1
|
Mistry HD, Klossner R, Scaife PJ, Eisele N, Kurlak LO, Kallol S, Albrecht C, Gennari-Moser C, Briggs LV, Broughton Pipkin F, Mohaupt MG. Alterations of Placental Sodium in Preeclampsia: Trophoblast Responses. Hypertension 2024; 81:1924-1934. [PMID: 38966986 PMCID: PMC11319085 DOI: 10.1161/hypertensionaha.124.23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Evidence suggests that increasing salt intake in pregnancy lowers blood pressure, protecting against preeclampsia. We hypothesized that sodium (Na+) evokes beneficial placental signals that are disrupted in preeclampsia. METHODS Blood and urine were collected from nonpregnant women of reproductive age (n=26) and pregnant women with (n=50) and without (n=55) preeclampsia, along with placental biopsies. Human trophoblast cell lines and primary human trophoblasts were cultured with varying Na+ concentrations. RESULTS Women with preeclampsia had reduced placental and urinary Na+ concentrations, yet increased urinary angiotensinogen and reduced active renin, aldosterone concentrations, and osmotic response signal TonEBP (tonicity-responsive enhancer binding protein) expression. In trophoblast cell cultures, TonEBP was consistently increased upon augmented Na+ exposure. Mechanistically, inhibiting Na+/K+-ATPase or adding mannitol evoked the TonEBP response, whereas inhibition of cytoskeletal signaling abolished it. CONCLUSIONS Enhanced Na+ availability induced osmotic gradient-dependent cytoskeletal signals in trophoblasts, resulting in proangiogenic responses. As placental salt availability is compromised in preeclampsia, adverse systemic responses are thus conceivable.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Health Sciences, King’s College London, United Kingdom (H.D.M.)
| | - Rahel Klossner
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Paula J. Scaife
- Clinical, Metabolic and Molecular Physiology (P.J.S.), University of Nottingham, United Kingdom
| | - Nicole Eisele
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Lesia O. Kurlak
- Stroke Trials Unit (School of Medicine) (L.O.K.), University of Nottingham, United Kingdom
| | - Sampada Kallol
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Christiane Albrecht
- Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.K., C.A.)
| | - Carine Gennari-Moser
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| | - Louise V. Briggs
- Advanced Material Research Group, Faculty of Engineering (L.V.B.), University of Nottingham, United Kingdom
| | | | - Markus G. Mohaupt
- Teaching Hospital Internal Medicine, Lindenhofgruppe, Switzerland (R.K., M.G.M.)
- Department of Nephrology and Hypertension (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
- Department for BioMedical Research (R.K., N.E., C.G.-M., M.G.M.), University of Bern, Switzerland
| |
Collapse
|
2
|
Gündoğdu AÇ, Özyurt R. Resveratrol downregulates ENaCs through the activation of AMPK in human colon cancer cells. Tissue Cell 2023; 82:102071. [PMID: 36965273 DOI: 10.1016/j.tice.2023.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
Epithelial sodium channels (ENaCs) are critically engaged in a number of hallmarks of cancer progression, including proliferation, migration, invasion and apoptosis. Thus, the inhibition of ENaCs possesses therapeutic potential in cancer. Resveratrol, a natural polyphenol with anti-carcinogenic activity, is a potent activator of 5' AMP-activated protein kinase (AMPK) which reduces the abundance of ENaCs in the cell membrane by causing the internalization of the β subunit. However, the effect of resveratrol on ENaCs in cancer cells is unknown. Therefore, in this study, we aimed to investigate the effects of resveratrol on ENaCs in human colon cancer cells HCT116 and HT29. The influences of resveratrol either alone or together with AMPK inhibitor compound C (CC), and ENaC inhibitor amiloride on cell viability were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of phospho-AMPK Thr172 and βENaC in cells were determined by immunofluorescence staining, and the expression of apoptotic markers Caspase-3 and Caspase-9 were analyzed by qRT-PCR. Resveratrol was found to activate AMPK in a dose-dependent manner. Both AMPK activation by resveratrol and ENaC inhibition by amiloride decreased cell viability and increased apoptosis significantly. AMPK activation also reduced βENaC expression in cells. Our results suggest that ENaC inhibition through AMPK activation might be a potential mechanism underlying the anti-cancer effects of resveratrol.
