1
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K. Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited. PHYSIOLOGIA PLANTARUM 2020; 168:630-647. [PMID: 31268560 PMCID: PMC7065118 DOI: 10.1111/ppl.13008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 05/14/2023]
Abstract
In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | | | - Björn M. Hallström
- Science for Life LaboratoryKTH – Royal Institute of TechnologyStockholmSweden
| | | | - Karin Broberg
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Su Z, Townsend JP. Utility of characters evolving at diverse rates of evolution to resolve quartet trees with unequal branch lengths: analytical predictions of long-branch effects. BMC Evol Biol 2015; 15:86. [PMID: 25968460 PMCID: PMC4429678 DOI: 10.1186/s12862-015-0364-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The detection and avoidance of "long-branch effects" in phylogenetic inference represents a longstanding challenge for molecular phylogenetic investigations. A consequence of parallelism and convergence, long-branch effects arise in phylogenetic inference when there is unequal molecular divergence among lineages, and they can positively mislead inference based on parsimony especially, but also inference based on maximum likelihood and Bayesian approaches. Long-branch effects have been exhaustively examined by simulation studies that have compared the performance of different inference methods in specific model trees and branch length spaces. RESULTS In this paper, by generalizing the phylogenetic signal and noise analysis to quartets with uneven subtending branches, we quantify the utility of molecular characters for resolution of quartet phylogenies via parsimony. Our quantification incorporates contributions toward the correct tree from either signal or homoplasy (i.e. "the right result for either the right reason or the wrong reason"). We also characterize a highly conservative lower bound of utility that incorporates contributions to the correct tree only when they correspond to true, unobscured parsimony-informative sites (i.e. "the right result for the right reason"). We apply the generalized signal and noise analysis to classic quartet phylogenies in which long-branch effects can arise due to unequal rates of evolution or an asymmetrical topology. Application of the analysis leads to identification of branch length conditions in which inference will be inconsistent and reveals insights regarding how to improve sampling of molecular loci and taxa in order to correctly resolve phylogenies in which long-branch effects are hypothesized to exist. CONCLUSIONS The generalized signal and noise analysis provides analytical prediction of utility of characters evolving at diverse rates of evolution to resolve quartet phylogenies with unequal branch lengths. The analysis can be applied to identifying characters evolving at appropriate rates to resolve phylogenies in which long-branch effects are hypothesized to occur.
Collapse
Affiliation(s)
- Zhuo Su
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Biostatistics, Yale University, New Haven, CT, 06520, USA.
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Department of Biostatistics, Yale School of Public Health, 135 College St #222., New Haven, CT, 06511, United States of America.
| |
Collapse
|
5
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 2011; 11:105. [PMID: 21501489 PMCID: PMC3101172 DOI: 10.1186/1471-2148-11-105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. RESULTS We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. CONCLUSIONS Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo, Japan.
| | | | | | | | | |
Collapse
|
7
|
Palpitomonas bilix gen. et sp. nov.: A Novel Deep-branching Heterotroph Possibly Related to Archaeplastida or Hacrobia. Protist 2010; 161:523-38. [DOI: 10.1016/j.protis.2010.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/31/2010] [Indexed: 11/19/2022]
|
8
|
Sun G, Yang Z, Ishwar A, Huang J. Algal genes in the closest relatives of animals. Mol Biol Evol 2010; 27:2879-89. [PMID: 20627874 DOI: 10.1093/molbev/msq175] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The spread of photosynthesis is one of the most important but controversial topics in eukaryotic evolution. Because of massive gene transfer from plastids to the nucleus and because of the possibility that plastids have been lost in evolution, algal genes in aplastidic organisms often are interpreted as footprints of photosynthetic ancestors. These putative plastid losses, in turn, have been cited as support for scenarios involving the spread of plastids in broadscale eukaryotic evolution. Phylogenomic analyses identified more than 100 genes of possible algal origin in Monosiga, a unicellular species from choanoflagellates, a group considered to be the closest protozoan relatives of animals and to be primitively heterotrophic. The vast majority of these algal genes appear to be derived from haptophytes, diatoms, or green plants. Furthermore, more than 25% of these algal genes are ultimately of prokaryotic origin and were spread secondarily to Monosiga. Our results show that the presence of algal genes may be expected in many phagotrophs or taxa of phagotrophic ancestry and therefore does not necessarily represent evidence of plastid losses. The ultimate prokaryotic origin of some algal genes and their simultaneous presence in both primary and secondary photosynthetic eukaryotes either suggest recurrent gene transfer events under specific environments or support a more ancient origin of primary plastids.
