1
|
Pandey M, Sarkar S, Ghosh SK. Ancestral TALE homeobox protein transcription factor regulates actin dynamics and cellular activities of protozoan parasite Entamoeba invadens. Mol Microbiol 2024. [PMID: 38654540 DOI: 10.1111/mmi.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Entamoeba histolytica causes invasive amoebiasis, an important neglected tropical disease with a significant global health impact. The pathogenicity and survival of E. histolytica and its reptilian equivalent, Entamoeba invadens, relies on its ability to exhibit efficient motility, evade host immune responses, and exploit host resources, all of which are governed by the actin cytoskeleton remodeling. Our study demonstrates the early origin and the regulatory role of TALE homeobox protein EiHbox1 in actin-related cellular processes. Several genes involved in different biological pathways, including actin dynamics are differentially expressed in EiHbox1 silenced cells. EiHbox1 silenced parasites showed disrupted F-actin organization and loss of cellular polarity. EiHbox1's presence in the anterior region of migrating cells further suggests its involvement in maintaining cellular polarity. Loss of polarized morphology of EiHbox1 silenced parasites leads to altered motility from fast, directionally persistent, and highly chemotactic to slow, random, and less chemotactic, which subsequently leads to defective aggregation during encystation. EiHbox1 knockdown also resulted in a significant reduction in phagocytic capacity and poor capping response. These findings highlight the importance of EiHbox1 of E. invadens in governing cellular processes crucial for their survival, pathogenicity, and evasion of the host immune system.
Collapse
Affiliation(s)
- Meenakshi Pandey
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shilpa Sarkar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sudip K Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
2
|
Müller T, Reichlmeir M, Hau AC, Wittig I, Schulte D. The neuronal transcription factor MEIS2 is a calpain-2 protease target. J Cell Sci 2024; 137:jcs261482. [PMID: 38305737 PMCID: PMC10941658 DOI: 10.1242/jcs.261482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.
Collapse
Affiliation(s)
- Tanja Müller
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), 1445 Luxembourg, Luxembourg
| | - Marina Reichlmeir
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
| | - Ilka Wittig
- Goethe University, Faculty of Medicine, Institute for Cardiovascular Physiology, Functional Proteomics, 60590, Frankfurt, Germany
| | - Dorothea Schulte
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| |
Collapse
|
3
|
Bobola N, Sagerström CG. TALE transcription factors: Cofactors no more. Semin Cell Dev Biol 2024; 152-153:76-84. [PMID: 36509674 DOI: 10.1016/j.semcdb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Exd/PBX, Hth/MEIS and PREP proteins belong to the TALE (three-amino-acid loop extension) superclass of transcription factors (TFs) with an atypical homedomain (HD). Originally discovered as "cofactors" to HOX proteins, revisiting their traditional role in light of genome-wide experiments reveals a strong and reproducible pattern of HOX and TALE co-occupancy across diverse embryonic tissues. While confirming that TALE increases HOX specificity and selectivity in vivo, this wider outlook also reveals novel aspects of HOX:TALE collaboration, namely that HOX TFs generally require pre-bound TALE factors to access their functional binding sites in vivo. In contrast to the restricted expression domains of HOX TFs, TALE factors are largely ubiquitous, and PBX and PREP are expressed at the earliest developmental stages. PBX and MEIS control development of many organs and tissues and their dysregulation is associated with congenital disease and cancer. Accordingly, many instances of TALE cooperation with non HOX TFs have been documented in various systems. The model that emerges from these studies is that TALE TFs create a permissive chromatin platform that is selected by tissue-restricted TFs for binding. In turn, HOX and other tissue-restricted TFs selectively convert a ubiquitous pool of low affinity TALE binding events into high confidence, tissue-restricted binding events associated with transcriptional activation. As a result, TALE:TF complexes are associated with active chromatin and domain/lineage-specific gene activity. TALE ubiquitous expression and broad genomic occupancy, as well as the increasing examples of TALE tissue-specific partners, reveal a universal and obligatory role for TALE in the control of tissue and lineage-specific transcriptional programs, beyond their initial discovery as HOX co-factors.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK.
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
4
|
Iroquois Family Genes in Gastric Carcinogenesis: A Comprehensive Review. Genes (Basel) 2023; 14:genes14030621. [PMID: 36980893 PMCID: PMC10048635 DOI: 10.3390/genes14030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFβ, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.
Collapse
|
5
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Ceron-Noriega A, Almeida MV, Levin M, Butter F. Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Res 2023; 33:112-128. [PMID: 36653121 PMCID: PMC9977148 DOI: 10.1101/gr.277070.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023]
Abstract
Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Collapse
Affiliation(s)
| | | | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
7
|
The Hematopoietic TALE-Code Shows Normal Activity of IRX1 in Myeloid Progenitors and Reveals Ectopic Expression of IRX3 and IRX5 in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23063192. [PMID: 35328612 PMCID: PMC8952210 DOI: 10.3390/ijms23063192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Homeobox genes encode transcription factors that control basic developmental decisions. Knowledge of their hematopoietic activities casts light on normal and malignant immune cell development. Recently, we constructed the so-called lymphoid TALE-code that codifies expression patterns of all active TALE class homeobox genes in early hematopoiesis and lymphopoiesis. Here, we present the corresponding myeloid TALE-code to extend this gene signature, covering the entire hematopoietic system. The collective data showed expression patterns for eleven TALE homeobox genes and highlighted the exclusive expression of IRX1 in megakaryocyte-erythroid progenitors (MEPs), implicating this TALE class member in a specific myeloid differentiation process. Analysis of public profiling data from acute myeloid leukemia (AML) patients revealed aberrant activity of IRX1 in addition to IRX3 and IRX5, indicating an oncogenic role for these TALE homeobox genes when deregulated. Screening of RNA-seq data from 100 leukemia/lymphoma cell lines showed overexpression of IRX1, IRX3, and IRX5 in megakaryoblastic and myelomonocytic AML cell lines, chosen as suitable models for studying the regulation and function of these homeo-oncogenes. Genomic copy number analysis of IRX-positive cell lines demonstrated chromosomal amplification of the neighboring IRX3 and IRX5 genes at position 16q12 in MEGAL, underlying their overexpression in this cell line model. Comparative gene expression analysis of these cell lines revealed candidate upstream factors and target genes, namely the co-expression of GATA1 and GATA2 together with IRX1, and of BMP2 and HOXA10 with IRX3/IRX5. Subsequent knockdown and stimulation experiments in AML cell lines confirmed their activating impact in the corresponding IRX gene expression. Furthermore, we demonstrated that IRX1 activated KLF1 and TAL1, while IRX3 inhibited GATA1, GATA2, and FST. Accordingly, we propose that these regulatory relationships may represent major physiological and oncogenic activities of IRX factors in normal and malignant myeloid differentiation, respectively. Finally, the established myeloid TALE-code is a useful tool for evaluating TALE homeobox gene activities in AML.