Collapse
Affiliation(s)
- Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkiye.
| | - Rumeysa Özyurt
- Department of Physiology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkiye
| |
Collapse
|
3
|
Nemeth Z, Hildebrandt E, Parsa N, Fleming AB, Wasson R, Pittman K, Bell X, Granger JP, Ryan MJ, Drummond HA. Epithelial sodium channels in macrophage migration and polarization: role of proinflammatory cytokines TNFα and IFNγ. Am J Physiol Regul Integr Comp Physiol 2022; 323:R763-R775. [PMID: 36189990 PMCID: PMC9639769 DOI: 10.1152/ajpregu.00207.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Migration of monocytes-macrophages plays an important role in phagocytosis of pathogens and cellular debris in a variety of pathophysiological conditions. Although epithelial Na+ channels (ENaCs) are required for normal migratory responses in other cell types, their role in macrophage migration signaling is unknown. To address this possibility, we determined whether ENaC message is present in several peripheral blood monocyte cell populations and tissue-resident macrophages in healthy humans using the Human Protein Atlas database (www.proteinatlas.org) and the mouse monocyte cell line RAW 264.7 using RT-PCR. We then determined that selective ENaC inhibition with amiloride inhibited chemotactic migration (∼50%), but not phagocytosis, of the mouse monocyte-macrophage cell line RAW 264.7. Furthermore, we generated a cell line stably expressing an NH2-terminal truncated αENaC to interrupt normal channel trafficking and found it suppressed migration. Prolonged exposure (48 h) of RAW 264.7 cells to proinflammatory cytokines interferon γ (IFNγ) and/or tumor necrosis factor α (TNFα) inhibited RAW 264.7 migration and abolished the amiloride (1 µM)-sensitive component of migration, a finding consistent with ENaC downregulation. To determine if proinflammatory cytokines regulate αENaC protein expression, cells were exposed to proinflammatory cytokines IFNγ (10 ng/mL, last 48 h) and TNFα (10 ng/mL, last 24 h). By Western blot analysis, we found whole cell αENaC protein is reduced ≥50%. Immunofluorescence demonstrated heterogeneous αENaC inhibition. Finally, we found that overnight exposure to amiloride stimulated morphological changes and increased polarization marker expression. Our findings suggest that ENaC may be a critical molecule in macrophage migration and polarization.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicholas Parsa
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam B Fleming
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert Wasson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Katarina Pittman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xavier Bell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Zhao Y, Pasanen M, Rysä J. Placental ion channels: potential target of chemical exposure. Biol Reprod 2022; 108:41-51. [PMID: 36173899 PMCID: PMC9843680 DOI: 10.1093/biolre/ioac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2023] Open
Abstract
The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels, which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal growth, and development.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaana Rysä
- Correspondence: School of Pharmacy, University of Eastern Finland, POB 1627, Kuopio 70211, Finland. Tel: +358403552412; E-mail:
| |
Collapse
|
5
|
Palma AG, Kotsias BA. The Effect of Dynasore Upon the Negative Interaction Between ENaC and CFTR Channels in Xenopus laevis Oocytes. J Membr Biol 2022; 255:61-69. [DOI: 10.1007/s00232-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
|
6
|
Ware AW, Harris JJ, Slatter TL, Cunliffe HE, McDonald FJ. The epithelial sodium channel has a role in breast cancer cell proliferation. Breast Cancer Res Treat 2021; 187:31-43. [PMID: 33630195 DOI: 10.1007/s10549-021-06133-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Breast cancer is the most common cancer affecting women worldwide with half a million associated deaths annually. Despite a huge global effort, the pathways of breast cancer progression are not fully elucidated. Ion channels have recently emerged as novel regulators of cancer cell proliferation and metastasis. The epithelial sodium channel, ENaC, made up of α, β and γ subunits is well known for its role in Na+ reabsorption in epithelia, but a number of novel roles for ENaC have been described, including potential roles in cancer. A role for ENaC in breast cancer, however, has yet to be described. Therefore, the effects of ENaC level and activity on breast cancer proliferation were investigated. METHODS Through the publicly available SCAN-B dataset associations between αENaC mRNA expression and breast cancer subtypes, proliferation markers and epithelial-mesenchymal transition markers (EMT) were assessed. αENaC expression, through overexpression or siRNA-mediated knockdown, and activity, through the ENaC-specific inhibitor amiloride, were altered in MCF7, T47D, BT549, and