1
|
Rodas F, Vidal-Vidal JA, Herrera D, Brown-Brown DA, Vera D, Veliz J, Püschel P, Erices JI, Sánchez Hinojosa V, Tapia JC, Silva-Pavez E, Quezada-Monrás C, Mendoza-Soto P, Salazar-Onfray F, Carrasco C, Niechi I. Targeting the Endothelin-1 pathway to reduce invasion and chemoresistance in gallbladder cancer cells. Cancer Cell Int 2023; 23:318. [PMID: 38072958 PMCID: PMC10710704 DOI: 10.1186/s12935-023-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
Collapse
Affiliation(s)
- Francisco Rodas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Herrera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Joaquín Veliz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pilar Püschel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José I Erices
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Verónica Sánchez Hinojosa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julio C Tapia
- Laboratorio de transformación celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Claudia Quezada-Monrás
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Mendoza-Soto
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de Valdivia, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
2
|
Hwang CY, Yu SJ, Won JK, Park SM, Noh H, Lee S, Cho EJ, Lee JH, Lee KB, Kim YJ, Suh KS, Yoon JH, Cho KH. Systems analysis identifies endothelin 1 axis blockade for enhancing the anti-tumor effect of multikinase inhibitor. Cancer Gene Ther 2022; 29:845-858. [PMID: 34363028 DOI: 10.1038/s41417-021-00373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Multikinase inhibitors, such as sorafenib, are used for the treatment of advanced carcinomas but the response shows limited efficacy or varies a lot with patients. Here we adopted the systems approach combined with high-throughput data analysis to discover key mechanism embedded in the drug response. When analyzing the transcriptomic data from the Cancer Cell Line Encyclopedia (CCLE) database, endothelin 1 (EDN1) was enriched in cancer cells with low responsiveness to sorafenib. We found that the level of EDN1 is higher in the tissue and blood of hepatocellular carcinoma (HCC) patients showing poor response to sorafenib. In vitro experiment showed that EDN1 not only induces activation of angiogenic-promoting pathways in HCC cells but also stimulates proliferation and migration. Moreover, EDN1 is related with poor responsiveness to sorafenib by mitigating unfolded protein response (UPR), which was validated in both transcriptomic data analysis and in silico simulation. Finally, we found that endothelin receptor B (EDNRB) antagonists can enhance the efficacy of sorafenib in both HCC cells and xenograft mouse models. Our findings provide that EDN1 is a novel diagnostic marker for sorafenib responsiveness in HCC and a basis for testing macitentan, which is currently used for pulmonary artery hypertension, in combination with sorafenib in advanced HCC patients.
Collapse
Affiliation(s)
- Chae Young Hwang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Aventi, Inc., Daejeon, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Kyung Won
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Min Park
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Hyojin Noh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Soobeom Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
3
|
Li B, Zhou M, Wang J, Xu H, Yang M. Suppressing ERK Pathway Impairs Glycochenodeoxycholate-Mediated Survival and Drug-Resistance in Hepatocellular Carcinoma Cells. Front Oncol 2021; 11:663944. [PMID: 34327135 PMCID: PMC8313996 DOI: 10.3389/fonc.2021.663944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Glycochenodeoxycholate (GCDA), a toxic component in bile salts, is involved in carcinogenesis of gastrointestinal tumors. The objective of this research was to study the function of ERK1/2 in the GCDA-mediated survival and drug-resistance in hepatocellular carcinoma cells (HCCs). Firstly, extracellular signal-regulated kinase 1/2 (ERK1/2) was detected extensively expressed in liver cancer cells, and silencing ERK1/2 by RNA interference could suppress GCDA-stimulated survival and promote apoptosis. Furthermore, phosphorylation of endogenous ERK1/2 could be potently stimulated by GCDA in combination with enhanced chemoresistance in QGY-7703 hepatocellular carcinoma cells. The GCDA-mediated proliferation and chemoresistance could be impaired by PD98059, which acted as an inhibitor to block the phosphorylation of ERK1/2. Mechanistically, PD98059 was able to potently suppress GCDA-stimulated nuclear aggregation of ERK1/2 and p-ERK1/2, upregulate pro-survival protein Mcl-1 and downregulate pro-apoptotic protein Bim. The results of this study indicated that disruption of ERK1/2 by blocking phosphorylation or nuclear translocation may put forward new methods for solving the problem of GCDA-related proliferation and drug-resistance in liver cancer treatment.