Collapse
|
8
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
9
|
Chakraborty P. Gene cluster from plant to microbes: Their role in genome architecture, organism's development, specialized metabolism and drug discovery. Biochimie 2021; 193:1-15. [PMID: 34890733 DOI: 10.1016/j.biochi.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Plants and microbes fulfil our daily requirements through different high-value chemicals, e.g., nutraceuticals, pharmaceuticals, cosmetics, and through varieties of fruits, crops, vegetables, and many more. Utmost care would therefore be taken for growth, development and sustainability of these important crops and medicinal plants and microbes. Homeobox genes and HOX clusters and their recently characterized expanded family members, including newly discovered homeobox, WOX gene from medicinal herb, Panax ginseng, significantly contributes in the growth and development of these organisms. On the other hand, secondary metabolites produced through secondary metabolism of plants and microbes are used as organisms defense as well as drugs/drug-like molecules for humans. Both the developmental HOX cluster and the biosynthetic gene-cluster (BGC) for secondary metabolites are organised in organisms genome. Genome mining and genomewide analysis of these clusters will definitely identify and characterize many more important molecules from unexplored plants and microbes and underexplored human microbiota and the evolution studies of these clusters will indicate their source of origin. Although genomics revolution now continues at a pace, till date only few hundred plant genome sequences are available. However, next-generation sequencing (NGS) technology now in market and may be applied even for plants with recalcitrant genomes, eventually may discover genomic potential towards production of secondary metabolites of diverse plants and micro-organisms present in the environment and microbiota. Additionally, the development of tools for genome mining e.g., antiSMASH, plantiSMASH, and more and more computational approaches that predicts hundreds of secondary metabolite BGCs will be discussed.
Collapse
Affiliation(s)
- Prasanta Chakraborty
- Kalpana Chawla Center for Space and Nanoscience, Kolkata, Indian Institute of Chemical Biology (retd.), Kolkata, 700032, India.
| |
Collapse
|
10
|
Turgutalp B, Uslu M, Helvacioglu S, Charehsaz M, Gurdal EE, Sippl W, Kocabas F, Yarim M. Lead Optimization and Structure-Activity Relationship Studies on Myeloid Ecotropic Viral Integration Site 1 Inhibitor. J Med Chem 2021; 64:14448-14464. [PMID: 34542289 DOI: 10.1021/acs.jmedchem.1c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pivotal role of the myeloid ecotropic viral integration site 1 (MEIS1) transcriptional factor was reported in cardiac regeneration and hematopoietic stem-cell (HSC) regulation with our previous findings. MEIS1 as a promising target in the context of pharmacological inhibition, we identified a potent myeloid ecotropic viral integration site (MEIS) inhibitor, MEISi-1, to induce murine and human HSC expansion ex vivo and in vivo. In this work, we performed lead optimization on MEISi-1 by synthesizing 45 novel analogues. Structure-activity relationship studies revealed the significance of a para-methoxy group on ring A and a hydrophobic moiety at the meta position of ring B. Obtained biological data were supported by inhibitor docking and molecular dynamics simulation studies. Eleven compounds were depicted as potent inhibitors demonstrating a better inhibitory profile on MEIS1 and target genes Meis1, Hif-1α, and p21. Among those, 4h, 4f, and 4b were the most potent inhibitors. The predicted pharmacokinetics properties fulfill drug-likeness criteria. In addition, compounds exerted neither cytotoxicity on human dermal fibroblasts nor mutagenicity.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey.,German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden 01307, Germany
| | - Merve Uslu
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Sinem Helvacioglu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey
| | - Enise Ece Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey.,Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul 34755, Turkey
| |
Collapse
|
11
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
12
|
Fu SJ, Zhang JL, Xu HJ. A genome-wide identification and analysis of the homeobox genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21833. [PMID: 34288091 DOI: 10.1002/arch.21833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.