MDAMB231 breast cancer cells. MTT and EdU cell proliferation assays were used to determine the effect of these manipulations on breast cancer cell proliferation. RESULTS High αENaC mRNA expression was associated with less aggressive and less proliferative breast cancer subtypes and with reduced expression of proliferation markers. Decreased αENaC expression or activity, in the mesenchymal breast cancer cell lines BT549 and MDAMB231, increased breast cancer cell proliferation. Conversely, increased αENaC expression decreased breast cancer cell proliferation. CONCLUSION αENaC expression is associated with a poor prognosis in breast cancer and is a novel regulator of breast cancer cell proliferation. Taken together, these results identify ENaC as a potential future therapeutic target.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joshua J Harris
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Heather E Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
8
|
Djamgoz MBA. Hyponatremia and Cancer Progression: Possible Association with Sodium-Transporting Proteins. Bioelectricity 2020; 2:14-20. [PMID: 34471833 DOI: 10.1089/bioe.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyponatremia, the phenomenon of serum sodium level falling below 135 mmol/L, is seen frequently in cancer patients and has been correlated with poor prognosis. Hyponatremia has classically been attributed to the "syndrome of inappropriate antidiuretic hormone secretion," leading to prolonged fluid retention. However, this is unlikely to be the only mechanism. In this study, we advance the hypothesis that upregulation of various sodium-transporting proteins during the cancer process makes a significant contribution to the pathophysiology of cancer-associated hyponatremia. Such sodium-transporting proteins include voltage-gated sodium channels, especially its hypoxia-promoted persistent current, epithelial sodium channels, and transient receptor potential channels. Thus, hyponatremia follows cancer, whereby drop in blood serum level occurs as a result of uptake of sodium from extracellular fluid by cancer cells. Indeed, the sodium content of cancer cells/tissues is higher than normal. In turn, the rise in the intracellular sodium concentration brings about a range of cellular effects, including extracellular acidification that promotes invasiveness and thus leads to poor prognosis. This perspective offers novel therapies for cancer and the associated hyponatremia.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom.,Biotechnology Research Centre, Cyprus International University, Lefkosa, North Cyprus
| |
Collapse
|
9
|
Leslie TK, James AD, Zaccagna F, Grist JT, Deen S, Kennerley A, Riemer F, Kaggie JD, Gallagher FA, Gilbert FJ, Brackenbury WJ. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2019; 1872:188304. [PMID: 31348974 PMCID: PMC7115894 DOI: 10.1016/j.bbcan.2019.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Aneurin Kennerley
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
10
|
Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother 2019; 117:109092. [DOI: 10.1016/j.biopha.2019.109092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
|
11
|
Morishita K, Watanabe K, Ichijo H. Cell volume regulation in cancer cell migration driven by osmotic water flow. Cancer Sci 2019; 110:2337-2347. [PMID: 31120184 PMCID: PMC6676112 DOI: 10.1111/cas.14079] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the most frequent cause of death for patients with cancer. The main current treatment for cancer metastasis is chemotherapy targeting cancer cells’ ability to proliferate. However, some types of cancer cells show resistance to chemotherapy. Recently, cancer cell migration has become the subject of interest as a novel target of cancer therapy. Cell migration requires many factors, such as the cytoskeleton, cell‐matrix adhesion and cell volume regulation. Here, we focus on cell volume regulation and the role of ion/water transport systems in cell migration. Transport proteins, such as ion channels, ion carriers, and aquaporins, are indispensable for cell volume regulation under steady‐state conditions and during exposure to osmotic stress. Studies from the last ~25 years have revealed that cell volume regulation also plays an important role in the process of cell migration. Water flow in accordance with localized osmotic gradients generated by ion transport contributes to the driving force for cell migration. Moreover, it has been reported that metastatic cancer cells have higher expression of these transport proteins than nonmetastatic cancer cells. Thus, ion/water transport proteins involved in cell volume regulation and cell migration could be novel therapeutic targets for cancer metastasis. In this review, after presenting the importance of ion/water transport systems in cell volume regulation, we discuss the roles of transport proteins in a pathophysiological context, especially in the context of cancer cell migration.