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, National Center for Geriatrics Clinical Research, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Jue Wang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongjuan Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| | - Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, National Health Commission (NHC) Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Yang Y, Mao H, Chen L, Li L. Targeting signal pathways triggered by cyclic peptides in cancer: Current trends and future challenges. Arch Biochem Biophys 2021; 701:108776. [PMID: 33515532 DOI: 10.1016/j.abb.2021.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Cancer is a global health issue that origins thousands of deaths annually worldwide. Cyclic peptides are polypeptide chains which are formed by cyclic sequence of amide bonds between proteinogenic or non-proteinogenic amino acids. Numerous evidences indicate that cyclic peptides are implicated with the occurrence and development of cancer. This review presents the current knowledge about the role of cyclic peptides in cancer, such as liver cancer, colorectal cancer, ovarian cancer, breast cancer as well as prostate cancer. Specifically, the precise molecular mechanisms between cyclic peptides and cancer are elaborated. Some cyclic peptides from nature and synthesis prevent the occurrence and development of cancer. However, some other cyclic peptides including endothelin-1, urotensinⅡand melanin-concentrating hormone deteriorate the pathogenesis of cancer. Given the pleiotropic actions of cyclic peptides, the identification and development of cyclic peptides and their derivates as drug may be a potent therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Kappes L, Amer RL, Sommerlatte S, Bashir G, Plattfaut C, Gieseler F, Gemoll T, Busch H, Altahrawi A, Al-Sbiei A, Haneefa SM, Arafat K, Schimke LF, Khawanky NE, Schulze-Forster K, Heidecke H, Kerstein-Staehle A, Marschner G, Pitann S, Ochs HD, Mueller A, Attoub S, Fernandez-Cabezudo MJ, Riemekasten G, Al-Ramadi BK, Cabral-Marques O. Ambrisentan, an endothelin receptor type A-selective antagonist, inhibits cancer cell migration, invasion, and metastasis. Sci Rep 2020; 10:15931. [PMID: 32985601 PMCID: PMC7522204 DOI: 10.1038/s41598-020-72960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies reported a central role of the endothelin type A receptor (ETAR) in tumor progression leading to the formation of metastasis. Here, we investigated the in vitro and in vivo anti-tumor effects of the FDA-approved ETAR antagonist, Ambrisentan, which is currently used to treat patients with pulmonary arterial hypertension. In vitro, Ambrisentan inhibited both spontaneous and induced migration/invasion capacity of different tumor cells (COLO-357 metastatic pancreatic adenocarcinoma, OvCar3 ovarian carcinoma, MDA-MB-231 breast adenocarcinoma, and HL-60 promyelocytic leukemia). Whole transcriptome analysis using RNAseq indicated Ambrisentan's inhibitory effects on the whole transcriptome of resting and PAR2-activated COLO-357 cells, which tended to normalize to an unstimulated profile. Finally, in a pre-clinical murine model of metastatic breast cancer, treatment with Ambrisentan was effective in decreasing metastasis into the lungs and liver. Importantly, this was associated with a significant enhancement in animal survival. Taken together, our work suggests a new therapeutic application for Ambrisentan in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lucy Kappes
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ruba L Amer
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sabine Sommerlatte
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, Germany
| | - Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute for Experimental Dermatology (LIED) and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, The University of Freiburg, Freiburg, Germany
| | - Kai Schulze-Forster
- CellTrend GmbH, Luckenwalde, Brandenburg, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | | | - Anja Kerstein-Staehle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriele Marschner
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Silke Pitann
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Antje Mueller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, 1730, São Paulo, SP, Brazil.
