1
|
Zhang NK, Zhang SK, Zhang LI, Tao HW, Zhang GW. The neural basis of neuropsychiatric symptoms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1487875. [PMID: 39703925 PMCID: PMC11655510 DOI: 10.3389/fnagi.2024.1487875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy and aggression affect up to 90% of Alzheimer's disease (AD) patients. These symptoms significantly increase caregiver stress and institutionalization rates, and more importantly they are correlated with faster cognitive decline. However, the neuronal basis of NPS in AD remains largely unknown. Here, we review current understanding of NPS and related pathology in studies of AD patients and AD mouse models. Clinical studies indicate that NPS prevalence and severity vary across different AD stages and types. Neuroimaging and postmortem studies have suggested that pathological changes in the anterior cingulate cortex, hippocampus, prefrontal cortex, and amygdala are linked to NPS, although the precise mechanisms remain unclear. Studies of AD mouse models have indicated that amyloid-beta and tau-related neurodegeneration in the hippocampus, prefrontal cortex, and anterior cingulate cortex are correlated with NPS-like behavioral deficits. A better understanding of the NPS phenotypes and related pathological changes will pave the way for developing a better management strategy for NPS in AD patients.
Collapse
Affiliation(s)
- Nicole K. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Selena K. Zhang
- Biomedical Engineering Program, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Huizhong W. Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Li JS, Tun SM, Ficek-Tani B, Xu W, Wang S, Horien CL, Toyonaga T, Nuli SS, Zeiss CJ, Powers AR, Zhao Y, Mormino EC, Fredericks CA. Medial Amygdalar Tau Is Associated With Mood Symptoms in Preclinical Alzheimer's Disease. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1301-1311. [PMID: 39059466 PMCID: PMC11625605 DOI: 10.1016/j.bpsc.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS We examined 598 individuals (347 amyloid positive [58% female], 251 amyloid negative [62% female] subset in tau positron emission tomography and functional magnetic resonance imaging cohorts) from the A4 (Anti-Amyloid Treatment in Asymptomatic AD) Study. In the tau positron emission tomography cohort, we used amygdalar segmentations to examine representative nuclei from 3 functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the functional magnetic resonance imaging cohort. Finally, we conducted exploratory post hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS Amyloid-positive individuals demonstrated increased tau binding in the medial and lateral amygdala, and tau binding in these regions was associated with mood symptoms. Across amygdalar divisions, amyloid-positive individuals had relatively higher regional connectivity from the amygdala to other temporal regions, the insula, and the orbitofrontal cortex, but medial amygdala to retrosplenial cortex connectivity was lower. Medial amygdala to retrosplenial connectivity was negatively associated with anxiety symptoms, as was retrosplenial tau. CONCLUSIONS Our findings suggest that preclinical tau deposition in the amygdala and associated changes in functional connectivity may be related to early mood symptoms in AD.
Collapse
Affiliation(s)
- Joyce S Li
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Samantha M Tun
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | | | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | - Selena Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Albert R Powers
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Yize Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
3
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
4
|
Du Y, Zhang S, Qiu Q, Fang Y, Zhao L, Yue L, Wang J, Yan F, Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer's disease. Transl Psychiatry 2024; 14:301. [PMID: 39039061 PMCID: PMC11263372 DOI: 10.1038/s41398-024-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Li JS, Tun SM, Ficek-Tani B, Xu W, Wang S, Horien CL, Toyonaga T, Nuli SS, Zeiss CJ, Powers AR, Zhao Y, Mormino EC, Fredericks CA. Medial amygdalar tau is associated with anxiety symptoms in preclinical Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597160. [PMID: 38895308 PMCID: PMC11185761 DOI: 10.1101/2024.06.03.597160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.