Collapse
Affiliation(s)
- Kazuhiro Morishita
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Machado MS, Rosa FD, Lira MC, Urtreger AJ, Rubio MF, Costas MA. The inflammatory cytokine TNF contributes with RAC3-induced malignant transformation. EXCLI JOURNAL 2018; 17:1030-1042. [PMID: 30585274 PMCID: PMC6298201 DOI: 10.17179/excli2018-1759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
RAC3 is a coactivator of steroid receptors and NF-κB. It is usually overexpressed in several tumors, contributes to maintain cancer stem cells and also to induce them when is overexpressed in non-tumoral cells. In this work, we investigated whether the inflammatory cytokine TNF may contribute to the transforming effects of RAC3 overexpression in the non-tumoral HEK293 cell line. The study model included the HEK293 tumoral transformed cell line constitutively overexpressing RAC3 by stable transfection and control non-tumoral cells transfected with an empty vector. The HeLa and T47D tumoral cells that naturally overexpress RAC3 were used as positive control. We found that TNF potentiated RAC3-induced mesenchymal transition, involving an increased E-Cadherin downregulation, Vimentin and SNAIL upregulation and enhanced migratory behavior. Moreover, concerning the molecular mechanisms by which TNF potentiates the RAC3 transforming action, they involve the IKK activation, which in addition induced the β-Catenin transactivation. Our results demonstrate that although RAC3 overexpression could be a signal strong enough to induce cancer stem cells, the inflammatory microenvironment may be playing a key role contributing to the migratory and invasive phenotype required for metastasis and cancer persistence.
Collapse
Affiliation(s)
- Mileni Soares Machado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Francisco D Rosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - María C Lira
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Av. San Martín 5481, C1417DTB Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - María F Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Mónica A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO Buenos Aires, Argentina.,Member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| |
Collapse
|
13
|
Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ. Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 2018; 45:401-409. [PMID: 29193257 DOI: 10.1111/1440-1681.12900] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Stojadinovic O, Lindley LE, Jozic I, Tomic-Canic M. Mineralocorticoid Receptor Antagonists-A New Sprinkle of Salt and Youth. J Invest Dermatol 2017; 136:1938-1941. [PMID: 27664711 DOI: 10.1016/j.jid.2016.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 01/17/2023]
Abstract
Skin atrophy and impaired cutaneous wound healing are the recognized side effects of topical glucocorticoid (GC) therapy. Although GCs have high affinity for the glucocorticoid receptor, they also bind and activate the mineralocorticoid receptor. In light of this, one can speculate that some of the GC-mediated side effects can be remedied by blocking activation of the mineralocorticoid receptor. Indeed, according to Nguyen et al., local inhibition of the mineralocorticoid receptor via antagonists (spironolactone, canrenoate, and eplerenone) rescues GC-induced delayed epithelialization and accelerates wound closure in diabetic animals by targeting epithelial sodium channels and stimulating keratinocyte proliferation. These findings suggest that the use of mineralocorticoid receptor antagonists coupled with GC therapy may be beneficial in overcoming at least some of the GC-mediated side effects.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Graduate Program in Biomedical Sciences, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Linsey E Lindley
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
15
|
Liu C, Zhu LL, Xu SG, Ji HL, Li XM. ENaC/DEG in Tumor Development and Progression. J Cancer 2016; 7:1888-1891. [PMID: 27698929 PMCID: PMC5039373 DOI: 10.7150/jca.15693] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
The epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, including the acid-sensing ion channels (ASICs), is characterized by a high degree of similarity in structure but highly diverse in physiological functions. These ion channels have been shown to be important in several physiological functions of normal epithelial cells, including salt homeostasis, fluid transportation and cell mobility. There is increasing evidence suggesting that ENaC/DEG channels are critically engaged in cancer cell biology, such as proliferation, migration, invasion and apoptosis, playing a role in tumor development and progression. In this review, we will discuss recent studies showing the role of ENaC and ASIC channels in epithelial cells and its relationship to the oncogenesis.
Collapse
Affiliation(s)
- Cui Liu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Li-Li Zhu
- School of Nursing, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Si-Guang Xu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
| | - Hong-Long Ji
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Xiu-Min Li
- Center for Cancer Research, Xinxiang Medical University, Xinxiang 453003, Henan Province, P. R. China
- Department Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Henan Province, P. R. China
| |
Collapse
|
16
|
The Epithelial Sodium Channel and the Processes of Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675047. [PMID: 27493961 PMCID: PMC4963570 DOI: 10.1155/2016/5675047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.
