1
|
Klistorner S, Barnett MH, Wang C, Parratt J, Yiannikas C, Klistorner A. Longitudinal enlargement of choroid plexus is associated with chronic lesion expansion and neurodegeneration in RRMS patients. Mult Scler 2024; 30:496-504. [PMID: 38318807 PMCID: PMC11010552 DOI: 10.1177/13524585241228423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE We explored dynamic changes in the choroid plexus (CP) in patients with relapsing-remitting multiple sclerosis (RRMS) and assessed its relationship with chronic lesion expansion and atrophy in various brain compartments. METHODS Fifty-seven RRMS patients were annually assessed for a minimum of 48 months with 3D FLAIR, pre- and post-contrast 3D T1 and diffusion-weighted magnetic resonance imaging (MRI). The CP was manually segmented at baseline and last follow-up. RESULTS The volume of CP significantly increased by 1.4% annually. However, the extent of CP enlargement varied considerably among individuals (ranging from -3.6 to 150.8 mm3 or -0.2% to 6.3%). The magnitude of CP enlargement significantly correlated with central (r = 0.70, p < 0.001) and total brain atrophy (r = -0.57, p < 0.001), white (r = -0.61, p < 0.001) and deep grey matter atrophy (r = -0.60, p < 0.001). Progressive CP enlargement was significantly associated with the volume and extent of chronic lesion expansion (r = 0.60, p < 0.001), but not with the number or volume of new lesions. CONCLUSION This study provides evidence of progressive CP enlargement in patients with RRMS. Our findings also demonstrate that enlargement of the CP volume is linked to the expansion of chronic lesions and neurodegeneration of periventricular white and grey matter in RRMS patients.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael H Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
3
|
Ricigliano VAG, Stankoff B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr Opin Neurol 2023; 36:214-221. [PMID: 37078651 DOI: 10.1097/wco.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, Pitié-Salpêtrière Hospital
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, St Antoine Hospital, APHP-Sorbonne, Paris, France
| |
Collapse
|
4
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
5
|
Muthuraman M, Oshaghi M, Fleischer V, Ciolac D, Othman A, Meuth S, Gonzalez-Escamilla G, Groppa S. Choroid plexus imaging to track neuroinflammation – a translational model for mouse and human studies. Neural Regen Res 2023; 18:521-522. [DOI: 10.4103/1673-5374.346471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Choi JD, Moon Y, Kim HJ, Yim Y, Lee S, Moon WJ. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum. Radiology 2022; 304:635-645. [PMID: 35579521 DOI: 10.1148/radiol.212400] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Mounting evidence suggests that the choroid plexus (CP) plays an important role in the pathophysiology of Alzheimer disease (AD), but its imaging profile in cognitive impairment remains unclear. Purpose To evaluate CP volume, permeability, and susceptibility by using MRI in patients at various stages of cognitive impairment. Materials and Methods This retrospective study evaluated patients with cognitive symptoms who underwent 3.0-T MRI of the brain, including dynamic contrast-enhanced (DCE) imaging and quantitative susceptibility mapping (QSM), between January 2013 and May 2020. CP volume was automatically segmented using three-dimensional T1-weighted sequences; the volume transfer constant (ie, Ktrans) and fractional plasma volume (ie, Vp) were determined using DCE MRI, and susceptibility was assessed using QSM. The effects of CP volume, expressed as the ratio to intracranial volume, on cognition were evaluated using multivariable linear regression adjusted for age, sex, education, apolipoprotein E ε4 allele status, and volumetric measures. Results A total of 532 patients with cognitive symptoms (mean age, 72 years ± 9 [SD]; 388 women) were included: 78 with subjective cognitive impairment (SCI), 158 with early mild cognitive impairment (MCI), 149 with late MCI, and 147 with AD. Among these, 132 patients underwent DCE MRI and QSM. CP volume was greater in patients at more severe stages (ratio of intracranial volume × 103: 0.9 ± 0.3 for SCI, 1.0 ± 0.3 for early MCI, 1.1 ± 0.3 for late MCI, and 1.3 ± 0.4 for AD; P < .001). Lower Ktrans (r = -0.19; P = .03) and Vp (r = -0.20; P = .02) were negatively associated with CP volume; susceptibility was not (r = 0.15; P = .10). CP volume was negatively associated with memory (B = -0.67; standard error of the mean [SEM], 0.21; P = .01), executive function (B = -0.90; SEM, 0.31; P = .01), and global cognition (B = -0.82; SEM, 0.32; P = .01). Conclusion Among patients with cognitive symptoms, larger choroid plexus volume was associated with severity of cognitive impairment in the Alzheimer disease spectrum. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Chiang in this issue.