Collapse
Affiliation(s)
- Joyce S Li
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Samantha M Tun
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | | | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Selena Wang
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | | | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT
| | - Albert R Powers
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Yize Zhao
- Department of Biostatistics, Yale School of Medicine, New Haven, CT
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
6
|
Xu Z, Li Y, Fan X, Xu W, Liu J, Li J. Disrupted functional connectivity of the striatum in patients with diffuse axonal injury: a resting-state functional MRI study. Neuroreport 2023; 34:792-800. [PMID: 37756204 PMCID: PMC10538614 DOI: 10.1097/wnr.0000000000001956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Diffuse axonal injury (DAI) disrupts the integrity of white matter microstructure and affects brain functional connectivity, resulting in persistent cognitive, behavioral and affective deficits. Mounting evidence suggests that altered cortical-subcortical connectivity is a major contributor to cognitive dysfunction. The functional integrity of the striatum is particularly vulnerable to DAI, but has received less attention. This study aimed to investigate the alteration patterns of striatal subdivision functional connectivity. Twenty-six patients with DAI and 27 healthy controls underwent resting-state fMRI scans on a 3.0 T scanner. We assessed striatal subdivision functional connectivity using a seed-based analysis in DAI. Furthermore, a partial correlation was used to measure its clinical association. Compared to controls, patients with DAI showed decreased functional connectivity between the right inferior ventral striatum and right inferior frontal gyrus, as well as the right inferior parietal lobule, between the left inferior ventral striatum and right inferior frontal gyrus, between the right superior ventral striatum and bilateral cerebellar posterior lobe, between the bilateral dorsal caudal putamen and right anterior cingulate gyrus, and between the right dorsal caudal putamen and right inferior parietal lobule. Moreover, decreased functional connectivity was observed between the left dorsal caudate and the right cerebellar posterior lobe, while increased functional connectivity was found between the left dorsal caudate and right inferior parietal lobule. Correlation analyses showed that regions with functional connectivity differences in the DAI group correlated with multiple clinical scoring scales, including cognition, motor function, agitated behavior, and anxiety disorders. These findings suggest that abnormalities in cortico-striatal and cerebellar-striatal functional connectivity are observed in patients with DAI, enriching our understanding of the neuropathological mechanisms of post-injury cognitive disorders and providing potential neuroimaging markers for the diagnosis and treatment of DAI.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Ye Li
- Department of Radiology, First Affiliated Hospital of Nanchang University
| | - Xiaole Fan
- Department of Ultrasound, the First Affiliated Hospital, Jinan University
| | - Wenhua Xu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Jinliang Liu
- Department of Radiology, Fifth Hospital of Fuzhou Jianqiang
| | - Jian Li
- Department of Radiology, First Affiliated Hospital of Nanchang University
- Clinical Research Center For Medical Imaging In Jiangxi Province, Nanchang, China
| |
Collapse
|
7
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
8
|
Liu M, Jiang J, Feng Y, Cai Y, Ding J, Wang X. Kullback-Leibler Divergence of Sleep-Wake Patterns Related with Depressive Severity in Patients with Epilepsy. Brain Sci 2023; 13:brainsci13050823. [PMID: 37239295 DOI: 10.3390/brainsci13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Objective: Whether abnormal sleep-wake rhythms were associated with depressive symptoms in patents with epilepsy had remained unclear. Our study aimed to establish relative entropy for the assessment of sleep-wake patterns and to explore the relationship between this index and the severity of depressive symptoms in patients with epilepsy. (2) Methods: We recorded long-term scalp electroencephalograms (EEGs) and Hamilton Depression Rating Scale-17 (HAMD-17) questionnaire scores from 64 patients with epilepsy. Patients with HAMD-17 scores of 0-7 points were defined as the non-depressive group, while patients with scores of 8 or higher were defined as the depression group. Sleep stages were firstly classified based on EEG data. We then quantified sleep-wake rhythm variations in brain activity using the Kullback-Leibler divergence (KLD) of daytime wakefulness and nighttime sleep. The KLD at different frequency bands in each brain region was analyzed between the depression and non-depression groups. (3) Results: Of the 64 patients with epilepsy included in our study, 32 had depressive symptoms. It was found that patients with depression had significantly decreased KLD for high-frequency oscillations in most brain areas, especially the frontal lobe. A detailed analysis was conducted in the right frontal region (F4) because of the significant difference in the high-frequency band. We found that the KLDs at the gamma bands were significantly decreased in the depression groups compared to the non-depression group (KLDD = 0.35 ± 0.05, KLDND = 0.57 ± 0.05, p = 0.009). A negative correlation was displayed between the KLD of gamma band oscillation and HAMD-17 score (r = -0.29, p = 0.02). (4) Conclusions: Sleep-wake rhythms can be assessed using the KLD index calculated from long-term scalp EEGs. Moreover, the KLD of high-frequency bands had a negative correlation with HAMD-17 scores in patients with epilepsy, which indicates a close relationship between abnormal sleep-wake patterns and depressive symptoms in patients with epilepsy.