Collapse
|
17
|
Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2190216. [PMID: 27403419 PMCID: PMC4926023 DOI: 10.1155/2016/2190216] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC) and acid sensitive ionic channel (ASIC). ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+) across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.
Collapse
|
18
|
Rooj AK, Liu Z, McNicholas CM, Fuller CM. Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin. Am J Physiol Cell Physiol 2015; 309:C308-19. [PMID: 26108662 DOI: 10.1152/ajpcell.00036.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022]
Abstract
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiyong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmel M McNicholas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Catherine M Fuller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Xu W, Hong SJ, Zeitchek M, Cooper G, Jia S, Xie P, Qureshi HA, Zhong A, Porterfield MD, Galiano RD, Surmeier DJ, Mustoe TA. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin. J Invest Dermatol 2014; 135:796-806. [PMID: 25371970 DOI: 10.1038/jid.2014.477] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 10/05/2014] [Indexed: 02/03/2023]
Abstract
Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seok Jong Hong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Zeitchek
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Garry Cooper
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shengxian Jia
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Xie
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hannan A Qureshi
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aimei Zhong
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marshall D Porterfield
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Robert D Galiano
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
20
|
Zhou M, Fu J, Huang W, Shen L, Xiao L, Song Y, Liu Y. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: findings from a mouse model and clinical cases of abortion. PLoS One 2014; 9:e99521. [PMID: 24914548 PMCID: PMC4051784 DOI: 10.1371/journal.pone.0099521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/15/2014] [Indexed: 11/23/2022] Open
Abstract
The status of the maternal endometrium is vital in regulating humoral homeostasis and for ensuring embryo implantation. Cystic fibrosis transmembrane conductance regulators (CFTR) and epithelial sodium channel alpha subunits (ENaC-α) play an important role in female reproduction by maintaining humoral and cell homeostasis. However, it is not clear whether the expression levels of CFTR and ENaC-α in the decidual component during early pregnancy are related with early miscarriage. CBA×DBA/2 mouse mating has been widely accepted as a classical model of early miscarriage. The abortion rate associated with this mating was 33.33% in our study. The decidua of abortion-prone CBA female mice (DBA/2 mated) had higher CFTR mRNA and protein expression and lower ENaC-α mRNA and protein expression, compared to normal pregnant CBA mice (BLAB/C mated). Furthermore, increased CFTR expression and decreased ENaC-α expression were observed in the uterine tissue from women with early miscarriage, as compared to those with successful pregnancy. In conclusion, increased CFTR expression and decreased ENaC-α expression in the decidua of early abortion may relate with failure of early pregnancy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- * E-mail:
| | - Licong Shen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Ying Liu
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Warrington JP, Coleman K, Skaggs C, Hosick PA, George EM, Stec DE, Ryan MJ, Granger JP, Drummond HA. Heme oxygenase-1 promotes migration and β-epithelial Na+ channel expression in cytotrophoblasts and ischemic placentas. Am J Physiol Regul Integr Comp Physiol 2014; 306:R641-6. [PMID: 24553299 DOI: 10.1152/ajpregu.00566.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, β-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of β-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether β-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, β-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast β-ENaC expression by 1.5- and 1.8-fold (10 and 50 μM). We then showed that silencing of β-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 μM). Taken together, our results suggest that β-ENaC mediates cytotrophoblast migration and increasing β-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast β-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marino G, Kotsias B. Cystic fibrosis transmembrane regulator (CFTR) in human trophoblast BeWo cells and its relation to cell migration. Placenta 2014; 35:92-8. [DOI: 10.1016/j.placenta.2013.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022]
|
23
