1
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
2
|
Usman A, Patterson AJ, Yuan J, Cluroe A, Patterson I, Graves MJ, Gillard JH, Sadat U. Ferumoxytol-enhanced three-dimensional magnetic resonance imaging of carotid atheroma- a feasibility and temporal dependence study. Sci Rep 2020; 10:1808. [PMID: 32020031 PMCID: PMC7000763 DOI: 10.1038/s41598-020-58708-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/01/2020] [Indexed: 12/25/2022] Open
Abstract
Ferumoxytol is an ultrasmall super paramagnetic particles of iron oxide (USPIO) agent recently used for magnetic resonance (MR) vascular imaging. Other USPIOs have been previously used for assessing inflammation within atheroma. We aim to assess feasibility of ferumoxytol in imaging carotid atheroma (with histological assessment); and the optimum MR imaging time to detect maximum quantitative signal change post-ferumoxytol infusion. Ten patients with carotid artery disease underwent high-resolution MR imaging of their carotid arteries on a 1.5 T MR system. MR imaging was performed before and at 24, 48, 72 and 96 hrs post ferumoxytol infusion. Optimal ferumoxytol uptake time was evaluated by quantitative relaxometry maps indicating the difference in T2* (ΔT2*) and T2 (ΔT2) between baseline and post-Ferumoxytol MR imaging using 3D DANTE MEFGRE qT2*w and iMSDE black-blood qT2w sequences respectively. 20 patients in total (10 symptomatic and 10 with asymptomatic carotid artery disease) had ferumoxytol-enhanced MR imaging at the optimal imaging window. 69 carotid MR imaging studies were completed. Ferumoxytol uptake (determined by a decrease in ΔT2* and ΔT2) was identified in all carotid plaques (symptomatic and asymptomatic). Maximum quantitative decrease in ΔT2* (10.4 [3.5-16.2] ms, p < 0.001) and ΔT2 (13.4 [6.2-18.9] ms; p = 0.001) was found on carotid MR imaging at 48 hrs following the ferumoxytol infusion. Ferumoxytol uptake by carotid plaques was assessed by histopathological analysis of excised atheroma. Ferumoxytol-enhanced MR imaging using quantitative 3D MR pulse sequences allows assessment of inflammation within carotid atheroma in symptomatic and asymptomatic patients. The optimum MR imaging time for carotid atheroma is 48 hrs after its administration.
Collapse
Affiliation(s)
- Ammara Usman
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrew J Patterson
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jianmin Yuan
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Alison Cluroe
- Department of Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Ilse Patterson
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | - Umar Sadat
- University Department of Surgery, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
3
|
Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular Imaging in Ischemic Heart Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:31. [PMID: 31281564 PMCID: PMC6557873 DOI: 10.1007/s12410-019-9500-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in ischemic heart disease and after myocardial infarction non-invasively. Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simultaneously, which is not possible from a single imaging session. Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and after myocardial infarction using PET and MRI. We also describe the different contrast agents that have been developed to image the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling, cardiac repair, and future outcome. We also focus on clinical translation of some of the novel contrast agents that have been tested in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Iakovos Theodoulou
- 2Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Imran Rashid
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Reza Hajhosseiny
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Alkystis Phinikaridou
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Rene M Botnar
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK.,3Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Saxena A, Ng EYK, Lim ST. Imaging modalities to diagnose carotid artery stenosis: progress and prospect. Biomed Eng Online 2019; 18:66. [PMID: 31138235 PMCID: PMC6537161 DOI: 10.1186/s12938-019-0685-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the past few decades, imaging has been developed to a high level of sophistication. Improvements from one-dimension (1D) to 2D images, and from 2D images to 3D models, have revolutionized the field of imaging. This not only helps in diagnosing various critical and fatal diseases in the early stages but also contributes to making informed clinical decisions on the follow-up treatment profile. Carotid artery stenosis (CAS) may potentially cause debilitating stroke, and its accurate early detection is therefore important. In this paper, the technical development of various CAS diagnosis imaging modalities and its impact on the clinical efficacy is thoroughly reviewed. These imaging modalities include duplex ultrasound (DUS), computed tomography angiography (CTA) and magnetic resonance angiography (MRA). For each of the imaging modalities considered, imaging methodology (principle), critical imaging parameters, and the extent of imaging the vulnerable plaque are discussed. DUS is usually the initial recommended CAS diagnostic examination. However, for the therapeutic intervention, either MRA or CTA is recommended for confirmation, and for added information on intracranial cerebral circulation and aortic arch condition for procedural planning. Over the past few decades, the focus of CAS diagnosis has also shifted from pure stenosis quantification to plaque characterization. This has led to further advancement in the existing imaging tools and development of other potential imaging tools like Optical coherence tomography (OCT), photoacoustic tomography (PAT), and infrared (IR) thermography.