Collapse
Affiliation(s)
- Jong Duck Choi
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Yeonsil Moon
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Hee-Jin Kim
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Younghee Yim
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Subin Lee
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| | - Won-Jin Moon
- From the Departments of Radiology (J.D.C., W.J.M.) and Neurology (Y.M.), Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Hwayang-dong, Gwangjin-gu, Seoul 05030, Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea (Y.M., W.J.M.); Department of Neurology, Hanyang University Hospital, Hanyang University School of Medicine, Seoul, Korea (H.J.K.); Department of Radiology, Chung-Ang University Hospital, Chung-Ang University School of Medicine, Seoul, Korea (Y.Y.); and Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea (S.L.)
| |
Collapse
|
7
|
Anderson VC, Tagge IJ, Doud A, Li X, Springer CS, Quinn JF, Kaye JA, Wild KV, Rooney WD. DCE-MRI of Brain Fluid Barriers: In Vivo Water Cycling at the Human Choroid Plexus. Tissue Barriers 2021; 10:1963143. [PMID: 34542012 DOI: 10.1080/21688370.2021.1963143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Metabolic deficits at brain-fluid barriers are an increasingly recognized feature of cognitive decline in older adults. At the blood-cerebrospinal fluid barrier, water is transported across the choroid plexus (CP) epithelium against large osmotic gradients via processes tightly coupled to activity of the sodium/potassium pump. Here, we quantify CP homeostatic water exchange using dynamic contrast-enhanced MRI and investigate the association of the water efflux rate constant (kco) with cognitive dysfunction in older individuals. Temporal changes in the longitudinal relaxation rate constant (R1) after contrast agent bolus injection were measured in a CP region of interest in 11 participants with mild cognitive dysfunction [CI; 73 ± 6 years] and 28 healthy controls [CN; 72 ± 7 years]. kco was determined from a modified two-site pharmacokinetic exchange analysis of the R1 time-course. Ktrans, a measure of contrast agent extravasation to the interstitial space was also determined. Cognitive function was assessed by neuropsychological test performance. kco averages 5.8 ± 2.7 s-1 in CN individuals and is reduced by 2.4 s-1 [ca. 40%] in CI subjects. Significant associations of kco with global cognition and multiple cognitive domains are observed. Ktrans averages 0.13 ± 0.07 min-1 and declines with age [-0.006 ± 0.002 min-1 yr-1], but shows no difference between CI and CN individuals or association with cognitive performance. Our findings suggest that the CP water efflux rate constant is associated with cognitive dysfunction and shows an age-related decline in later life, consistent with the metabolic disturbances that characterize brain aging.
Collapse
Affiliation(s)
- Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Ian J Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Doud
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Katherine V Wild
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong Z, Khattar N, Egan JM, Bouhrara M. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. [PMID: 34603011 PMCID: PMC8485051 DOI: 10.3389/fnagi.2021.734992] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited. In this cross-sectional study, we investigated age and sex differences in the CP structure and function using advanced quantitative magnetic resonance imaging methodology in a large cohort (n = 155) of cognitively unimpaired individuals over a wide age range between 21 and 94 years. Our analysis included volumetric measurements, relaxometry measures (T 1 and T 2), diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) and mean diffusivity (MD), as well as measures of cerebral blood flow (CBF). Our results revealed that CP volume was increasing with advancing age. We conjecture that this novel observation is likely attributed to alterations in the CP microstructure or function as well as to ventriculomegaly. Indeed, we also found that CBF was lower with advanced age, while, consistent with previous studies, T 1, T 2 and MD were higher, and FA was lower with advanced age. We attribute these functional and microstructural differences to a deteriorated CP structural integrity with aging. Furthermore, our relaxometry and DTI measures were found to be associated with differences in blood perfusion revealing lower microstructural integrity with lower CBF. Finally, in agreement with literature, sex-related differences in MD and CBF were statistically significant. This work lays the foundation for ongoing investigation of the involvement of CP in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K, Faivre E, Costa-Pereira S, Darrigues J, de Almeida AA, Buée L, Dunot J, Marie H, Pousinha PA, Blum D, Silva-Santos B, Lopes LV, Ribot JC. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer's disease. Cell Rep 2021; 36:109574. [PMID: 34469732 DOI: 10.1016/j.celrep.2021.109574] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/09/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation in patients with Alzheimer's disease (AD) and related mouse models has been recognized for decades, but the contribution of the recently described meningeal immune population to AD pathogenesis remains to be addressed. Here, using the 3xTg-AD model, we report an accumulation of interleukin-17 (IL-17)-producing cells, mostly γδ T cells, in the brain and the meninges of female, but not male, mice, concomitant with the onset of cognitive decline. Critically, IL-17 neutralization into the ventricles is sufficient to prevent short-term memory and synaptic plasticity deficits at early stages of disease. These effects precede blood-brain barrier disruption and amyloid-beta or tau pathology, implying an early involvement of IL-17 in AD pathology. When IL-17 is neutralized at later stages of disease, the onset of short-memory deficits and amyloidosis-related splenomegaly is delayed. Altogether, our data support the idea that cognition relies on a finely regulated balance of "inflammatory" cytokines derived from the meningeal immune system.