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
24
|
Hypotonic Regulation of Mouse Epithelial Sodium Channel in Xenopus laevis Oocytes. J Membr Biol 2013; 246:949-58. [DOI: 10.1007/s00232-013-9598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
25
|
Wang S, He G, Yang Y, Liu Y, Diao R, Sheng K, Liu X, Xu W. Reduced expression of Enac in Placenta tissues of patients with severe preeclampsia is related to compromised trophoblastic cell migration and invasion during pregnancy. PLoS One 2013; 8:e72153. [PMID: 23977235 PMCID: PMC3747050 DOI: 10.1371/journal.pone.0072153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/07/2013] [Indexed: 11/19/2022] Open
Abstract
The purpose of the study is to investigate the expression of epithelial sodium channel (ENaC) in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered ENaC expression and onset of preeclampsia. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot were used to check epithelial sodium channel subunits expression in mRNA and protein level in first term and full term placental tissue. ENaCα specific RNAi were used to knockdown ENaC expression and cell invasion and migration assay were used to check whether reduced expression of ENaC can compromise trophoblast cell function. The result showed that ENaCα was highly expressed in first term placental trophoblast cells; while EnaCβ was highly expressed in full term placenta. Knockdown ENaCα expression by using small interfering RNA reduced the invasive and migration abilities of HTR-8/SVneo cell. Real time-PCR and Western blot analysis showed that the expression levels of ENaCβ were also significantly lower in severe preeclampsia compared with normal pregnancy. It is concluded that the ENaC played an important role in trophoblast cell invasion and migration. Reduced expression and activity of epithelial sodium channel in trophoblast cells may be involved in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Shan Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Liu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ruiying Diao
- Shenzhen Key Lab of Male Reproduction and Genetics, Peking University Shenzhen Hospital, Shenzhen, PR China
| | - Kai Sheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (XL); (WX)
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- * E-mail: (XL); (WX)
| |
Collapse
|
26
|
ENaC contribution to epithelial wound healing is independent of the healing mode and of any increased expression in the channel. Cell Tissue Res 2013; 353:53-64. [DOI: 10.1007/s00441-013-1635-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/05/2013] [Indexed: 12/13/2022]
|
27
|
Yang HY, Charles RP, Hummler E, Baines DL, Isseroff RR. The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes. J Cell Sci 2013; 126:1942-51. [PMID: 23447677 DOI: 10.1242/jcs.113225] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular directional migration in an electric field (galvanotaxis) is one of the mechanisms guiding cell movement in embryogenesis and in skin epidermal repair. The epithelial sodium channel (ENaC), in addition to its function of regulating sodium transport in kidney, has recently been found to modulate cell locomotory speed. Here we tested whether ENaC has an additional function of mediating the directional migration of galvanotaxis in keratinocytes. Genetic depletion of ENaC completely blocks only galvanotaxis and does not decrease migration speed. Overexpression of ENaC is sufficient to drive galvanotaxis in otherwise unresponsive cells. Pharmacologic blockade or maintenance of the open state of ENaC also decreases or increases, respectively, galvanotaxis, suggesting that the channel open state is responsible for the response. Stable lamellipodial extensions formed at the cathodal sides of wild-type cells at the start of galvanotaxis; these were absent in the ENaC knockout keratinocytes, suggesting that ENaC mediates galvanotaxis by generating stable lamellipodia that steer cell migration. We provide evidence that ENaC is required for directional migration of keratinocytes in an electric field, supporting a role for ENaC in skin wound healing.
Collapse
Affiliation(s)
- Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
28
|
Marino G, Kotsias B. Expression of the epithelial sodium channel sensitive to amiloride (ENaC) in normal and preeclamptic human placenta. Placenta 2013; 34:197-200. [DOI: 10.1016/j.placenta.2012.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/22/2012] [Accepted: 11/11/2012] [Indexed: 10/27/2022]
|
29
|
The migratory capacity of human trophoblastic BeWo cells: effects of aldosterone and the epithelial sodium channel. J Membr Biol 2013; 246:243-55. [PMID: 23354843 DOI: 10.1007/s00232-013-9526-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023]
Abstract
Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.