Collapse
Affiliation(s)
- Guiling Sun
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | | | | | | |
Collapse
|
9
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
10
|
Evolutionary History and Taxonomy of Red Algae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3795-4_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Deschamps P, Moreira D. Signal Conflicts in the Phylogeny of the Primary Photosynthetic Eukaryotes. Mol Biol Evol 2009; 26:2745-53. [DOI: 10.1093/molbev/msp189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 2009; 53:872-80. [PMID: 19698794 DOI: 10.1016/j.ympev.2009.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/15/2009] [Accepted: 08/13/2009] [Indexed: 11/16/2022]
Abstract
The phylogenetic positions of the primary photosynthetic eukaryotes, or Archaeplastida (green plants, red algae, and glaucophytes) and the secondary photosynthetic chromalveolates, Haptophyta, vary depending on the data matrices used in the previous nuclear multigene phylogenetic studies. Here, we deduced the phylogeny of three groups of Archaeplastida and Haptophyta on the basis of sequences of the multiple slowly evolving nuclear genes and reduced the gaps or missing data, especially in glaucophyte operational taxonomic units (OTUs). The present multigene phylogenetic analyses resolved that Haptophyta and two other groups of Chromalveolata, stramenopiles and Alveolata, form a monophyletic group that is sister to the green plants and that the glaucophytes and red algae are basal to the clade composed of green plants and Chromalveolata. The bootstrap values supporting these phylogenetic relationships increased with the exclusion of long-branched OTUs. The close relationship between green plants and Chromalveolata is further supported by the common replacement in two plastid-targeted genes.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Maruyama S, Matsuzaki M, Misawa K, Nozaki H. Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evol Biol 2009; 9:197. [PMID: 19664294 PMCID: PMC3087521 DOI: 10.1186/1471-2148-9-197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited. RESULTS We identified 12 gene families with cyanobacterial ancestry in the genomes of a taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria [Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta]) using a novel phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata). We failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes. CONCLUSION Our data demonstrate that a considerable number of genes with cyanobacterial ancestry have contributed to the genome composition of the plastid-lacking protists, especially bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that all genes identified in this study constitute multi-gene families with punctate distribution among eukaryotes, suggesting that the transferred genes could have survived through rounds of gene family expansion and differential reduction.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Motomichi Matsuzaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuharu Misawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Inagaki Y, Nakajima Y, Sato M, Sakaguchi M, Hashimoto T. Gene Sampling Can Bias Multi-Gene Phylogenetic Inferences: The Relationship between Red Algae and Green Plants as a Case Study. Mol Biol Evol 2009; 26:1171-8. [DOI: 10.1093/molbev/msp036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Kim E, Graham LE. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 2008; 3:e2621. [PMID: 18612431 PMCID: PMC2440802 DOI: 10.1371/journal.pone.0002621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/02/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
16
|
Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. BMC Evol Biol 2008; 8:151. [PMID: 18485228 PMCID: PMC2416651 DOI: 10.1186/1471-2148-8-151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive. Results Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses. Conclusion We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.