Collapse
Affiliation(s)
- Mingsu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Jiang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yu Feng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Zhu H, Zhu H, Liu X, Wei F, Li H, Guo Z. The Characteristics of Entorhinal Cortex Functional Connectivity in Alzheimer's Disease Patients with Depression. Curr Alzheimer Res 2023; 19:CAR-EPUB-129980. [PMID: 36872356 DOI: 10.2174/1567205020666230303093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric symptoms of Alzheimer's disease (AD) which decreases the life quality of both patients and caregivers. There are currently no effective drugs. It is therefore important to explore the pathogenesis of depression in AD patients. OBJECTIVE The present study aimed to investigate the characteristics of the entorhinal cortex (EC) functional connectivity (FC) in the whole brain neural network of AD patients with depression (D-AD). METHODS Twenty-four D-AD patients, 14 AD patients without depression (nD-AD), and 20 healthy controls underwent resting-state functional magnetic resonance imaging. We set the EC as the seed and used FC analysis. One-way analysis of variance was used to examine FC differences among the three groups. RESULTS Using the left EC as the seed point, there were FC differences among the three groups in the left EC-inferior occipital gyrus. Using the right EC as the seed point, there were FC differences among the three groups in the right EC-middle frontal gyrus, -superior parietal gyrus, -superior medial frontal gyrus, and -precentral gyrus. Compared with the nD-AD group, the D-AD group had increased FC between the right EC and right postcentral gyrus. CONCLUSION Asymmetry of FC in the EC and increased FC between the EC and right postcentral gyrus may be important in the pathogenesis of depression in AD.
Collapse
Affiliation(s)
- Haokai Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Hong Zhu
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, China-USA Neuroimaging Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Huichao Li
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
10
|
Du Y, Yu J, Liu M, Qiu Q, Fang Y, Zhao L, Wei W, Wang J, Lin X, Yan F, Li X. The relationship between depressive symptoms and cognitive function in Alzheimer's disease: The mediating effect of amygdala functional connectivity and radiomic features. J Affect Disord 2023; 330:101-109. [PMID: 36863470 DOI: 10.1016/j.jad.2023.02.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Depressive symptoms are common in Alzheimer's disease (AD) and are associated with cognitive function. Amygdala functional connectivity (FC) and radiomic features related to depression and cognition. However, studies have yet to explore the neural mechanisms underlying these associations. METHODS We enrolled eighty-two AD patients with depressive symptoms (ADD) and 85 healthy controls (HCs) in this study. We compared amygdala FC using the seed-based approach between ADD patients and HCs. The least absolute shrinkage and selection operator (LASSO) was used to select amygdala radiomic features. A support vector machine (SVM) model was constructed based on the identified radiomic features to distinguish ADD from HCs. We used mediation analyses to explore the mediating effects of amygdala radiomic features and amygdala FC on cognition. RESULTS We found that ADD patients showed decreased amygdala FC with posterior cingulate cortex, middle frontal gyrus (MFG), and parahippocampal gyrus involved in the default mode network compared to HCs. The area under the receiver operating characteristic curve (AUC) of the amygdala radiomic model was 0.95 for ADD patients and HCs. Notably, the mediation model demonstrated that amygdala FC with the MFG and amygdala-based radiomic features mediated the relationship between depressive symptoms and cognitive function in AD. LIMITATIONS This study is a cross-sectional study and lacks longitudinal data. CONCLUSION Our findings may not only expand existing biological knowledge of the relationship between cognition and depressive symptoms in AD from the perspective of brain function and structure but also may ultimately provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Yu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Manhua Liu
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Lin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
11
|
Guo Z, Liu K, Li J, Zhu H, Chen B, Liu X. Disrupted topological organization of functional brain networks in Alzheimer's disease patients with depressive symptoms. BMC Psychiatry 2022; 22:810. [PMID: 36539729 PMCID: PMC9764564 DOI: 10.1186/s12888-022-04450-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Depression is a common symptom of Alzheimer's disease (AD), but the underlying neural mechanism is unknown. The aim of this study was to explore the topological properties of AD patients with depressive symptoms (D-AD) using graph theoretical analysis. METHODS We obtained 3-Tesla rsfMRI data from 24 D-AD patients, 20 non-depressed AD patients (nD-AD), and 20 normal controls (NC). Resting state networks were identified using graph theory analysis. ANOVA with a two-sample t-test post hoc analysis in GRETNA was used to assess the topological measurements. RESULTS Our results demonstrate that the three groups show characteristic properties of a small-world network. NCs showed significantly larger global and local efficiency than D-AD and nD-AD patients. Compared with nD-AD patients, D-AD patients showed decreased nodal centrality in the pallidum, putamen, and right superior temporal gyrus. They also showed increased nodal centrality in the right superior parietal gyrus, the medial orbital portion of the right superior frontal gyrus, and the orbital portion of the right superior frontal gyrus. Compared with nD-AD patients, NC showed decreased nodal betweenness in the right superior temporal gyrus, and increased nodal betweenness in medial orbital part of the right superior frontal gyrus. CONCLUSIONS These results indicate that D-AD is associated with alterations of topological structure. Our study provides new insights into the brain mechanisms underlying D-AD.