Collapse
|
30
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
31
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
32
|
Rooj AK, McNicholas CM, Bartoszewski R, Bebok Z, Benos DJ, Fuller CM. Glioma-specific cation conductance regulates migration and cell cycle progression. J Biol Chem 2011; 287:4053-65. [PMID: 22130665 DOI: 10.1074/jbc.m111.311688] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we have investigated the role of a glioma-specific cation channel assembled from subunits of the Deg/epithelial sodium channel (ENaC) superfamily, in the regulation of migration and cell cycle progression in glioma cells. Channel inhibition by psalmotoxin-1 (PcTX-1) significantly inhibited migration and proliferation of D54-MG glioma cells. Both PcTX-1 and benzamil, an amiloride analog, caused cell cycle arrest of D54-MG cells in G(0)/G(1) phases (by 30 and 40%, respectively) and reduced cell accumulation in S and G(2)/M phases after 24 h of incubation. Both PcTX-1 and benzamil up-regulated expression of cyclin-dependent kinase inhibitor proteins p21(Cip1) and p27(Kip1). Similar results were obtained in U87MG and primary glioblastoma multiforme cells maintained in primary culture and following knockdown of one of the component subunits, ASIC1. In contrast, knocking down δENaC, which is not a component of the glioma cation channel complex, had no effect on cyclin-dependent kinase inhibitor expression. Phosphorylation of ERK1/2 was also inhibited by PcTX-1, benzamil, and knockdown of ASIC1 but not δENaC in D54MG cells. Our data suggest that a specific cation conductance composed of acid-sensing ion channels and ENaC subunits regulates migration and cell cycle progression in gliomas.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
33
|
Marino GI, Assef YA, Kotsias BA. An outwardly rectifying chloride channel in BeWo choriocarcinoma cell line. Placenta 2010; 31:1093-100. [PMID: 20970187 DOI: 10.1016/j.placenta.2010.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 11/16/2022]
Abstract
In this study, an outwardly rectifying chloride channel was characterized in the trophoblastic cell line BeWo, a human hormone-synthesizing cell which displays many biochemical and morphological properties similar to those reported for the human cytotrophoblast. Ion channel activity was recorded in the cell attached and inside-out configurations with standard patch-clamp technology. In most of the BeWo cells studied, the channel under symmetrical N-methyl-d-glucamine (NMDG-Cl) concentration (Na(+) free solution) in both sides of the membrane exhibited spontaneous activity, an outwardly rectifying current/voltage relationship and single-channel conductances of 15 pS and 48 pS for inwards and outwards currents, respectively. The channel has a low permeability for gluconate with a relative permeability P(gluconate)/P(Cl) of 0.23, and a higher permeability to I(-). The open probability (Po) of the channel exhibited dependence with the applied membrane potential with greater activity at positive pulses. The channel activity was inhibited by the sulphonylurea hypoglycemic agent glibenclamide (50 μM) or by diphenylamine-2-carboxylate (DPC, 500 μM) added to the cytoplasmic side of the patch whereas conductances remained unchanged. The blockade with glibenclamide and DPC was independent of the applied membrane potential. All these results are characteristic of the outwardly rectifying Cl channel (ORCC) found in other types of cells. Neither Po, conductances nor reversal potential (Er) values were affected by the absence of intracellular Ca(2+), suggesting that the channel is not sensitive to Ca(2+).
Collapse
Affiliation(s)
- G I Marino
- Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas A. Lanari. IDIM-CONICET, Universidad de Buenos Aires, C. de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | |
Collapse
|
34
|
Marino GI, Castro-Parodi M, Dietrich V, Damiano AE. High levels of human chorionic gonadotropin (hCG) correlate with increased aquaporin-9 (AQP9) expression in explants from human preeclamptic placenta. Reprod Sci 2010; 17:444-53. [PMID: 20220109 DOI: 10.1177/1933719110361385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trophoblastic abnormalities have a central role in the pathophysiology of preeclampsia, and some placental hormones, such as human chorionic gonadotropin (hCG), could affect the placental function. Here, we hypothesized that the elevated serum levels of hCG may be involved in the increased aquaporin-9 (AQP9) protein expression in preeclamptic placentas via adenosine 3('),5(')-cyclic phosphate (cAMP) pathways. Normal placental explants were cultured with different concentrations of recombinant hCG or 8-Br-cAMP, a potent analogue of cAMP. We evaluated AQP9 protein expression and localization. After both treatments, we localized AQP9 in the apical membrane of syncytiotrophoblast and in the cytoplasm. We also observed a concentration-dependent effect on AQP9 protein expression. In addition, water uptake increased 1.6-fold in explants treated with hCG. Our results suggest that hCG may increase AQP9 protein expression and functionality via cAMP pathways. Although, in preeclamptic placentas high levels of hCG may upregulate AQP9 protein expression, AQP9 functionality was reduced possibly by other factors.
Collapse
Affiliation(s)
- Gabriela I Marino
- Laboratorio de Canales iónicos-Neurofisiología, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires-CONICET, Argentina
| | | | | | | |
Collapse
|