Collapse
Affiliation(s)
- Helena C Brigas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; Faculdade de Ciências de Lisboa, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Victoria Gomez-Murcia
- Université Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Kevin Carvalho
- Université Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- Université Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Sara Costa-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Afonso Antunes de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luc Buée
- Université Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jade Dunot
- Université Côte d'Azur, CNRS, UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Hélène Marie
- Université Côte d'Azur, CNRS, UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - David Blum
- Université Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
10
|
Chen HSM, Jen ML, Hou P, Stafford RJ, Liu HL. A dynamic susceptibility contrast MRI digital reference object for testing software with leakage correction: Effect of background simulation. Med Phys 2021; 48:6051-6059. [PMID: 34293208 DOI: 10.1002/mp.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Dynamic susceptibility contrast (DSC)-MRI is a perfusion imaging technique from which useful quantitative imaging biomarkers can be derived. Relative cerebral blood volume (rCBV) is such a biomarker commonly used for evaluating brain tumors. To account for the extravasation of contrast agents in tumors, post-processing leakage correction is often applied to improve rCBV accuracy. Digital reference objects (DRO) are ideal for testing the post-processing software, because the biophysical model used to generate the DRO can be matched to the one that the software uses. This study aims to develop DROs to validate the leakage correction of software using Weisskoff model and to examine the effect of background signal time curves that are required by the model. METHODS Three DROs were generated using the Weisskoff model, each composed of nine foreground lesion objects with combinations of different levels of rCBV and contrast leakage parameter (K2). Three types of background were implemented for these DROs: (1) a multi-compartment brain-like background, (2) a sphere background with a constant signal time curve, and (3) a sphere background with signal time curve identical to that of the brain-like DRO's white matter (WM). The DROs were then analyzed with an FDA-cleared software with and without leakage correction. Leakage correction was tested with and without brain segmentation. RESULTS Accuracy of leakage correction was able to be verified using the brain-like phantom and the sphere phantom with WM background. The sphere with constant background did not perform well with leakage correction with or without brain segmentation. The DROs were able to verify that for the particular software tested, leakage correction with brain segmentation achieved the lowest error. CONCLUSIONS DSC-MRI DROs with biophysical model matched to that of the post-processing software can be well used for the software's validation, provided that the background signals are also properly simulated for generating the reference time curve required by the model. Care needs to be taken to consider the interaction of the design of the DRO with the software's implementation of brain segmentation to extract the reference time curve.