Collapse
Affiliation(s)
- Sheng-Jie Fu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Li Zhang
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Jun Xu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Lewin TD, Royall AH, Holland PWH. Dynamic Molecular Evolution of Mammalian Homeobox Genes: Duplication, Loss, Divergence and Gene Conversion Sculpt PRD Class Repertoires. J Mol Evol 2021; 89:396-414. [PMID: 34097121 PMCID: PMC8208926 DOI: 10.1007/s00239-021-10012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The majority of homeobox genes are highly conserved across animals, but the eutherian-specific ETCHbox genes, embryonically expressed and highly divergent duplicates of CRX, are a notable exception. Here we compare the ETCHbox genes of 34 mammalian species, uncovering dynamic patterns of gene loss and tandem duplication, including the presence of a large tandem array of LEUTX loci in the genome of the European rabbit (Oryctolagus cuniculus). Despite extensive gene gain and loss, all sampled species possess at least two ETCHbox genes, suggesting their collective role is indispensable. We find evidence for positive selection and show that TPRX1 and TPRX2 have been the subject of repeated gene conversion across the Boreoeutheria, homogenising their sequences and preventing divergence, especially in the homeobox region. Together, these results are consistent with a model where mammalian ETCHbox genes are dynamic in evolution due to functional overlap, yet have collective indispensable roles.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Amy H Royall
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
14
|
Zhang J, Zhang F, Fan J, Feng B. TGIF1 Knockdown Inhibits the Proliferation and Invasion of Gastric Cancer via AKT Signaling Pathway. Cancer Manag Res 2021; 13:2603-2612. [PMID: 33776478 PMCID: PMC7987261 DOI: 10.2147/cmar.s254348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastric cancer is a kind of cancer with high mortality. TGIF1, as a transcription inhibitor, can inhibit the transcription of specific genes. The purpose of this study was to investigate the role of TGIF1 in gastric cancer by knocking down TGIF1. Methods The expression of TGIF1 was detected by qPCR and Western blotting; CCK8 assay, colony formation assay, transwell, and wound-healing assay were used to evaluate the proliferation, migration, and invasion of gastric cancer cells; cell apoptosis was analyzed by flow cytometry and Hoechst-PI double staining; cell cycle was detected by flow cytometry. Gelatinase experiment was performed to detect the expression level of MMP-2; apoptosis related proteins and AKT singling pathway were assessed by Western blotting. Results Knockdown of TGIF1 inhibited the proliferation, migration, and invasion of gastric cancer cells and promoted apoptosis. TGIF1 knockdown down-regulated the expression levels of MMP-2, Bcl2, CyclinD1, and p-Akt, and up-regulated the expression levels of Bax and Caspase3. These data suggested that knockdown of TGIF1 inhibited the development of gastric cancer via AKT signaling pathway. Conclusion TGIF1 knockdown inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric cancer cells via the AKT signaling pathway, suggesting that TGIF1 is considered a potential inhibitor in gastric cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Pharmacy Department, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Feiyan Zhang
- Department of Outpatient Operating Room, Heze Municipal Hospital, Heze City, Shandong Province, 274000, People's Republic of China
| | - Jiye Fan
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Bin Feng
- Department of Gastrointestinal Surgery, Heze Municipal Hospital, Heze City, 274000 Shandong Province, People's Republic of China
| |
Collapse
|
15
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS One 2021; 16:e0246603. [PMID: 33539429 PMCID: PMC7861379 DOI: 10.1371/journal.pone.0246603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation and are grouped into classes and subclasses according to sequence similarities. Here, we analyzed the activities of the 20 members strong TALE homeobox gene class in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells (ILC). The resultant expression pattern comprised eleven genes and which we termed TALE-code enables discrimination of normal and aberrant activities of TALE homeobox genes in lymphoid malignancies. Subsequent expression analysis of TALE homeobox genes in public datasets of Hodgkin lymphoma (HL) patients revealed overexpression of IRX3, IRX4, MEIS1, MEIS3, PBX1, PBX4 and TGIF1. As paradigm we focused on PBX1 which was deregulated in about 17% HL patients. Normal PBX1 expression was restricted to hematopoietic stem cells and progenitors of T-cells and ILCs but absent in B-cells, reflecting its roles in stemness and early differentiation. HL cell line SUP-HD1 expressed enhanced PBX1 levels and served as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line therein showed a gain of the PBX1 locus at 1q23 which may underlie its aberrant expression. Comparative expression profiling analyses of HL patients and cell lines followed by knockdown experiments revealed NFIB and TLX2 as target genes activated by PBX1. HOX proteins operate as cofactors of PBX1. Accordingly, our data showed that HOXB9 overexpressed in HL coactivated TLX2 but not NFIB while activating TNFRSF9 without PBX1. Further downstream analyses showed that TLX2 activated TBX15 which operated anti-apoptotically. Taken together, we discovered a lymphoid TALE-code and identified an aberrant network around deregulated TALE homeobox gene PBX1 which may disturb B-cell differentiation in HL by reactivation of progenitor-specific genes. These findings may provide the framework for future studies to exploit possible vulnerabilities of malignant cells in therapeutic scenarios.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
17
|
Bueno N, Alvarez JM, Ordás RJ. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110691. [PMID: 33218649 DOI: 10.1016/j.plantsci.2020.110691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 05/27/2023]
Abstract
KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors with important roles in plant development that have been classified into two subfamilies with differential expression domains and functions. Studies in angiosperms have shown that class I members are related to the maintenance of meristem homeostasis and leaf development, whereas class II members promote differentiation of tissues and organs. However, little is known about its diversification and function in gymnosperms. By combining PCR-based detection and transcriptome data analysis, we identified four class I and two class II KNOX genes in Pinus pinaster. Expression analyses showed that class I members were mainly expressed in meristematic regions and differentiating tissues, with practically no expression in lateral organs, whereas expression of class II members was restricted to lateral organs. Furthermore, overexpression of P. pinaster KNOX genes in Arabidopsis thaliana caused similar phenotypic effects to those described for their angiosperms counterparts. This is the first time to our knowledge that functional analyses of class II members are reported in a conifer species. These results suggest a high conservation of the KNOX gene family throughout seed plants, as the functional differentiation of both subfamilies observed in angiosperms might be partially conserved in gymnosperms.
