLICs could modify solute transport at key stages during cellular events such as apoptosis, cell and organelle division and fusion, cell-volume regulation, and cell movement.
Collapse
Affiliation(s)
- H Singh
- Centre for Integrative Physiology, University of Edinburgh Medical School, UK.
| | | | | |
Collapse
|