Collapse
Affiliation(s)
- Henry Szu-Meng Chen
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mu-Lan Jen
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ping Hou
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Jason Stafford
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ho-Ling Liu
- Departments of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Di Cataldo V, Debatisse J, Piraquive J, Géloën A, Grandin C, Verset M, Taborik F, Labaronne E, Loizon E, Millon A, Mury P, Pialoux V, Serusclat A, Lamberton F, Ibarrola D, Lavenne F, Le Bars D, Troalen T, Confais J, Crola Da Silva C, Mechtouff L, Contamin H, Fayad ZA, Canet-Soulas E. Cortical inflammation and brain signs of high-risk atherosclerosis in a non-human primate model. Brain Commun 2021; 3:fcab064. [PMID: 33937770 PMCID: PMC8063585 DOI: 10.1093/braincomms/fcab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood−brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood−brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Justine Debatisse
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Siemens-Healthcare SAS, Saint-Denis, France
| | | | - Alain Géloën
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Emmanuel Labaronne
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Loizon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Mury
- LIBM Laboratory, Univ Lyon, Université Lyon 1, Lyon, France
| | | | - André Serusclat
- Radiology Department, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | - Claire Crola Da Silva
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM U1060, INRAE 1397, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021; 127:171-183. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
VERHEGGEN, I.C.M., W. Freeze, J. de Jong, J. Jansen, A. Postma, M. van Boxtel, F. Verhey and W. Backes. The application of contrast-enhanced MRI in the assessment of blood-cerebrospinal fluid barrier integrity. Choroid plexus epithelial cells form a barrier that enables active, bidirectional exchange between the blood plasma and cerebrospinal fluid (CSF), known as the blood-CSF barrier (BCSFB). Through its involvement in CSF composition, the BCSFB maintains homeostasis in the central nervous system. While the relation between blood-brain barrier disruption, aging and neurodegeneration is extensively studied using contrast-enhanced MRI, applying this technique to investigate BCSFB disruption in age-related neurodegeneration has received little attention. This review provides an overview of the current status of contrast-enhanced MRI to assess BCSFB permeability. Post-contrast ventricular gadolinium enhancement has been used to indicate BCSFB permeability. Moreover, new techniques highly sensitive to low gadolinium concentrations in the CSF, for instance heavily T2-weighted imaging with cerebrospinal fluid suppression, seem promising. Also, attempts are made at using other contrast agents, such as manganese ions or very small superparamagnetic iron oxide particles, that seem to be cleared from the brain at the choroid plexus. Advancing and applying new developments such as these could progress the assessment of BCSFB integrity.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Whitney M Freeze
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Martin P J van Boxtel
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
13
|
Gries M, Thomas N, Daouk J, Rocchi P, Choulier L, Jubréaux J, Pierson J, Reinhard A, Jouan-Hureaux V, Chateau A, Acherar S, Frochot C, Lux F, Tillement O, Barberi-Heyob M. Multiscale Selectivity and in vivo Biodistribution of NRP-1 -Targeted Theranostic AGuIX Nanoparticles for PDT of Glioblastoma. Int J Nanomedicine 2020; 15:8739-8758. [PMID: 33223826 PMCID: PMC7673487 DOI: 10.2147/ijn.s261352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Local recurrences of glioblastoma (GBM) after heavy standard treatments remain frequent and lead to a poor prognostic. Major challenges are the infiltrative part of the tumor tissue which is the ultimate cause of recurrence. The therapeutic arsenal faces the difficulty of eradicating this infiltrating part of the tumor tissue while increasing the targeting of tumor and endogenous stromal cells such as angiogenic endothelial cells. In this aim, neuropilin-1 (NRP-1), a transmembrane receptor mainly overexpressed by endothelial cells of the tumor vascular system and associated with malignancy, proliferation and migration of GBM, highlighted to be a relevant molecular target to promote the anti-vascular effect of photodynamic therapy (VTP). METHODS The multiscale selectivity was investigated for KDKPPR peptide moiety targeting NRP-1 and a porphyrin molecule as photosensitizer (PS), both grafted onto original AGuIX design nanoparticle. AGuIX nanoparticle, currently in Phase II clinical trials for the treatment of brain metastases with radiotherapy, allows to achieve a real-time magnetic resonance imaging (MRI) and an accumulation in the tumor area by EPR (enhanced permeability and retention) effect. Using surface-plasmon resonance (SPR), we evaluated the affinities of KDKPPR and scramble free peptides, and also peptides-conjugated AGuIX nanoparticles to recombinant rat and human NRP-1 proteins. For in vivo selectivity, we used a cranial window model and parametric maps obtained from T2*-weighted perfusion MRI analysis. RESULTS The photophysical characteristics of the PS and KDKPPR molecular affinity for recombinant human NRP-1 proteins were maintained after the functionalization of AGuIX nanoparticle with a dissociation constant of 4.7 μM determined by SPR assays. Cranial window model and parametric maps, both revealed a prolonged retention in the vascular system of human xenotransplanted GBM. Thanks to the fluorescence of porphyrin by non-invasive imaging and the concentration of gadolinium evaluated after extraction of organs, we checked the absence of nanoparticle in the brains of tumor-free animals and highlighted elimination by renal excretion and hepatic metabolism. CONCLUSION Post-VTP follow-ups demonstrated promising tumor responses with a prolonged delay in tumor growth accompanied by a decrease in tumor metabolism.