Collapse
Affiliation(s)
- Natalia Bueno
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain
| | - José Manuel Alvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain.
| | - Ricardo J Ordás
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Spain
| |
Collapse
|
18
|
Bruckmann C, Tamburri S, De Lorenzi V, Doti N, Monti A, Mathiasen L, Cattaneo A, Ruvo M, Bachi A, Blasi F. Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis. Sci Rep 2020; 10:16809. [PMID: 33033354 PMCID: PMC7545097 DOI: 10.1038/s41598-020-74032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Bruckmann
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| | - Simone Tamburri
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Valentina De Lorenzi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56124, Pisa, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Lisa Mathiasen
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Angela Cattaneo
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
- Cogentech S.R.L. Benefit Corporation IT, Via Adamello 16, 20139, Milan, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Angela Bachi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy
| | - Francesco Blasi
- IFOM (Foundation FIRC Institute of Molecular Oncology), Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
19
|
Duffraisse M, Paul R, Carnesecchi J, Hudry B, Banreti A, Reboulet J, Ajuria L, Lohmann I, Merabet S. Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the Drosophila fat body. J Cell Sci 2020; 133:jcs241943. [PMID: 32878938 DOI: 10.1242/jcs.241943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.
Collapse
Affiliation(s)
- Marilyne Duffraisse
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Rachel Paul
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Julie Carnesecchi
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Bruno Hudry
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Agnes Banreti
- Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Leiore Ajuria
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| | - Ingrid Lohmann
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France
| |
Collapse
|
20
|
Paul S, Zhang X, He JQ. Homeobox gene Meis1 modulates cardiovascular regeneration. Semin Cell Dev Biol 2019; 100:52-61. [PMID: 31623926 DOI: 10.1016/j.semcdb.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Regeneration of cardiomyocytes, endothelial cells and vascular smooth muscle cells (three major lineages of cardiac tissues) following myocardial infarction is the critical step to recover the function of the damaged heart. Myeloid ecotropic viral integration site 1 (Meis1) was first discovered in leukemic mice in 1995 and its biological function has been extensively studied in leukemia, hematopoiesis, the embryonic pattering of body axis, eye development and various genetic diseases, such as restless leg syndrome. It was found that Meis1 is highly associated with Hox genes and their cofactors to exert its regulatory effects on multiple intracellular signaling pathways. Recently with the advent of bioinformatics, biochemical methods and advanced genetic engineering tools, new function of Meis1 has been found to be involved in the cell cycle regulation of cardiomyocytes and endothelial cells. For example, inhibition of Meis1 expression increases the proliferative capacity of neonatal mouse cardiomyocytes, whereas overexpression of Meis1 results in the reduction in the length of cardiomyocyte proliferative window. Interestingly, downregulation of one of the circular RNAs, which acts downstream of Meis1 in the cardiomyocytes, promotes angiogenesis and restores the myocardial blood supply, thus reinforcing better regeneration of the damaged heart. It appears that Meis1 may play double roles in modulating proliferation and regeneration of cardiomyocytes and endothelial cells post-myocardial infarction. In this review, we propose to summarize the major findings of Meis1 in modulating fetal development and adult abnormalities, especially focusing on the recent discoveries of Meis1 in controlling the fate of cardiomyocytes and endothelial cells.
Collapse
Affiliation(s)
- Swagatika Paul
- Department of Biomedical Sciences & Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaonan Zhang
- Beijing Yulong Shengshi Biotechnology, Haidian District, Beijing, 100085, China
| | - Jia-Qiang He
- Department of Biomedical Sciences & Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
21
|
Jung IH, Jung DE, Chung YY, Kim KS, Park SW. Iroquois Homeobox 1 Acts as a True Tumor Suppressor in Multiple Organs by Regulating Cell Cycle Progression. Neoplasia 2019; 21:1003-1014. [PMID: 31450023 PMCID: PMC6715957 DOI: 10.1016/j.neo.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Iroquois homeobox 1 (IRX1) belongs to the Iroquois homeobox family known to play an important role during embryonic development. Interestingly, however, recent studies have suggested that IRX1 also acts as a tumor suppressor. Here, we use homozygous knockout mutants of zebrafish to demonstrate that the IRX1 gene is a true tumor suppressor gene and mechanism of the tumor suppression is mediated by repressing cell cycle progression. In this study, we found that knockout of zebrafish Irx1 gene induced hyperplasia and tumorigenesis in the multiple organs where the gene was expressed. On the other hands, overexpression of the IRX1 gene in human tumor cell lines showed delayed cell proliferation of the tumor cells. These results suggest that the IRX1 gene is truly involved in tumor suppression. In an attempt to identify the genes regulated by the transcription factor IRX1, we performed microarray assay using the cRNA obtained from the knockout mutants. Our result indicated that the highest fold change of the differential genes fell into the gene category of cell cycle regulation, suggesting that the significant canonical pathway of IRX1 in antitumorigenesis is done by regulating cell cycle. Experiment with cell cycle blockers treated to IRX1 overexpressing tumor cells showed that the IRX1 overexpression actually delayed the cell cycle. Furthermore, Western blot analysis with cyclin antibodies showed that IRX1 overexpression induced decrease of cyclin production in the cancer cells. In conclusion, our in vivo and in vitro studies revealed that IRX1 gene functionally acts as a true tumor suppressor, inhibiting tumor cell growth by regulating cell cycle.