Collapse
Affiliation(s)
- Ashish Saxena
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore
| | - Eddie Yin Kwee Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N3, Singapore, 639798, Singapore.
| | - Soo Teik Lim
- Department of Cardiology, National Heart Center Singapore, 5 Hospital Dr, Singapore, 169609, Singapore
| |
Collapse
|
5
|
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018; 6:237. [PMID: 29988578 PMCID: PMC6026678 DOI: 10.3389/fchem.2018.00237] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 μm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Maritim S, Coman D, Huang Y, Rao JU, Walsh JJ, Hyder F. Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3849373. [PMID: 29362558 PMCID: PMC5736903 DOI: 10.1155/2017/3849373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.
Collapse
Affiliation(s)
- Samuel Maritim
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J. Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
|
8
|
Scharlach C, Kratz H, Wiekhorst F, Warmuth C, Schnorr J, Genter G, Ebert M, Mueller S, Schellenberger E. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1085-95. [PMID: 25659644 DOI: 10.1016/j.nano.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022]
Abstract
UNLABELLED To further optimize citrate-stabilized VSOPs (very small iron oxide particles, developed for MR angiography) for identification of atherosclerotic plaques, we modified their surface during synthesis using eight other acids for electrostatic stabilization. This approach preserves effective production for clinical application. Five particles were suitable to be investigated in targeting plaques of apoE(-/-) mice. Accumulation was evaluated by ex vivo MRI, TEM, and quantitatively by magnetic particle spectroscopy (MPS). Citric- (VSOP), etidronic-, tartaric-, and malic-acid-coated particles accumulated in atherosclerotic plaques with highest accumulation for VSOP (0.2‰ of injected dose). Targets were phagolysosomes of macrophages and of altered endothelial cells. In vivo MRI with VSOP allowed for definite plaque identification. Prussian blue staining revealed abundant endogenous iron in plaques, indistinguishable from particle iron. In apoE(-/-) mice, VSOPs are still the best anionic iron oxide particles for imaging atherosclerotic plaques. MPS allows for quantification of superparamagnetic nanoparticles in such small specimens. FROM THE CLINICAL EDITOR The presence of vulnerable plaques in arteries is important for the prediction of acute coronary events. VSOP (very small iron oxide particles, developed for MR angiography) have been shown to be very sensitive in identifying atherosclerotic plaques. The authors studied here further modification to the surface of VSOP during synthesis and compared their efficacy.