Collapse
|
17
|
Huang J, Gogarten JP. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 2008; 8:R99. [PMID: 17547748 PMCID: PMC2394758 DOI: 10.1186/gb-2007-8-6-r99] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/06/2007] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
Phylogenomic analyses of the red alga Cyanidioschyzon merolae shows that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, suggesting an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. Background Ancient endosymbioses are responsible for the origins of mitochondria and plastids, and they contribute to the divergence of several major eukaryotic groups. Although chlamydiae, a group of obligate intracellular bacteria, are not found in plants, an unexpected number of chlamydial genes are most similar to plant homologs, which, interestingly, often contain a plastid-targeting signal. This observation has prompted several hypotheses, including gene transfer between chlamydiae and plant-related groups and an ancestral relationship between chlamydiae and cyanobacteria. Results We conducted phylogenomic analyses of the red alga Cyanidioschyzon merolae to identify genes specifically related to chlamydial homologs. We show that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, with the donor most similar to the environmental Protochlamydia. Such an unusually high number of transferred genes suggests an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. We hypothesize that three organisms were involved in establishing the primary photosynthetic lineage: the eukaryotic host cell, the cyanobacterial endosymbiont that provided photosynthetic capability, and a chlamydial endosymbiont or parasite that facilitated the establishment of the cyanobacterial endosymbiont. Conclusion Our findings provide a glimpse into the complex interactions that were necessary to establish the primary endosymbiotic relationship between plastid and host cytoplasms, and thereby explain the rarity with which long-term successful endosymbiotic relationships between heterotrophs and photoautotrophs were established. Our data also provide strong and independent support for a common origin of all primary photosynthetic eukaryotes and of the plastids they harbor.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
- NASA Astrobiology Institute at Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA
| |
Collapse
|
18
|
Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 2008; 8:14. [PMID: 18205932 PMCID: PMC2249577 DOI: 10.1186/1471-2148-8-14] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 01/18/2008] [Indexed: 11/17/2022] Open
Abstract
Background Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1) to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2) to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support. Conclusion Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the eukaryotic tree of life, which will be critical for resolving their phylogenetic interrelationships.
Collapse
Affiliation(s)
- Hwan Su Yoon
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shpak M, Kugelman JR, Varela-Ramirez A, Aguilera RJ. The phylogeny and evolution of deoxyribonuclease II: an enzyme essential for lysosomal DNA degradation. Mol Phylogenet Evol 2007; 47:841-54. [PMID: 18226927 DOI: 10.1016/j.ympev.2007.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 11/19/2022]
Abstract
Deoxyribonuclease II (DNase II) is an endonuclease with optimal activity at low pH, localized within the lysosomes of higher eukaryotes. The origin of this enzyme remains in dispute, and its phylogenetic distribution leaves many questions about its subsequent evolutionary history open. Earlier studies have documented its presence in various metazoans, as well as in Dictyostelium, Trichomonas and, anomalously, a single genus of bacteria (Burkholderia). This study makes use of searches of the genomes of various organisms against known DNase II query sequences, in order to determine the likely point of origin of this enzyme among cellular life forms. Its complete absence from any other bacteria makes prokaryotic origin unlikely. Convincing evidence exists for DNase II homologs in Alveolates such as Paramecium, Heterokonts such as diatoms and water molds, and even tentative matches in green algae. Apparent absences include red algae, plants, fungi, and a number of parasitic organisms. Based on this phylogenetic distribution and hypotheses of eukaryotic relationships, the most probable explanation is that DNase II has been subject to multiple losses. The point of origin is debatable, though its presence in Trichomonas and perhaps in other evolutionarily basal "Excavate" protists such as Reclinomonas, strongly support the hypothesis that DNase II arose as a plesiomorphic trait in eukaryotes. It probably evolved together with phagocytosis, specifically to facilitate DNA degradation and bacteriotrophy. The various absences in many eukaryotic lineages are accounted for by loss of phagotrophic function in intracellular parasites, in obligate autotrophs, and in saprophytes.