Collapse
Affiliation(s)
- In Hye Jung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Dawoon E Jung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Yoon Chung
- Research Institute of SMT Bio, SMT Bio Co., Ltd., Seoul, Republic of Korea.
| | - Kyung-Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
23
|
The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors. Sci Rep 2019; 9:5664. [PMID: 30952900 PMCID: PMC6450960 DOI: 10.1038/s41598-019-42096-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
HOX proteins interact with PBX and MEIS cofactors, which belong to the TALE-class of homeodomain (HD)-containing transcription factors. Although the formation of HOX-PBX complexes depends on a unique conserved HOX motif called hexapeptide (HX), the additional presence of MEIS induces a remodeling of the interaction, leading to a global dispensability of the HX motif for trimeric complex formation in the large majority of HOX proteins. In addition, it was shown that the anterior HOXB3 and central HOXA7 and HOXC8 proteins could use different alternative TALE interaction motifs, with or without the HX motif, depending on the DNA-binding site and cell context. Here we dissected the molecular interaction properties of the human posterior HOXA9 protein with its TALE cofactors, PBX1 and MEIS1. Analysis was performed on different DNA-binding sites in vitro and by doing Bimolecular Fluorescence Complementation (BiFC) in different cell lines. Notably, we observed that the HOXA9-TALE interaction relies consistently on the redundant activity of the HX motif and two paralog-specific residues of the HOXA9 HD. Together with previous work, our results show that HOX proteins interact with their generic TALE cofactors through various modalities, ranging from unique and context-independent to versatile and context-dependent TALE binding interfaces.
Collapse
|
24
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S, Worden AZ, Lee JH. Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 2018; 16:136. [PMID: 30396330 PMCID: PMC6219170 DOI: 10.1186/s12915-018-0605-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. Results We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. Conclusions Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization. Electronic supplementary material The online version of this article (10.1186/s12915-018-0605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Gary Lui
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Barnas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
26
|
Bischof J, Duffraisse M, Furger E, Ajuria L, Giraud G, Vanderperre S, Paul R, Björklund M, Ahr D, Ahmed AW, Spinelli L, Brun C, Basler K, Merabet S. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife 2018; 7:38853. [PMID: 30247122 PMCID: PMC6177257 DOI: 10.7554/elife.38853] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called ‘multicolor BiFC library’, which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | | | | | | | - Christine Brun
- INSERM, Aix-Marseille Université, Marseille, France.,TAGC, Centre National de la Recherche Scientifique, Marseille, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
27
|
Wotton D, Taniguchi K. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:128-139. [PMID: 29749689 DOI: 10.1002/ajmg.c.31612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is a frequent human forebrain developmental disorder with both genetic and environmental causes. Multiple loci have been associated with HPE in humans, and potential causative genes at 14 of these loci have been identified. Although TGIF1 (originally TGIF, for Thymine Guanine-Interacting Factor) is among the most frequently screened genes in HPE patients, an understanding of how mutations in this gene contribute to the pathogenesis of HPE has remained elusive. However, mouse models based on loss of function of Tgif1, and the related Tgif2 gene, have shed some light on how human TGIF1 variants might cause HPE. Functional analyses of TGIF proteins and of TGIF1 single nucleotide variants from HPE patients, combined with analysis of forebrain development in mouse embryos lacking both Tgif1 and Tgif2, suggest that TGIFs regulate the transforming growth factor ß/Nodal signaling pathway and sonic hedgehog (SHH) signaling independently. Although, some developmental processes that are regulated by TGIFs may be Nodal-dependent, it appears that the forebrain patterning defects and HPE in Tgif mutant mouse embryos is primarily due to altered signaling via the Shh pathway.
Collapse
Affiliation(s)
- David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
28
|
Zhu J, Li S, Ramelot TA, Kennedy MA, Liu M, Yang Y. Structural insights into the impact of two holoprosencephaly-related mutations on human TGIF1 homeodomain. Biochem Biophys Res Commun 2018; 496:575-581. [PMID: 29355528 DOI: 10.1016/j.bbrc.2018.01.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/17/2023]
Abstract
Human protein TGIF1 is an essential regulator of cell fate with broad roles in different tissues, and has been implicated in holoprosencephaly (HPE) and many cancers. The function of TGIF1 in transcriptional regulation depends on its three-amino acid loop extension (TALE) type of homeodomain (HD). Two missense mutations that led to P192A and R219C substitutions in TGIF1-HD were previously found in HPE patients and suggested to be the causes for these cases. However, how these mutations affected TGIF1 function has not been investigated from a structural view. Here, we investigated the roles of P192 and R219 in TGIF1-HD structure packing through determining the NMR structure of TGIF1-HD. Surprisingly, P192 and R219 were found to play roles in packing α1 and α2 to α3 together with A190 and F215 through side-chain interactions. Circular dichroism (CD) showed that P192A and R219C mutants displayed structural change and less folding compared with wild-type TGIF1-HD, and 1H-15N HSQC spectrum of P192A mutant exhibited chemical shift perturbations in all three helices of TGIF1-HD. Thus, it is suggested that P192A and R219C mutations led to structure disturbances of TGIF1-HD, which subsequently reduced the DNA-binding affinity of TGIF1-HD by 23-fold and 10-fold respectively, as revealed by the isothermal titration calorimetry (ITC) experiments. Our study provides structural insights of the probable pathogenesis mechanism of two TGIF1-related HPE cases, and evidences for the roles of P192 and R219 in HD folding.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, and the Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Dard A, Reboulet J, Jia Y, Bleicher F, Duffraisse M, Vanaker JM, Forcet C, Merabet S. Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Chang WH, Lai AG. A TALE of shrimps: Genome-wide survey of homeobox genes in 120 species from diverse crustacean taxa. F1000Res 2018; 7:71. [PMID: 29899973 PMCID: PMC5968366 DOI: 10.12688/f1000research.13636.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 01/19/2023] Open
Abstract
The homeodomain-containing proteins are an important group of transcription factors found in most eukaryotes including animals, plants and fungi. Homeobox genes are responsible for a wide range of critical developmental and physiological processes, ranging from embryonic development, innate immune homeostasis to whole-body regeneration. With continued fascination on this key class of proteins by developmental and evolutionary biologists, multiple efforts have thus far focused on the identification and characterization of homeobox orthologs from key model organisms in attempts to infer their evolutionary origin and how this underpins the evolution of complex body plans. Despite their importance, the genetic complement of homeobox genes has yet been described in one of the most valuable groups of animals representing economically important food crops. With crustacean aquaculture being a growing industry worldwide, it is clear that systematic and cross-species identification of crustacean homeobox orthologs is necessary in order to harness this genetic circuitry for the improvement of aquaculture sustainability. Using publicly available transcriptome data sets, we identified a total of 4183 putative homeobox genes from 120 crustacean species that include food crop species, such as lobsters, shrimps, crayfish and crabs. Additionally, we identified 717 homeobox orthologs from 6 other non-crustacean arthropods, which include the scorpion, deer tick, mosquitoes and centipede. This high confidence set of homeobox genes will now serve as a key resource to the broader community for future functional and comparative genomics studies.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
31
|
Somerville TDD, Simeoni F, Chadwick JA, Williams EL, Spencer GJ, Boros K, Wirth C, Tholouli E, Byers RJ, Somervaille TCP. Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia. Cell Rep 2018; 22:638-652. [PMID: 29346763 PMCID: PMC5792454 DOI: 10.1016/j.celrep.2017.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/22/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML), ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs) in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.