Collapse
Affiliation(s)
- Mickaël Gries
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Noémie Thomas
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Joël Daouk
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Paul Rocchi
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
| | - Laurence Choulier
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
| | - Justine Jubréaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Julien Pierson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Aurélie Reinhard
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Valérie Jouan-Hureaux
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Alicia Chateau
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
| | - François Lux
- Université de Lyon, CNRS, Institut Lumière Matière, Lyon, France
- Université de Strasbourg, CNRS, Laboratory of Bioimaging and Pathologies, Illkirch, France
- Université de Lorraine, CNRS, Laboratoire de Chimie-Physique Macromoléculaire, Nancy, France
- Université de Lorraine, CNRS, Laboratoire Réactions et Génie des Procédés, Nancy, France
- Institut Universitaire de France, Paris, France
| | | | - Muriel Barberi-Heyob
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Research Center for Automatic Control of Nancy (CRAN), Nancy, France
| |
Collapse
|
14
|
Zhao L, Taso M, Dai W, Press DZ, Alsop DC. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS 2020; 17:58. [PMID: 32962708 PMCID: PMC7510126 DOI: 10.1186/s12987-020-00218-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies. Methods Seven healthy volunteers were imaged on a 3T MR scanner. ASL images were acquired with 12 labeling durations and post labeling delays. Regions of the choroid plexus were manually segmented on high-resolution T1 weighted images. Choroid plexus perfusion was characterized with a dynamic ASL perfusion model. Cerebral gray matter perfusion was also quantified for comparison. Results Kinetics of the ASL signal were clearly different in the choroid plexus than in gray matter. The choroid plexus has a significantly longer T1 than the gray matter (2.33 ± 0.30 s vs. 1.85 ± 0.10 s, p < 0.02). The arterial transit time was 1.24 ± 0.20 s at the choroid plexus. The apparent blood flow to the choroid plexus was measured to be 39.5 ± 10.1 ml/100 g/min and 0.80 ± 0.31 ml/min integrated over the posterior lateral ventricles in both hemispheres. Correction with the choroid plexus weight yielded a blood flow of 80 ml/100 g/min. Conclusions Our findings suggest that ASL can provide a clinically feasible option to quantify the dynamic characteristics of choroid plexus blood flow. It also provides useful reference values of the choroid plexus perfusion. The long T1 of the choroid plexus may suggest the transport of water from arterial blood to the CSF, potentially providing a method to quantify CSF generation.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Manuel Taso
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Computer Science, State University of New York At Binghamton, Binghamton, NY, USA
| | - Daniel Z Press
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Non-Invasive MRI of Blood-Cerebrospinal Fluid Barrier Function. Nat Commun 2020; 11:2081. [PMID: 32350278 PMCID: PMC7190825 DOI: 10.1038/s41467-020-16002-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
The blood–cerebrospinal fluid barrier (BCSFB) is a highly dynamic transport interface that serves brain homeostasis. To date, however, understanding of its role in brain development and pathology has been hindered by the absence of a non-invasive technique for functional assessment. Here we describe a method for non-invasive measurement of BSCFB function by using tracer-free MRI to quantify rates of water delivery from arterial blood to ventricular cerebrospinal fluid. Using this method, we record a 36% decrease in BCSFB function in aged mice, compared to a 13% decrease in parenchymal blood flow, itself a leading candidate biomarker of early neurodegenerative processes. We then apply the method to explore the relationship between BCSFB function and ventricular morphology. Finally, we provide proof of application to the human brain. Our findings position the BCSFB as a promising new diagnostic and therapeutic target, the function of which can now be safely quantified using non-invasive MRI. The blood–cerebrospinal fluid barrier (BCSFB) is an important interface for brain homeostasis. Here the authors describe a non-invasive MRI technique for the quantitative assessment of BCSFB function.