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil.
| |
Collapse
|
6
|
Elbadry MM, Tharwat M, Mohammad EF, Abdo EF. Diagnostic accuracy of serum endothelin-1 in patients with HCC on top of liver cirrhosis. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00030-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the most common cancers and one of the main causes of cancer-related deaths. As the overall survival of patients with cirrhosis has improved and the global incidence of HCC has continued to increase, strategies for the early detection of HCC are urgently needed for better prognosis. In this study, we aimed to assess the accuracy of endothelin-1 in the diagnosis of HCC in cirrhotic patients in comparison with alpha-fetoprotein (AFP) and whether it could predict its vascular spread. This is a case–control study that included 70 cirrhotic patients with or without hepatocellular carcinoma. Patients were subjected to complete medical history taking, clinical examination and laboratory investigations including serum endothelin-1, alpha-fetoprotein, abdominal ultrasound and Triphasic multi-slice computed tomography (CT; abdomen and pelvis). The outcome results obtained for endothelin-1 were used to assess its diagnostic accuracy in HCC diagnosis and the prediction of presence of vascular spread.
Results
There was a statistically significant increase in serum endothelin-1 in HCC in comparison to cirrhotic patients and normal persons (P value < 0.001). Sensitivity, specificity, and positive and negative predictive values at cut-off point of 5.2 pg/ml for HCC were 90%, 100%, 100%, and 90.9% respectively. There was no statistically significant association between serum endothelin-1 level and portal vein thrombosis in HCC (P value = 0.547).
Conclusion
Endothelin-1 has high sensitivity and specificity for diagnosis of hepatocellular carcinoma. However, it has little value for prediction of its vascular spread.
Collapse
|
7
|
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9:jcm9030824. [PMID: 32197449 PMCID: PMC7141375 DOI: 10.3390/jcm9030824] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin axis, recognized for its vasoconstrictive action, plays a central role in the pathology of pulmonary arterial hypertension (PAH). Treatment with approved endothelin receptor antagonists (ERAs), such as bosentan, ambrisentan, or macitentan, slow down PAH progression and relieves symptoms. Several findings have indicated that endothelin is further involved in the pathogenesis of certain other diseases, making ERAs potentially beneficial in the treatment of various conditions. In addition to PAH, this review summarizes the use and perspectives of ERAs in cancer, renal disease, fibrotic disorders, systemic scleroderma, vasospasm, and pain management. Bosentan has proven to be effective in systemic sclerosis PAH and in decreasing the development of vasospasm-related digital ulcers. The selective ERA clazosentan has been shown to be effective in preventing cerebral vasospasm and delaying ischemic neurological deficits and new infarcts. Furthermore, in the SONAR (Study Of Diabetic Nephropathy With Atrasentan) trial, the selective ERA atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease. These data suggest atrasentan as a new therapy in the treatment of diabetic nephropathy and possibly other renal diseases. Preclinical studies regarding heart failure, cancer, and fibrotic diseases have demonstrated promising effects, but clinical trials have not yet produced measurable results. Nevertheless, the potential benefits of ERAs may not be fully realized.