Collapse
Affiliation(s)
- Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - John A Chadwick
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Emma L Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Katalin Boros
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Christopher Wirth
- Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Eleni Tholouli
- Department of Haematology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Richard J Byers
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
32
|
Hu W, Xin Y, Zhang L, Hu J, Sun Y, Zhao Y. Iroquois Homeodomain transcription factors in ventricular conduction system and arrhythmia. Int J Med Sci 2018; 15:808-815. [PMID: 30008591 PMCID: PMC6036080 DOI: 10.7150/ijms.25140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023] Open
Abstract
Iroquois homeobox genes, Irx, encode cardiac transcription factors, Irx1-6 in most mammals. These six transcription factors are expressed in different patterns mainly in the ventricular part of the heart. Existing researches show that Irx genes play key roles in the differentiation and development of ventricular conduction system and the establishment and maintenance of gradient expression of potassium channels, Kv4.2. Our main focus of this review is on the recent advances in the discovery of above-mentioned genes and the function of the encoding products, how Irx genes establish ventricular conduction system and regulate ventricular repolarization, how the individual and complementary functions can be verified to complement our cognition and leads to novel therapeutic approaches.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanguo Xin
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhang
- Department of Cardiology, Jinqiu Hosipital Of Liaoning Province, Shenyang, Liaoning110001, China
| | - Jian Hu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yingxian Sun
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yinan Zhao
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
33
|
Expansion of TALE homeobox genes and the evolution of spiralian development. Nat Ecol Evol 2017; 1:1942-1949. [PMID: 29085062 DOI: 10.1038/s41559-017-0351-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022]
Abstract
Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.
Collapse
|
34
|
Turetzek N, Khadjeh S, Schomburg C, Prpic NM. Rapid diversification of homothorax expression patterns after gene duplication in spiders. BMC Evol Biol 2017; 17:168. [PMID: 28709396 PMCID: PMC5513375 DOI: 10.1186/s12862-017-1013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Gene duplications provide genetic material for the evolution of new morphological and physiological features. One copy can preserve the original gene functions while the second copy may evolve new functions (neofunctionalisation). Gene duplications may thus provide new genes involved in evolutionary novelties. Results We have studied the duplicated homeobox gene homothorax (hth) in the spider species Parasteatoda tepidariorum and Pholcus phalangioides and have compared these data with previously published data from additional spider species. We show that the expression pattern of hth1 is highly conserved among spiders, consistent with the notion that this gene copy preserves the original hth functions. By contrast, hth2 has a markedly different expression profile especially in the prosomal appendages. The pattern in the pedipalps and legs consists of several segmental rings, suggesting a possible role of hth2 in limb joint development. Intriguingly, however, the hth2 pattern is much less conserved between the species than hth1 and shows a species specific pattern in each species investigated so far. Conclusions We hypothesise that the hth2 gene has gained a new patterning function after gene duplication, but has then undergone a second phase of diversification of its new role in the spider clade. The evolution of hth2 may thus provide an interesting example for a duplicated gene that has not only contributed to genetic diversity through neofunctionalisation, but beyond that has been able to escape evolutionary conservation after neofunctionalisation thus forming the basis for further genetic diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1013-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natascha Turetzek
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Current address: Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Zelluläre Neurobiologie, 37077, Göttingen, Germany
| | - Sara Khadjeh
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Present address: Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Christoph Schomburg
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.
| |
Collapse
|
35
|
Guo H, Chu Y, Wang L, Chen X, Chen Y, Cheng H, Zhang L, Zhou Y, Yang FC, Cheng T, Xu M, Zhang X, Zhou J, Yuan W. PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia. Int J Cancer 2017; 141:324-335. [PMID: 28411381 DOI: 10.1002/ijc.30739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Interaction of HOXA9/MEIS1/PBX3 is responsible for hematopoietic system transformation in MLL-rearranged (MLL-r) leukemia. Of these genes, HOXA9 has been shown to be critical for leukemia cell survival, while MEIS1 has been identified as an essential regulator for leukemia stem cell (LSC) maintenance. Although significantly high expression of PBX3 was observed in clinical acute myeloid leukemia (AML) samples, the individual role of PBX3 in leukemia development is still largely unknown. In this study, we explored the specific role of PBX3 and its associated regulatory network in leukemia progression. By analyzing the clinical database, we found that the high expression of PBX3 is significantly correlated with a poor prognosis in AML patients. ChIP-Seq/qPCR analysis in MLL-r mouse models revealed aberrant epigenetic modifications with increased H3K79me2, and decreased H3K9me3 and H3K27me3 levels in LSCs, which may account for the high expression levels of Pbx3. To further examine the role of Pbx3 in AML maintenance and progression, we used the CRISPR/Cas9 system to delete Pbx3 in leukemic cells in the MLL-AF9 induced AML mouse model. We found that Pbx3 deletion significantly prolonged the survival of leukemic mice and decreased the leukemia burden by decreasing the capacity of LSCs and promoting LSC apoptosis. In conclusion, we found that PBX3 is epigenetically aberrant in the LSCs of MLL-r AML and is essential for leukemia development. Significantly, the differential expression of PBX3 in normal and malignant hematopoietic cells suggests PBX3 as a potential prognostic marker and therapeutic target for MLL-r leukemia.