Collapse
|
16
|
Kleinmann B, Wolter T. Managing Chronic Non-Malignant Pain in the Elderly: Intrathecal Therapy. Drugs Aging 2019; 36:789-797. [PMID: 31270686 DOI: 10.1007/s40266-019-00692-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intrathecal drug delivery (IDD) was first described in 1981 by Onofrio, who used a pump for continuous and intrathecal delivery of morphine to treat cancer pain. Over the following four decades, many reports supported this treatment method with implanted pumps for cancer and non-cancer pain. To date, more than 300,000 pumps for pain therapy and spasticity have been implanted worldwide. This article reviews current knowledge regarding intrathecal opioid therapy, focusing particularly on the use of IDD in elderly patients. Current literature is presented, and the arguments in favor of and against this therapy in elderly patients are discussed.
Collapse
Affiliation(s)
- Barbara Kleinmann
- Interdisciplinary Pain Center, University of Freiburg, Faculty of Medicine, Breisacherstr. 64, 79106, Freiburg, Germany
| | - Tilman Wolter
- Interdisciplinary Pain Center, University of Freiburg, Faculty of Medicine, Breisacherstr. 64, 79106, Freiburg, Germany.
| |
Collapse
|
17
|
Hubert V, Chauveau F, Dumot C, Ong E, Berner LP, Canet-Soulas E, Ghersi-Egea JF, Wiart M. Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Front Mol Neurosci 2019; 12:34. [PMID: 30809124 PMCID: PMC6379459 DOI: 10.3389/fnmol.2019.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022] Open
Abstract
The choroid plexuses (ChPs) perform indispensable functions for the development, maintenance and functioning of the brain. Although they have gained considerable interest in the last years, their involvement in brain disorders is still largely unknown, notably because their deep location inside the brain hampers non-invasive investigations. Imaging tools have become instrumental to the diagnosis and pathophysiological study of neurological and neuropsychiatric diseases. This review summarizes the knowledge that has been gathered from the clinical imaging of ChPs in health and brain disorders not related to ChP pathologies. Results are discussed in the light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging studies of ChPs have used disease-free human subjects to demonstrate the value of different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism, inflammation), sometimes combined with the study of normal aging. Although very few studies have actually tested the value of ChP imaging biomarkers in patients with brain disorders, these pioneer studies identified ChP changes that are promising data for a better understanding and follow-up of diseases such as schizophrenia, epilepsy and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained limited to pre-clinical studies so far but has the potential to be translated in patients for example using MRI coupled with the injection of iron oxide nanoparticles. Future investigations should aim at confirming and extending these findings and at developing translational molecular imaging tools for bridging the gap between basic molecular and cellular neuroscience and clinical research.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Fabien Chauveau
- CNRS UMR5292, INSERM U1028, BIORAN Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Lyon, France
| | - Chloé Dumot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | - Elodie Ong
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | | | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Ghersi-Egea
- CNRS UMR5292, INSERM U1028, Fluid Team and BIP Facility, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Wiart
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,CNRS, Lyon, France
| |
Collapse
|
18
|
Dallery F, Bouzerar R, Michel D, Attencourt C, Promelle V, Peltier J, Constans JM, Balédent O, Gondry-Jouet C. Perfusion magnetic resonance imaging in pediatric brain tumors. Neuroradiology 2017; 59:1143-1153. [PMID: 28861622 DOI: 10.1007/s00234-017-1917-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. METHODS Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. RESULTS Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10-3), rCBF (p < 10-3), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10-3). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. CONCLUSIONS The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population.
Collapse
Affiliation(s)
- F Dallery
- Department of Radiology, University Hospital, Amiens, France.