Collapse
Affiliation(s)
| | - Harald Kratz
- Department of Radiology, Charité, Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Jörg Schnorr
- Department of Radiology, Charité, Berlin, Germany
| | | | - Monika Ebert
- Department of Radiology, Charité, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité, Berlin, Germany
| | | |
Collapse
|
9
|
The Great Migration: How MRI Replaces Traditional Imaging Techniques for the Characterization of Atherosclerosis. CURRENT RADIOLOGY REPORTS 2014. [DOI: 10.1007/s40134-013-0040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Makowski MR, Botnar RM. MR imaging of the arterial vessel wall: molecular imaging from bench to bedside. Radiology 2013; 269:34-51. [PMID: 24062561 DOI: 10.1148/radiol.13102336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular diseases remain the leading cause of morbidity and mortality in the Western world and developing countries. In clinical practice, in vivo characterization of atherosclerotic lesions causing myocardial infarction, ischemic stroke, and other complications remains challenging. Imaging methods, limited to the assessment luminal stenosis, are the current reference standard for the assessment of clinically significant coronary and carotid artery disease and the guidance of treatment. These techniques do not allow distinction between stable and potentially vulnerable atherosclerotic plaque. Magnetic resonance (MR) imaging is a modality well suited for visualization and characterization of the relatively thin arterial vessel wall, because it allows imaging with high spatial resolution and excellent soft-tissue contrast. In clinical practice, atherosclerotic plaque components of the carotid artery and aorta may be differentiated and characterized by using unenhanced vessel wall MR imaging. Additional information can be gained by using clinically approved nonspecific contrast agents. With the advent of targeted MR contrast agents, which enhance specific molecules or cells, pathologic processes can be visualized at a molecular level with high spatial resolution. In this article, the pathophysiologic changes of the arterial vessel wall underlying the development of atherosclerosis will be first reviewed. Then basic principles and properties of molecular MR imaging contrast agents will be introduced. Additionally, recent advances in preclinical molecular vessel wall imaging will be reviewed. Finally, the clinical feasibility of arterial vessel wall imaging at unenhanced and contrast material-enhanced MR imaging of the aortic, carotid, and coronary vessel wall will be discussed.
Collapse
Affiliation(s)
- Marcus R Makowski
- Division of Imaging Sciences, BHF Centre of Excellence, Wellcome Trust and EPSRC Medical Engineering Center, and NIHR Biomedical Research Centre, King's College London, 4th Floor, Lambeth Wing, St Thomas Hospital, London SE1 7EH, England
| | | |
Collapse
|
11
|
Rosa GM, Bauckneht M, Masoero G, Mach F, Quercioli A, Seitun S, Balbi M, Brunelli C, Parodi A, Nencioni A, Vuilleumier N, Montecucco F. The vulnerable coronary plaque: update on imaging technologies. Thromb Haemost 2013; 110:706-22. [PMID: 23803753 DOI: 10.1160/th13-02-0121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/01/2013] [Indexed: 12/21/2022]
Abstract
Several studies have been carried out on vulnerable plaque as the main culprit for ischaemic cardiac events. Historically, the most important diagnostic technique for studying coronary atherosclerotic disease was to determine the residual luminal diameter by angiographic measurement of the stenosis. However, it has become clear that vulnerable plaque rupture as well as thrombosis, rather than stenosis, triggers most acute ischaemic events and that the quantification of risk based merely on severity of the arterial stenosis is not sufficient. In the last decades, substantial progresses have been made on optimisation of techniques detecting the arterial wall morphology, plaque composition and inflammation. To date, the use of a single technique is not recommended to precisely identify the progression of the atherosclerotic process in human beings. In contrast, the integration of data that can be derived from multiple methods might improve our knowledge about plaque destabilisation. The aim of this narrative review is to update evidence on the accuracy of the currently available non-invasive and invasive imaging techniques in identifying components and morphologic characteristics associated with coronary plaque vulnerability.
Collapse
Affiliation(s)
- Gian Marco Rosa
- Fabrizio Montecucco, MD, PhD, Division of Cardiology, Faculty of Medicine, Geneva University Hospital, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland, Tel.: +41 22 372 71 92, Fax: +41 22 382 72 45, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wagner S, Schnorr J, Ludwig A, Stangl V, Ebert M, Hamm B, Taupitz M. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization. Int J Nanomedicine 2013; 8:767-79. [PMID: 23450179 PMCID: PMC3581358 DOI: 10.2147/ijn.s38702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the suitability of citrate-coated very small superparamagnetic iron oxide particles (VSOP) as a contrast agent for identifying inflammation in atherosclerotic lesions using magnetic resonance imaging (MRI). METHODS AND RESULTS VSOP, which have already been evaluated as a blood pool contrast agent for MR angiography in human clinical trials, were investigated in Watanabe heritable hyper-lipidemic rabbits to determine to what extent their accumulation in atherosclerotic lesions is a function of macrophage density and other characteristics of progressive atherosclerotic plaques. In advanced atherosclerotic lesions, a significant MRI signal loss was found within 1 hour after intravenous administration of VSOP at the intended clinical dose of 0.05 mmol Fe/kg. Histological examinations confirmed correlations between the loss of MRI signal in the vessel wall and the presence of Prussian blue-stained iron colocalized with macrophages in the plaque cap, but surprisingly also with calcifying microvesicles at the intimomedial interface. Critical electrolyte magnesium chloride concentration in combination with Alcian blue stain indicates that highly sulfated glycosaminoglycans are a major constituent of these calcifying microvesicles, which may serve as the key molecules for binding VSOP due to their highly complexing properties. CONCLUSION Calcifying microvesicles and macrophages are the targets for intravenously injected VSOP in atherosclerotic plaques, suggesting that VSOP-enhanced MRI may render clinically relevant information on the composition and inflammatory activity of progressive atherosclerotic lesions at risk of destabilization.