Collapse
Affiliation(s)
- Huidong Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Le Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xing Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangpeng Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng-Chun Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL
| | - Xiaobing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Medicine, Loma Linda University, Loma Linda, CA
| | - Jianfeng Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
36
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
37
|
Brechka H, Bhanvadia RR, VanOpstall C, Vander Griend DJ. HOXB13 mutations and binding partners in prostate development and cancer: Function, clinical significance, and future directions. Genes Dis 2017; 4:75-87. [PMID: 28798948 PMCID: PMC5548135 DOI: 10.1016/j.gendis.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The recent and exciting discovery of germline HOXB13 mutations in familial prostate cancer has brought HOX signaling to the forefront of prostate cancer research. An enhanced understanding of HOX signaling, and the co-factors regulating HOX protein specificity and transcriptional regulation, has the high potential to elucidate novel approaches to prevent, diagnose, stage, and treat prostate cancer. Toward our understanding of HOX biology in prostate development and prostate cancer, basic research in developmental model systems as well as other tumor sites provides a mechanistic framework to inform future studies in prostate biology. Here we describe our current understanding of HOX signaling in genitourinary development and cancer, current clinical data of HOXB13 mutations in multiple cancers including prostate cancer, and the role of HOX protein co-factors in development and cancer. These data highlight numerous gaps in our understanding of HOX function in the prostate, and present numerous potentially impactful mechanistic and clinical opportunities for future investigation.
Collapse
Affiliation(s)
- Hannah Brechka
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Raj R Bhanvadia
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Calvin VanOpstall
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Donald J Vander Griend
- The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA. Sci Rep 2017; 7:40665. [PMID: 28094776 PMCID: PMC5240567 DOI: 10.1038/srep40665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 01/13/2023] Open
Abstract
PREP1 and PBX1 are homeodomain (HD) transcription factors that play crucial roles in embryonic development. Here, we present the first biophysical characterization of a PREP1 HD, and the NMR spectroscopic study of its DNA binding pocket. The data show that residues flanking the HD participate in DNA binding. The kinetic parameters for DNA binding of individual PREP1 and PBX1 HDs, and of their combination, show that isolated PREP1 and PBX1 HDs bind to DNA in a cooperative manner. A novel PREP1 motif, flanking the HD at the C-terminus, is required for cooperativity.
Collapse
|
39
|
|
40
|
The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet 2016; 12:e1006441. [PMID: 27918583 PMCID: PMC5137874 DOI: 10.1371/journal.pgen.1006441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction.
Collapse
|
41
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Corral-San-Miguel R, Rodríguez-Gallardo L, Marín F, Puelles L, Aroca P, Hidalgo-Sánchez M. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 2016; 222:2071-2092. [PMID: 27783221 DOI: 10.1007/s00429-016-1326-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Lucía Rodríguez-Gallardo
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain.
| |
Collapse
|
42
|
Mathiasen L, Valentini E, Boivin S, Cattaneo A, Blasi F, Svergun DI, Bruckmann C. The flexibility of a homeodomain transcription factor heterodimer and its allosteric regulation by DNA binding. FEBS J 2016; 283:3134-54. [PMID: 27390177 DOI: 10.1111/febs.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED Transcription factors are known to modify the DNA that they bind. However, DNA can also serve as an allosteric ligand whose binding modifies the conformation of transcriptional regulators. Here, we describe how heterodimer PBX1:PREP1, formed by proteins playing major roles in embryonic development and tumorigenesis, undergoes an allosteric transition upon DNA binding. We demonstrate through a number of biochemical and biophysical methods that PBX1:PREP1 exhibits a structural change upon DNA binding. Small-angle X-ray scattering (SAXS), circular dichroism (CD), isothermal titration calorimetry (ITC), and limited proteolysis demonstrate a different shape, α-helical content, thermodynamic behavior, and solution environment of the holo-complex (with DNA) compared to the apo-complex (without DNA). Given that PBX1 as such does not have a defined DNA selectivity, structural changes upon DNA binding become major factors in the function of the PBX1:PREP1 complex. The observed changes are mapped at both the amino- and carboxy-terminal regions of the two proteins thereby providing important insights to determine how PBX1:PREP1 dimer functions. DATABASE Small-angle scattering data are available in SASBDB under accession numbers SASDAP7, SASDAQ7, and SASDAR7.
Collapse
Affiliation(s)
- Lisa Mathiasen
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | | | - Angela Cattaneo
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Francesco Blasi
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | | | - Chiara Bruckmann
- FIRC (Foundation for Italian Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
43
|
Ferrier DEK. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 2016; 32:334-347. [PMID: 27066866 DOI: 10.1016/j.tig.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| | | |
Collapse
|
45
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
46
|
Merabet S, Galliot B. The TALE face of Hox proteins in animal evolution. Front Genet 2015; 6:267. [PMID: 26347770 PMCID: PMC4539518 DOI: 10.3389/fgene.2015.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.