| | - R Bouzerar
- Department of Imaging and Biophysics, University Hospital, Amiens, France
| | - D Michel
- Department of Radiology, University Hospital, Amiens, France
| | - C Attencourt
- Departement of Pathology, University Hospital, Amiens, France
| | - V Promelle
- Department of Imaging and Biophysics, University Hospital, Amiens, France
| | - J Peltier
- Departement of Neurosurgery, University Hospital, Amiens, France
| | - J M Constans
- Department of Radiology, University Hospital, Amiens, France
| | - O Balédent
- Department of Imaging and Biophysics, University Hospital, Amiens, France
| | - C Gondry-Jouet
- Department of Radiology, University Hospital, Amiens, France
| |
Collapse
|
19
|
Alicioglu B, Yilmaz G, Tosun O, Bulakbasi N. Diffusion-weighted magnetic resonance imaging in the assessment of choroid plexus aging. Neuroradiol J 2017. [PMID: 28644061 DOI: 10.1177/1971400917714280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies have pointed out dysfunction and histopathological changes of the choroid plexuses (CPs) with aging. This paper reviews apparent diffusion coefficient (ADC) values of the CPs for age-related changes. All the brain MR images of the patients between January 2013 and June 2014 in our Radiology Department were retrospectively investigated. Patients with major cranial abnormalities (brain tumors, hyperacute or acute ischemia, developmental anomalies, hemorrhage, hydrocephaly) were excluded. Diffusion-weighted images were obtained at the parameter values of b = 1000 s/mm2 in the axial plane. The transverse diameters of the lateral ventricles (LVs) and ADC values of both CPs were measured. Brain MRIs of 202 individuals, 97 men (48%), 105 women (52%), were studied. There were statistically significant positive correlations between the ADC values of CP and patient ages. (Right CP: r = 0.623; p < 0.05. Left CP: r = 0.654; p < 0.05). There were positive correlations between LV diameters and age ( r = 0.624, p < 0.05 for the right LV; r = 0.621, p < 0.05 for the left LV). The ADC values of age groups significantly differed ( p < 0.05); the ≥61-year-old group was significantly higher compared to younger individuals. There is a progressive increase of water diffusivity in the CPs during aging. ADC values should be considered as a neuroimaging quantitative biomarker in normal aging-dementia syndromes.
Collapse
Affiliation(s)
- Banu Alicioglu
- 1 Near East University Medical Faculty, Department of Radiology, Northern Cyprus, Turkey
| | - Guliz Yilmaz
- 1 Near East University Medical Faculty, Department of Radiology, Northern Cyprus, Turkey
| | - Ozgur Tosun
- 2 Near East University Medical Faculty, Department of Biostatistics, Northern Cyprus, Turkey
| | - Nail Bulakbasi
- 1 Near East University Medical Faculty, Department of Radiology, Northern Cyprus, Turkey
| |
Collapse
|
20
|
Enlargement of choroid plexus in complex regional pain syndrome. Sci Rep 2015; 5:14329. [PMID: 26388497 PMCID: PMC4585686 DOI: 10.1038/srep14329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/20/2015] [Indexed: 01/05/2023] Open
Abstract
The choroid plexus, located in brain ventricles, has received surprisingly little attention in clinical neuroscience. In morphometric brain analysis, we serendipitously found a 21% increase in choroid plexus volume in 12 patients suffering from complex regional pain syndrome (CRPS) compared with age- and gender-matched healthy subjects. No enlargement was observed in a group of 8 patients suffering from chronic pain of other etiologies. Our findings suggest involvement of the choroid plexus in the pathogenesis of CRPS. Since the choroid plexus can mediate interaction between peripheral and brain inflammation, our findings pinpoint the choroid plexus as an important target for future research of central pain mechanisms.
Collapse
|
21
|
De Vis JB, Hendrikse J, Bhogal A, Adams A, Kappelle LJ, Petersen ET. Age-related changes in brain hemodynamics; A calibrated MRI study. Hum Brain Mapp 2015; 36:3973-87. [PMID: 26177724 DOI: 10.1002/hbm.22891] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Blood oxygenation-level dependent (BOLD) magnetic resonance imaging signal changes in response to stimuli have been used to evaluate age-related changes in neuronal activity. Contradictory results from these types of experiments have been attributed to differences in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2 ). To clarify the effects of these physiological parameters, we investigated the effect of age on baseline CBF and CMRO2 . MATERIALS AND METHODS Twenty young (mean ± sd age, 28 ± 3 years), and 45 older subjects (66 ± 4 years) were investigated. A dual-echo pseudocontinuous arterial spin labeling (ASL) sequence was performed during normocapnic, hypercapnic, and hyperoxic breathing challenges. Whole brain and regional gray matter values of CBF, ASL cerebrovascular reactivity (CVR), BOLD CVR, oxygen extraction fraction (OEF), and CMRO2 were calculated. RESULTS Whole brain CBF was 49 ± 14 and 40 ± 9 ml/100 g/min in young and older subjects respectively (P < 0.05). Age-related differences in CBF decreased to the point of nonsignificance (B=-4.1, SE=3.8) when EtCO2 was added as a confounder. BOLD CVR was lower in the whole brain, in the frontal, in the temporal, and in the occipital of the older subjects (P<0.05). Whole brain OEF was 43 ± 8% in the young and 39 ± 6% in the older subjects (P = 0.066). Whole brain CMRO2 was 181 ± 60 and 133 ± 43 µmol/100 g/min in young and older subjects, respectively (P<0.01). DISCUSSION Age-related differences in CBF could potentially be explained by differences in EtCO2 . Regional CMRO2 was lower in older subjects. BOLD studies should take this into account when investigating age-related changes in neuronal activity.