Collapse
Affiliation(s)
- Frederik C. Enevoldsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
- Correspondence: ; Tel.: +49-391-6721267
| |
Collapse
|
8
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
9
|
Schäfer A, Gjerga E, Welford RWD, Renz I, Lehembre F, Groenen PMA, Saez‐Rodriguez J, Aebersold R, Gstaiger M. Elucidating essential kinases of endothelin signalling by logic modelling of phosphoproteomics data. Mol Syst Biol 2019; 15:e8828. [PMID: 31464372 PMCID: PMC6683863 DOI: 10.15252/msb.20198828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/31/2023] Open
Abstract
Endothelins (EDN) are peptide hormones that activate a GPCR signalling system and contribute to several diseases, including hypertension and cancer. Current knowledge about EDN signalling is fragmentary, and no systems level understanding is available. We investigated phosphoproteomic changes caused by endothelin B receptor (ENDRB) activation in the melanoma cell lines UACC257 and A2058 and built an integrated model of EDNRB signalling from the phosphoproteomics data. More than 5,000 unique phosphopeptides were quantified. EDN induced quantitative changes in more than 800 phosphopeptides, which were all strictly dependent on EDNRB. Activated kinases were identified based on high confidence EDN target sites and validated by Western blot. The data were combined with prior knowledge to construct the first comprehensive logic model of EDN signalling. Among the kinases predicted by the signalling model, AKT, JNK, PKC and AMP could be functionally linked to EDN-induced cell migration. The model contributes to the system-level understanding of the mechanisms underlying the pleiotropic effects of EDN signalling and supports the rational selection of kinase inhibitors for combination treatments with EDN receptor antagonists.
Collapse
Affiliation(s)
- Alexander Schäfer
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Enio Gjerga
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
| | | | - Imke Renz
- Idorsia PharmaceuticalsAllschwilSwitzerland
| | | | | | - Julio Saez‐Rodriguez
- Faculty of MedicineJoint Research Centre for Computational Biomedicine (JRC‐COMBINE)RWTH Aachen UniversityAachenGermany
- Faculty of MedicineInstitute for Computational BiomedicineHeidelberg University HospitalBioquantHeidelberg UniversityHeidelbergGermany
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZürichZürichSwitzerland
| | - Matthias Gstaiger
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Competence Center Personalized Medicine UZH/ETHZürichSwitzerland
| |
Collapse
|
10
|
Camargo-Sosa K, Colanesi S, Müller J, Schulte-Merker S, Stemple D, Patton EE, Kelsh RN. Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genet 2019; 15:e1007941. [PMID: 30811380 PMCID: PMC6392274 DOI: 10.1371/journal.pgen.1007941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.
Collapse
Affiliation(s)
- Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Jeanette Müller
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Derek Stemple
- Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
11
|
Miyazawa H, Kato K, Kobayashi Y, Hirai M, Kimura I, Kitahara H, Noguchi N, Nakamura H, Kawashiri S. Clinicopathological Significance of the ET Axis in Human Oral Squamous Cell Carcinoma. Pathol Oncol Res 2018; 25:1083-1089. [PMID: 30382525 PMCID: PMC6614151 DOI: 10.1007/s12253-018-0514-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/18/2018] [Indexed: 11/25/2022]
Abstract
The interaction between cancer cells and the surrounding microenvironment in malignant tumor tissue is known to be closely associated with cancer cell invasion and proliferation. Endothelin (ET) present in the microenvironment surrounding tumors has been reported to play a role in cancer cell invasion and proliferation by binding to receptors on the cell membrane of cancer cells. Here, we immunohistologically detected the expression of ET-1 and its receptor ETAR in oral squamous cell carcinoma (OSCC) and evaluated the association between the expression of each as well as their co-expression (ET-axis expression) and clinicopathological factors. A significant difference was observed between the invasion pattern as a parameter of cancer cell malignancy and the expressions of ET-1 and ETAR. The survival rates were significantly lower among the patients who were strongly positive for ET-1 and the ETAR-positive patients compared to negative patients. There was also a significant difference between ET-axis expression and the degree of histological differentiation and mode of invasion, and the survival rate of the positive cases was significantly lower than that of the negative cases. Our findings suggested that ET-axis assessments are important for assessing the malignancy of cancer cells and predicting the prognoses of OSCC patients.