Collapse
Affiliation(s)
- Susanne Wagner
- Department of Radiology, Section of Experimental Radiology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, and Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Sigovan M, Canet-Soulas E. Molecular MRI of Atherosclerosis with USPIO. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology 2012; 264:349-68. [PMID: 22821695 DOI: 10.1148/radiol.12111703] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular imaging is expected to have a major impact on the early diagnosis of diseases and disease monitoring in the next decade. Traditionally, nuclear imaging techniques have been the mainstay of molecular imaging in the clinical arena. However, with continued development of molecularly targeted contrast agents for nonnuclear imaging techniques such as magnetic resonance (MR), computed tomography (CT), and ultrasonography (US), the spectrum of clinical molecular imaging applications is expanding. In the second part of this review series, an overview of applications of molecular MR imaging-, CT-, and US-based imaging strategies that show promise for clinical translation is presented, and key challenges that need to be addressed to successfully translate these promising techniques in the future are discussed. © RSNA, 2012.
Collapse
Affiliation(s)
- Moritz F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
15
|
Ultrasmall superparamagnetic iron oxides enhanced MR imaging in rats with experimentally induced endometriosis. Magn Reson Imaging 2012; 30:860-8. [DOI: 10.1016/j.mri.2012.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/07/2011] [Accepted: 02/17/2012] [Indexed: 11/20/2022]
|
16
|
Camici PG, Rimoldi OE, Gaemperli O, Libby P. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J 2012; 33:1309-17. [PMID: 22507974 DOI: 10.1093/eurheartj/ehs067] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last several decades, basic cardiovascular research has significantly enhanced our understanding of pathobiological processes leading to formation, progression, and complications of atherosclerotic plaques. By harnessing these advances in cardiovascular biology, imaging has advanced beyond its traditional anatomical domains to a tool that permits probing of particular molecular structures to image cellular behaviour and metabolic pathways involved in atherosclerosis. From the nascent atherosclerotic plaque to the death of inflammatory cells, several potential molecular and micro-anatomical targets for imaging with particular selective imaging probes and with a variety of imaging modalities have emerged from preclinical and animal investigations. Yet, substantive barriers stand between experimental use and wide clinical application of these novel imaging strategies. Each of the imaging modalities described herein faces hurdles-for example, sensitivity, resolution, radiation exposure, reproducibility, availability, standardization, or costs. This review summarizes the published literature reporting on functional imaging of vascular inflammation in atherosclerotic plaques emphasizing those techniques that have the greatest and/or most immediate potential for broad application in clinical practice. The prospective evaluation of these techniques and standardization of protocols by multinational networks could serve to determine their added value in clinical practice and guide their development and deployment.