Collapse
Affiliation(s)
- J B De Vis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L J Kappelle
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E T Petersen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danish Research Centre for Magnetic Resonance, Hidovre Hospital, Denmark
| |
Collapse
|
22
|
Karimy JK, Kahle KT, Kurland DB, Yu E, Gerzanich V, Simard JM. A novel method to study cerebrospinal fluid dynamics in rats. J Neurosci Methods 2014; 241:78-84. [PMID: 25554415 DOI: 10.1016/j.jneumeth.2014.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) flow dynamics play critical roles in both the immature and adult brain, with implications for neurodevelopment and disease processes such as hydrocephalus and neurodegeneration. Remarkably, the only reported method to date for measuring CSF formation in laboratory rats is the indirect tracer dilution method (a.k.a., ventriculocisternal perfusion), which has limitations. NEW METHOD Anesthetized rats were mounted in a stereotaxic apparatus, both lateral ventricles were cannulated, and the Sylvian aqueduct was occluded. Fluid exited one ventricle at a rate equal to the rate of CSF formation plus the rate of infusion (if any) into the contralateral ventricle. Pharmacological agents infused at a constant known rate into the contralateral ventricle were tested for their effect on CSF formation in real-time. RESULTS The measured rate of CSF formation was increased by blockade of the Sylvian aqueduct but was not changed by increasing the outflow pressure (0-3cm of H2O). In male Wistar rats, CSF formation was age-dependent: 0.39±0.06, 0.74±0.05, 1.02±0.04 and 1.40±0.06μL/min at 8, 9, 10 and 12 weeks, respectively. CSF formation was reduced 57% by intraventricular infusion of the carbonic anhydrase inhibitor, acetazolamide. COMPARISON WITH EXISTING METHODS Tracer dilution methods do not permit ongoing real-time determination of the rate of CSF formation, are not readily amenable to pharmacological manipulations, and require critical assumptions. Direct measurement of CSF formation overcomes these limitations. CONCLUSIONS Direct measurement of CSF formation in rats is feasible. Our method should prove useful for studying CSF dynamics in normal physiology and disease models.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kristopher T Kahle
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States; Department of Neurosurgery, Boston Children's Hospital, Boston, MA, United States
| | - David B Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Edward Yu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Christen T, Jahanian H, Ni WW, Qiu D, Moseley ME, Zaharchuk G. Noncontrast mapping of arterial delay and functional connectivity using resting-state functional MRI: a study in Moyamoya patients. J Magn Reson Imaging 2014; 41:424-30. [PMID: 24419985 DOI: 10.1002/jmri.24558] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/04/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate if delays in resting-state spontaneous fluctuations of the BOLD (sfBOLD) signal can be used to create maps similar to time-to-maximum of the residue function (Tmax) in Moyamoya patients and to determine whether sfBOLD delays affect the results of brain connectivity mapping. MATERIALS AND METHODS Ten patients were scanned at 3 Tesla using a gradient-echo echo planar imaging sequence for sfBOLD imaging. Cross correlation analysis was performed between each brain voxel signal and a reference signal comprised of either the superior sagittal sinus (SSS) or whole brain (WB) average time course. sfBOLD delay maps were created based on the time shift necessary to maximize the correlation coefficient, and compared with dynamic susceptibility contrast Tmax maps. Standard and time-shifted resting-state BOLD connectivity analyses of the default mode network were compared. RESULTS Good linear correlations were found between sfBOLD delays and Tmax using the SSS as reference (r(2) = 0.8, slope = 1.4, intercept = -4.6) or WB (r(2) = 0.7, slope = 0.8, intercept = -3.2). New nodes of connectivity were found in delayed regions when accounting for delays in the analysis. CONCLUSION Resting-state sfBOLD imaging can create delay maps similar to Tmax maps without the use of contrast agents in Moyamoya patients. Accounting for these delays may affect the results of functional connectivity maps.
Collapse
Affiliation(s)
- Thomas Christen
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|