Collapse
Affiliation(s)
- Hiroki Miyazawa
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Koroku Kato
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Yutaka Kobayashi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Mariko Hirai
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Iyo Kimura
- Department of Oral and Maxillofacial Surgery, Nanto Municipal Hospital, 938 Inami, Nanto, 932-0211, Japan
| | - Hiroko Kitahara
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Natsuyo Noguchi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
12
|
Peng WT, Sun WY, Li XR, Sun JC, Du JJ, Wei W. Emerging Roles of G Protein-Coupled Receptors in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:ijms19051366. [PMID: 29734668 PMCID: PMC5983678 DOI: 10.3390/ijms19051366] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Among a great variety of cell surface receptors, the largest superfamily is G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors. GPCRs can modulate diverse signal-transduction pathways through G protein-dependent or independent pathways which involve β-arrestins, G protein receptor kinases (GRKs), ion channels, or Src kinases under physiological and pathological conditions. Recent studies have revealed the crucial role of GPCRs in the tumorigenesis and the development of cancer metastasis. We will sum up the functions of GPCRs—particularly those coupled to chemokines, prostaglandin, lysophosphatidic acid, endothelin, catecholamine, and angiotensin—in the proliferation, invasion, metastasis, and angiogenesis of hepatoma cells and the development of hepatocellular carcinoma (HCC) in this review. We also highlight the potential avenues of GPCR-based therapeutics for HCC.
Collapse
Affiliation(s)
- Wen-Ting Peng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Xin-Ran Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Chang Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Jia-Jia Du
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
- Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
- Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China.
| |
Collapse
|
13
|
Qin D, Zhang L, Jin X, Zhao Z, Jiang Y, Meng Z. Effect of Endothelin-1 on proliferation, migration and fibrogenic gene expression in human RPE cells. Peptides 2017. [PMID: 28634054 DOI: 10.1016/j.peptides.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pathology of the fibrotic proliferative vitreoretinopathy (PVR) membrane represents an excessive wound healing response characterised by cells' proliferation, migration and secretion of extracellular matrix molecules (ECMs). Retinal pigment epithelial (RPE) cells are a major cellular component of the fibrotic membrane. Endothelin-1 (ET-1) has been reported to be involved in the development of PVR in vivo research. However, little is known about the role of ET-1 in RPE cells in vitro. In the present study, we investigated the role of ET-1 in the proliferation, migration and secretion of ECMs (such as type I collagen and fibronectin) in RPE cells in vitro. Our results illustrated that ET-1 promoted the proliferation, migration and secretion of ECMs through the protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) signaling pathways in RPE cells in vitro. These findings strongly suggested that ET-1 may play a vital role in the development of PVR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Li Zhang
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Xuemin Jin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Zhaoxia Zhao
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China.
| | - Zijun Meng
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China.
| |
Collapse
|
14
|
Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Sci Rep 2017; 7:45557. [PMID: 28367990 PMCID: PMC5377334 DOI: 10.1038/srep45557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
Liver cancer stem cells (LCSCs) have attracted attention because they cause therapeutic resistance in hepatocellular carcinoma (HCC). Understanding the metabolism of LCSCs can be a key to developing therapeutic strategy, but metabolic characteristics have not yet been studied. Here, we systematically analyzed and compared the global metabolic phenotype between LCSCs and non-LCSCs using transcriptome and metabolome data. We also reconstructed genome-scale metabolic models (GEMs) for LCSC and non-LCSC to comparatively examine differences in their metabolism at genome-scale. We demonstrated that LCSCs exhibited an increased proliferation rate through enhancing glycolysis compared with non-LCSCs. We also confirmed that MYC, a central point of regulation in cancer metabolism, was significantly up-regulated in LCSCs compared with non-LCSCs. Moreover, LCSCs tend to have less active fatty acid oxidation. In this study, the metabolic characteristics of LCSCs were identified using integrative systems analysis, and these characteristics could be potential cures for the resistance of liver cancer cells to anticancer treatments.
Collapse
|