Collapse
Affiliation(s)
- Zhongwei Guo
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Zhejiang Provincial Health Commission, Hangzhou, 310012 China
| | - Kun Liu
- grid.417384.d0000 0004 1764 2632The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Jiapeng Li
- grid.417168.d0000 0004 4666 9789Tongde Hospital of Zhejiang Province, Zhejiang Provincial Health Commission, Hangzhou, 310012 China
| | - Haokai Zhu
- grid.268505.c0000 0000 8744 8924The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310000 China
| | - Bo Chen
- Tongde Hospital of Zhejiang Province, Zhejiang Provincial Health Commission, Hangzhou, 310012, China.
| | - Xiaozheng Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
12
|
Ge X, Qiao Y, Choi J, Raman R, Ringman JM, Shiand Y. Enhanced Association of Tau Pathology and Cognitive Impairment in Mild Cognitive Impairment Subjects with Behavior Symptoms. J Alzheimers Dis 2022; 87:557-568. [PMID: 35342088 DOI: 10.3233/jad-215555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) individuals with neuropsychiatric symptoms (NPS) are more likely to develop dementia. OBJECTIVE We sought to understand the relationship between neuroimaging markers such as tau pathology and cognitive symptoms both with and without the presence of NPS during the prodromal period of Alzheimer's disease. METHODS A total of 151 MCI subjects with tau positron emission tomographic (PET) scanning with 18F AV-1451, amyloid-β (Aβ) PET scanning with florbetapir or florbetaben, magnetic resonance imaging, and cognitive and behavioral evaluations were selected from the Alzheimer's Disease Neuroimaging Initiative. A 4-group division approach was proposed using amyloid (A-/A+) and behavior (B-/B+) status: A-B-, A-B+, A+B-, and A+B+. Pearson's correlation test was conducted for each group to examine the association between tau deposition and cognitive performance. RESULTS No statistically significant association between tau deposition and cognitive impairment was found for subjects without behavior symptoms in either the A-B-or A+B-groups after correction for false discovery rate. In contrast, tau deposition was found to be significantly associated with cognitive impairment in entorhinal cortex and temporal pole for the A-B+ group and nearly the whole cerebrum for the A+B+ group. CONCLUSION Enhanced associations between tauopathy and cognitive impairment are present in MCI subjects with behavior symptoms, which is more prominent in the presence of elevated amyloid pathology. MCI individuals with NPS may thus be at greater risk for further cognitive decline with the increase of tau deposition in comparison to those without NPS.
Collapse
Affiliation(s)
- Xinting Ge
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuchuan Qiao
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiyoon Choi
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, CA, USA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego, CA, USA
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shiand
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
13
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
14
|
Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:998. [PMID: 35194025 PMCID: PMC8863829 DOI: 10.1038/s41467-022-28493-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer’s disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well understood. Here, using fiber photometry and optogenetics, we found reduced neural activity in the ET neurons in the medial prefrontal cortex (mPFC) of the 5×FAD mouse model led to object recognition memory (ORM) deficits. Activation of ET neurons in the mPFC of 5×FAD mice rescued ORM impairment, and inhibition of ET neurons in the mPFC of wild type mice impaired ORM expression. ET neurons in the mPFC that project to supramammillary nucleus were necessary for ORM expression. Viral tracing and in vivo recording revealed that mPFC ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice. Furthermore, activation of cholinergic fibers in the mPFC rescued ORM deficits in 5×FAD mice, while acetylcholine deficiency reduced the response of ET neurons in the mPFC to familiar objects. Taken together, our results revealed a neural mechanism behind ORM impairment in 5×FAD mice. Short-term memory deficits are associated with prefrontal cortex dysfunction in Alzheimer’s disease. Here, the authors assessed extratelencephalic projection (ET) neurons and found reduced ET neural activity in the medial prefrontal cortex (mPFC) and showed ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice which led to object recognition memory deficits.