Collapse
Affiliation(s)
- Paolo G Camici
- Vita-Salute University and Scientific Institute San Raffaele, Via Olgettina 60, Milan, Italy.
| | | | | | | |
Collapse
|
17
|
Wu A, Paunesku T, Zhang Z, Vogt S, Lai B, Maser J, Yaghmai V, Li D, Omary RA, Woloschak GE. A Multimodal Nanocomposite for Biomedical Imaging. AIP CONFERENCE PROCEEDINGS 2011; 1365:379. [PMID: 24817775 PMCID: PMC4012782 DOI: 10.1063/1.3625382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A multimodal nanocomposite was designed, synthesized with super-paramagnetic core (CoFe2O4), noble metal corona (Au), and semiconductor shell (TiO2). The sizes of core, core-corona, and core-corona-shell particles were determined by TEM. This multimodal nanocrystal showed promise as a contrast agent for two of the most widely used biomedical imaging techniques: magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Finally, these nanocomposites were coated with a peptide SN-50. This led to their ready uptake by the cultured cells and targeted the nanocomposites to the pores of nuclear membrane. Inside cells, this nanocomposite retained its integrity as shown by X-ray fluorescence microscopy (XFM). Inside cells imaged by XFM we found the complex elemental signature of nanoconjugates (Ti-Co-Fe-Au) always co-registered in the 2D elemental map of the cell.
Collapse
Affiliation(s)
- Aiguo Wu
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, No. 519 Zhuangshi Rd. Zhenhai District, Ningbo City, Zheijang Province, 315201 P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Stefan Vogt
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Barry Lai
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Jörg Maser
- X-Ray Operations and Research Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Debiao Li
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Reed A Omary
- Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA ; Department of Radiology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|
18
|
Young VEL, Sadat U, Gillard JH. Noninvasive carotid artery imaging with a focus on the vulnerable plaque. Neuroimaging Clin N Am 2011; 21:391-405, xi-xii. [PMID: 21640306 DOI: 10.1016/j.nic.2011.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Currently carotid imaging has 2 main focuses: assessment of luminal stenosis and classification of atherosclerotic plaque characteristics. Measurement of the degree of stenosis is the main assessment used for current treatment decision making, but an evolving idea that is now driving imaging is the concept of vulnerable plaque, which is where plaque components are identified and used to define which plaques are at high risk of causing symptoms compared with those at low risk. This review article covers the methods used for noninvasive assessment of carotid luminal stenosis and the options available for plaque imaging.
Collapse
Affiliation(s)
- V E L Young
- University Department of Radiology, Addenbrookes Hospital, Box 218, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | |
Collapse
|
19
|
Young VEL, Degnan AJ, Gillard JH. Advances in contrast media for vascular imaging of atherosclerosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, Heider P. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2010; 27:901-12. [PMID: 20972832 DOI: 10.1007/s10554-010-9736-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
To evaluate ultra small superparamagnetic iron oxide particles (USPIO) enhanced magnetic resonance (MR) imaging for characterization of atherosclerotic carotid plaques by assessing vascularity and plaque inflammation, besides contrast-enhanced MR angiography (CE-MRA) of the carotid artery stenosis. Twelve patients with severe carotid artery stenosis, scheduled for endarterectomy, underwent MRI of the carotid artery bifurcation using SHU 555 C at a dose of 40 μmol Fe/kg BW. The MR imaging protocol comprised pre- and post-contrast T2*-w, a first-pass CE-MRA and dynamic T1-w sequences. For quantitative data analysis, the signal intensities (SI) were measured and SNR-data (SNR = SI(blood/plaque/bone marrow)/standard deviation(noise)) as well as ΔSI-data (SNR(post)-SNR(pre)) were calculated. In addition, two radiologists rated the diagnostic performance of first-pass MRA according to a four level decision scale. Staining of anti-dextran (SHU 555 C) and anti-CD68 (macrophages) was performed for immunohistological confirmation. Plaque sections with a T2*-w signal decline (intracellular USPIO accumulation in macrophages) showed significantly changes (mean -14%, 95% CI, -5 to -20%; P < 0.01) and corresponding plaque regions had significantly higher (15.15 ± 1.76 vs. 5.22 ± 1.50; P < 0.01) T1-w enhancement data (global estimation of vascularity). The first-pass MRA of the supra-aortal vessels provided images of diagnostic quality. Representative immunohistology sections revealed colocalization of dextran- and CD68-immunoreactive cells. USPIO-enhanced MRI is feasible for in vivo assessment of vascularity and macrophage content in atherosclerotic carotid plaques, determining an association of these potential imaging biomarkers of plaque vulnerability. Diagnostic MRA of the supra-aortal vessels can be imaged additionally with a single administration of SHU 555 C.