Collapse
Affiliation(s)
- Samir Merabet
- Centre National de Recherche Scientifique, Institut de Génomique Fonctionnelle de Lyon Lyon, France ; Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon Lyon, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, Institute of Genetics and Genomics in Geneva, University of Geneva Geneva, Switzerland
| |
Collapse
|
47
|
Hench J, Henriksson J, Abou-Zied AM, Lüppert M, Dethlefsen J, Mukherjee K, Tong YG, Tang L, Gangishetti U, Baillie DL, Bürglin TR. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS One 2015; 10:e0126947. [PMID: 26024448 PMCID: PMC4448998 DOI: 10.1371/journal.pone.0126947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Homeobox genes play crucial roles for the development of multicellular eukaryotes. We have generated a revised list of all homeobox genes for Caenorhabditis elegans and provide a nomenclature for the previously unnamed ones. We show that, out of 103 homeobox genes, 70 are co-orthologous to human homeobox genes. 14 are highly divergent, lacking an obvious ortholog even in other Caenorhabditis species. One of these homeobox genes encodes 12 homeodomains, while three other highly divergent homeobox genes encode a novel type of double homeodomain, termed HOCHOB. To understand how transcription factors regulate cell fate during development, precise spatio-temporal expression data need to be obtained. Using a new imaging framework that we developed, Endrov, we have generated spatio-temporal expression profiles during embryogenesis of over 60 homeobox genes, as well as a number of other developmental control genes using GFP reporters. We used dynamic feedback during recording to automatically adjust the camera exposure time in order to increase the dynamic range beyond the limitations of the camera. We have applied the new framework to examine homeobox gene expression patterns and provide an analysis of these patterns. The methods we developed to analyze and quantify expression data are not only suitable for C. elegans, but can be applied to other model systems or even to tissue culture systems.
Collapse
Affiliation(s)
- Jürgen Hench
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Henriksson
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Akram M. Abou-Zied
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Martin Lüppert
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Johan Dethlefsen
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Krishanu Mukherjee
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Yong Guang Tong
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Lois Tang
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| | - Umesh Gangishetti
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - David L. Baillie
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Thomas R. Bürglin
- Dept. of Biosciences and Nutrition & Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
- School of Life Sciences, Södertörns Högskola, Huddinge, Sweden
| |
Collapse
|
48
|
Rodríguez-Esteban G, González-Sastre A, Rojo-Laguna JI, Saló E, Abril JF. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea. BMC Genomics 2015; 16:361. [PMID: 25952370 PMCID: PMC4494696 DOI: 10.1186/s12864-015-1533-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. RESULTS Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. CONCLUSIONS DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Esteban
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Alejandro González-Sastre
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - José Ignacio Rojo-Laguna
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Emili Saló
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Josep F Abril
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
49
|
Baëza M, Viala S, Heim M, Dard A, Hudry B, Duffraisse M, Rogulja-Ortmann A, Brun C, Merabet S. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo. eLife 2015; 4. [PMID: 25869471 PMCID: PMC4392834 DOI: 10.7554/elife.06034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI:http://dx.doi.org/10.7554/eLife.06034.001 In all animals, it is important that cells are correctly organised into tissues and organs. This organisation starts in the embryo, and cells are instructed to perform different roles depending on their position within the body. A family of proteins called the Hox proteins coordinates the organisation of the cells in the animal embryo by binding to and controlling the expression of specific genes. To properly control their target genes, Hox proteins need to interact with other proteins called transcription factors that can also bind to the genes. However, only a few of these transcription factors have been identified so far, and it is not clear how Hox proteins are able to interact with them. Here, Baëza, Viala, Heim et al. identified several more transcription factors that can bind to the Hox proteins in fruit fly embryos. The experiments show that Hox proteins are able to bind to many transcription factors that are very different from each other. Baëza, Viala, Heim et al. also show that two short sections within the Hox proteins known as short linear motifs are important for controlling these interactions. A fly Hox protein that was missing these motifs was able to interact with new transcription factors. This inhibitory role was found in Hox proteins from mice and sea anemones, suggesting that these motifs may play the same role in all animals. Baëza, Viala, Heim et al.'s findings challenge the traditional view of the role of the short linear motifs in interactions between proteins. Also, the findings provide an alternative explanation for how the Hox proteins are only able to interact with particular transcription factors in animal embryos. The next step will be to find out whether the inhibitory role of short linear motifs could more generally apply to many other protein families. DOI:http://dx.doi.org/10.7554/eLife.06034.002
Collapse
Affiliation(s)
- Manon Baëza
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Séverine Viala
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Marjorie Heim
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Amélie Dard
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marilyne Duffraisse
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | | | - Christine Brun
- Technological Advances for Genomics and clinics, Institut national de la santé et de la recherche médicale, University Aix-Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Samir Merabet
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| |
Collapse
|
50
|
Laurent A, Calabrese M, Warnatz HJ, Yaspo ML, Tkachuk V, Torres M, Blasi F, Penkov D. ChIP-Seq and RNA-Seq analyses identify components of the Wnt and Fgf signaling pathways as Prep1 target genes in mouse embryonic stem cells. PLoS One 2015; 10:e0122518. [PMID: 25875616 PMCID: PMC4395233 DOI: 10.1371/journal.pone.0122518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/11/2015] [Indexed: 01/18/2023] Open
Abstract
The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites. Moreover, in ES cells Prep1 still binds mostly to promoters, as in total embryo trunk but, among the peaks bound exclusively in ES cells, the percentage of enhancers was three-fold higher. RNA-seq identifies about 1800 genes down-regulated in Prep1-/- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular essential components of the Wnt and Fgf pathways. These data agree with aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells with a deficient embryoid bodies (EBs) formation and differentiation. Re-establishment of the Prep1 level rescues the phenotype.
Collapse
Affiliation(s)
- Audrey Laurent
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Manuela Calabrese
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vsevolod Tkachuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Miguel Torres
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francesco Blasi
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
| | - Dmitry Penkov
- IFOM (FIRC Institute of Molecular Oncology), IFOM-IEO-Campus, Milan, Italy
- Department of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia
| |
Collapse
|