Collapse
|
15
|
Klotz S, Fischer P, Hinterberger M, Ricken G, Hönigschnabl S, Gelpi E, Kovacs GG. Multiple system aging-related tau astrogliopathy with complex proteinopathy in an oligosymptomatic octogenarian. Neuropathology 2020; 41:72-83. [PMID: 33263220 PMCID: PMC7984345 DOI: 10.1111/neup.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
The combination of multiple neurodegenerative proteinopathies is increasingly recognized. Together they can potentiate neuronal dysfunction and contribute to complex neurological symptoms. We report an octogenarian female case of multiple extraneural metastases of a rectal carcinoma. She attempted suicide, which ultimately led to cardiorespiratory failure nine days after hospital admission. Apart from the suicide attempt and late-onset depression, other psychiatric or neurological symptoms were not reported. Unexpectedly, histopathologic examination revealed prominent aging-related tau astrogliopathy (ARTAG) of all five types (subpial, subependymal, grey and white matter, and perivascular) affecting cortical and subcortical brain regions. This pathology was associated with intermediate Alzheimer's disease neuropathologic change (A2B2C2 score), cerebral amyloid angiopathy, Lewy body-type α-synuclein proteinopathy (Braak stage 4), and a multiple system transactivation response DNA-binding protein of 43 kDa (TDP-43) proteinopathy also involving the astroglia. In summary, we report a complex and extensive combination of multiple proteinopathies with widespread ARTAG of all five types in a patient who had attempted suicide. Although longitudinal psychometric tests and neuropsychological evaluations were not performed, this report poses the question of thresholds of cognition and pathology load, describes ARTAG affecting unusually widespread brain regions, and supports the notion that complex proteinopathies should be regarded as a frequent condition in the elderly.
Collapse
Affiliation(s)
- Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Margareta Hinterberger
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Leocadi M, Canu E, Calderaro D, Corbetta D, Filippi M, Agosta F. An update on magnetic resonance imaging markers in AD. Ther Adv Neurol Disord 2020; 13:1756286420947986. [PMID: 33747128 PMCID: PMC7903819 DOI: 10.1177/1756286420947986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present review is to provide an update of the available recent scientific literature on the use of magnetic resonance imaging (MRI) in Alzheimer's disease (AD). MRI is playing an increasingly important role in the characterization of the AD signatures, which can be useful in both the diagnostic process and monitoring of disease progression. Furthermore, this technique is unique in assessing brain structure and function and provides a deep understanding of in vivo evolution of cerebral pathology. In the reviewing process, we established a priori criteria and we thoroughly searched the very recent scientific literature (January 2018-March 2020) for relevant articles on this topic. In summary, we selected 73 articles out of 1654 publications retrieved from PubMed. Based on this selection, this review summarizes the recent application of MRI in clinical trials, defining the predementia stages of AD, the clinical utility of MRI, proposal of novel biomarkers and brain regions of interest, and assessing the relationship between MRI and cognitive features, risk and protective factors of AD. Finally, the value of a multiparametric approach in clinical and preclinical stages of AD is discussed.