Collapse
Affiliation(s)
- Stephan Metz
- Department of Diagnostic Radiology, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen W, Cormode DP, Fayad ZA, Mulder WJM. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:146-161. [PMID: 20967875 DOI: 10.1002/wnan.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in nanoparticle contrast agents for molecular imaging have made magnetic resonance imaging a promising modality for noninvasive visualization and assessment of vascular and cardiac disease processes. This review provides a description of the various nanoparticles exploited for imaging cardiovascular targets. Nanoparticle probes detecting inflammation, apoptosis, extracellular matrix, and angiogenesis may provide tools for assessing the risk of progressive vascular dysfunction and heart failure. The utility of nanoparticles as multimodal probes and/or theranostic agents has also been investigated. Although clinical application of these nanoparticles is largely unexplored, the potential for enhancing disease diagnosis and treatment is considerable.
Collapse
Affiliation(s)
- Wei Chen
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - David P Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY, USA.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY, USA.,Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging of abdominal aortic aneurysms--a feasibility study. Eur J Vasc Endovasc Surg 2010; 41:167-74. [PMID: 20869889 DOI: 10.1016/j.ejvs.2010.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Abdominal aortic aneurysms (AAAs), being predominantly atherosclerotic in nature, have underlying inflammatory activity. As it is well established that ultrasmall superparamagnetic iron oxide (USPIO) particles accumulate in the macrophages within atheromatous lesions, USPIO-enhanced magnetic resonance (MR) imaging can be potentially effective in the quantification of the associated inflammatory processes. METHODS A total of 14 patients underwent USPIO-enhanced MR imaging using a 1.5T-MR system. Quantitative T(2)* and T(2) relaxation time data were acquired before and 36 h after UPSIO infusion at identical AAA locations. The pre- and post-USPIO-infusion relaxation times (T(2)(∗) and T(2)) were quantified and the correlation between pre- and post-USPIO infusion T(2)* and T(2) values was investigated. RESULTS There was a significant difference between pre- and post-infusion T(2)* and T(2) values (both respective p-values = 0.005). A significant correlation between T(2)* and T(2) values post-USPIO infusion was observed (r = 0.90, p < 0.001), which indicates USPIO uptake by the aortic wall. CONCLUSIONS Aortic wall inflammation using USPIO-enhanced MR imaging is feasible. Use of quantitative T(2) and T(2)* pulse sequences provides a quantitative method for assessing USPIO uptake by the aortic wall.
Collapse
|
23
|
Molecular MRI of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010. [DOI: 10.1007/s12410-010-9006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Dong L, Kerwin WS, Ferguson MS, Li R, Wang J, Chen H, Canton G, Hatsukami TS, Yuan C. Cardiovascular magnetic resonance in carotid atherosclerotic disease. J Cardiovasc Magn Reson 2009; 11:53. [PMID: 20003520 PMCID: PMC2806867 DOI: 10.1186/1532-429x-11-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/15/2009] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease affecting many vascular beds. Disease progression leads to acute cardiovascular events such as myocardial infarction, stroke and death. The diseased carotid alone is responsible for one third of the 700,000 new or recurrent strokes occurring yearly in the United States. Imaging plays an important role in the management of atherosclerosis, and cardiovascular magnetic resonance (CMR) of the carotid vessel wall is one promising modality in the evaluation of patients with carotid atherosclerotic disease. Advances in carotid vessel wall CMR allow comprehensive assessment of morphology inside the wall, contributing substantial disease-specific information beyond luminal stenosis. Although carotid vessel wall CMR has not been widely used to screen for carotid atherosclerotic disease, many trials support its potential for this indication. This review summarizes the current state of knowledge regarding carotid vessel wall CMR and its potential clinical application for management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Li Dong
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - William S Kerwin
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Rui Li
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, USA
| | - Huijun Chen
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Gador Canton
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|