Collapse
Affiliation(s)
- Michela Leocadi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Calderaro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Corbetta
- Laboratory of Movement Analysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology and Neurophysiology Units, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
17
|
Serra L, Bruschini M, Di Domenico C, Mancini M, Bechi Gabrielli G, Bonarota S, Caltagirone C, Cercignani M, Marra C, Bozzali M. Behavioral psychological symptoms of dementia and functional connectivity changes: a network-based study. Neurobiol Aging 2020; 94:196-206. [PMID: 32645548 DOI: 10.1016/j.neurobiolaging.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
Behavioral and psychological symptoms of dementia (BPSD) are commonly observed since the early stage of Alzheimer's disease (AD) associated with structural brain changes. It is conceivable that they may also relate to functional brain changes. This resting-state functional MRI (RS-fMRI) study investigated the alterations within functional brain networks of a cohort of AD patients at different clinical stages who presented with BPSD. One hundred one AD patients and 56 patients with amnestic mild cognitive impairment underwent a neuropsychological evaluation including the Neuropsychiatry Inventory-12 (NPI-12). All patients and 35 healthy controls (HS) underwent 3T-MRI. Factor analysis was used to extract the principal factors from NPI-12, while RS-fMRI data were processed using graph theory to investigate functional connectivity. Five factors were extracted from NPI-12. Sixty-two percent of patients showed BPSD and functional brain connectivity changes in various networks compared to those without BPSD and HS. These changes contributed to account for patients' BPSD. This work opens new perspectives in terms of nonpharmacological interventions that might be designed to modulate brain connectivity and improve patients' BPSD.
Collapse
Affiliation(s)
- Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy.
| | | | | | - Matteo Mancini
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brithon, UK
| | | | - Sabrina Bonarota
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Mara Cercignani
- Neuroimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy; Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brithon, UK
| | - Camillo Marra
- Institute of Neurology, Catholic University, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brithon, UK; Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| |
Collapse
|
18
|
Treyer V, Gietl AF, Suliman H, Gruber E, Meyer R, Buchmann A, Johayem A, Unschuld PG, Nitsch RM, Buck A, Ametamey SM, Hock C. Reduced uptake of [11C]-ABP688, a PET tracer for metabolic glutamate receptor 5 in hippocampus and amygdala in Alzheimer's dementia. Brain Behav 2020; 10:e01632. [PMID: 32304284 PMCID: PMC7303388 DOI: 10.1002/brb3.1632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Metabotropic glutamate receptors play a critical role in the pathogenesis of Alzheimer's disease due to their involvement in processes of memory formation, neuroplasticity, and synaptotoxity. The objective of the current study was to study mGluR5 availability measured by [11 C]-ABP688 (ABP) in patients with clinically diagnosed Alzheimer's dementia (AD). METHODS A bolus-infusion protocol of [11 C]-ABP688 was applied in 9 subjects with AD and 10 cognitively healthy controls (Controls) to derive distribution volume estimates of mGluR5. Furthermore, we also estimated cerebral perfusion by averaging early frame signal of initial ABP bolus injection. RESULTS Subjects with Alzheimer's dementia (mean age: 77.3/SD 5.7) were older than controls (mean age: 68.5/SD: 9.6) and scored lower on the MMSE (22.1/SD2.7 vs. 29.0/SD0.8). There were no overall differences in ABP signal. However, distribution volume ratio (DVR) for ABP was reduced in the bilateral hippocampus (AD: 1.34/SD: 0.40 vs. Control: 1.84/SD:0.31, p = .007) and the bilateral amygdala (AD:1.86/SD:0.26 vs. Control:2.33/SD:0.37 p = .006) in AD patients compared to controls. Estimate of cerebral blood flow was reduced in the bilateral hippocampus in AD (AD:0.75/SD:0.10 vs. Control:0.86/SD:0.09 p = .02). CONCLUSION Our findings demonstrate reduced mGluR5 binding in the hippocampus and amygdala in Alzheimer's dementia. Whether this is due to synaptic loss and/or consecutive reduction of potential binding sites or reflects disease inherent mechanisms remains to be elucidated in future studies.
Collapse
Affiliation(s)
- Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Husam Suliman
- Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Anass Johayem
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Paul G Unschuld
- Hospital for Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland.,Neurimmune, Schlieren, Switzerland
| |
Collapse
|
19
|
Abstract
Developing disease-modifying treatments for Alzheimer dementia requires innovative approaches to identify novel biological targets during the course of the disease. Treatment development for the neuropsychiatric symptoms of Alzheimer may benefit from a mechanistic approach to treatment. There has been progress in identifying mild forms of behavioral impairment along the Alzheimer spectrum that may lead to additional insights into progression to dementia as well as the fundamental mechanisms of the symptoms. Developing therapies for complex neurobehavioral syndromes may require the translation of mechanistic insights into therapy, which may both improve the symptoms and delay progression to dementia in certain patients.
Collapse
Affiliation(s)
- Milap A Nowrangi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|