Collapse
Affiliation(s)
- Max Shpak
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | | | | | | |
Collapse
|
20
|
Stiller JW. Plastid endosymbiosis, genome evolution and the origin of green plants. TRENDS IN PLANT SCIENCE 2007; 12:391-6. [PMID: 17698402 DOI: 10.1016/j.tplants.2007.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 06/15/2007] [Accepted: 08/03/2007] [Indexed: 05/16/2023]
Abstract
Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
21
|
Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M. Phylogeny of Primary Photosynthetic Eukaryotes as Deduced from Slowly Evolving Nuclear Genes. Mol Biol Evol 2007; 24:1592-5. [PMID: 17488739 DOI: 10.1093/molbev/msm091] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Le Gall L, Saunders GW. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 2006; 43:1118-30. [PMID: 17197199 DOI: 10.1016/j.ympev.2006.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/06/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022]
Abstract
Previous studies have indicated that resolution of supraordinal relationships in the red algal class Florideophyceae will require additional characters, improved taxon sampling and optimized methods of phylogenetic analysis. To this end, we have generated data to introduce a novel nuclear marker to red algal systematics, elongation factor 2, as well as expanded ribosomal DNA alignments (SSU and LSU) to include 62 ingroup and 4 outgroup taxa. Both single gene and combined data sets were considered. Our analyses resulted in better resolution of both deep as well as more recent divergences, with higher support realized at many nodes. Distance, parsimony and bayesian analyses of the single gene and combined data sets indicated that the subclasses Hildenbrandiophycidae, Ahnfeltiophycidae and Rhodymeniophycidae were monophyletic, whereas the Nemaliophycidae was polyphyletic: one lineage containing the Rhodogorgonales and Corallinales (CR complex); and the other containing the Acrochaetiales, Balbianiales, Balliales, Batrachospermales, Colaconematales, Nemaliales, Palmariales, and Thoreales (APB complex). Based on these results a new subclass of the Florideophyceae, the Corallinophycidae subclassis nov., is proposed to accommodate the Corallinales and Rhodogorgonales. In addition to resolving supraordinal relationships, the present analyses resolved some novel ordinal affinities within the Nemaliophycidae and Rhodymeniophycidae, which are discussed here.
Collapse
Affiliation(s)
- Line Le Gall
- CEMAR, Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | | |
Collapse
|
23
|
Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA. Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2006; 2:e220. [PMID: 17194223 PMCID: PMC1713255 DOI: 10.1371/journal.pgen.0020220] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022] Open
Abstract
Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. Evolutionary perspectives, including the classification of living organisms, provide the unifying scaffold on which biological knowledge is assembled. Researchers in many areas of biology use evolutionary classifications (taxonomy) in many ways, including as a means for interpreting the origin of evolutionary innovations, as a framework for comparative genetics/genomics, and as the basis for drawing broad conclusions about the diversity of living organisms. Thus, it is essential that taxonomy be robust. Here the authors evaluate the stability of and support for the current classification system of eukaryotic cells (cells with nuclei) in which eukaryotes are divided into six kingdom level categories, or supergroups. These six supergroups unite diverse microbial and macrobial eukaryotic lineages, including the well-known groups of plants, animals, and fungi. The authors assess the stability of supergroup classifications through time and reveal a rapidly changing taxonomic landscape that is difficult to navigate for the specialist and generalist alike. Additionally, the authors find variable support for each of the supergroups in published analyses based on DNA sequence variation. The support for supergroups differs according to the taxonomic area under study and the origin of the genes (e.g., nuclear, plastid) used in the analysis. Encouragingly, combining a conservative approach to taxonomy with increased sampling of microbial eukaryotes and the use of multiple types of data is likely to produce a robust scaffold for the eukaryotic tree of life.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Erika Barbero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Elyse Lasser
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Micah Dunthorn
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Debashish Bhattacharya
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - David J Patterson
- Bay Paul Center for Genomics, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Hajibabaei M, Xia J, Drouin G. Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. Mol Phylogenet Evol 2006; 40:208-17. [PMID: 16621615 DOI: 10.1016/j.ympev.2006.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 02/27/2006] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
The phylogenetic position of gnetophytes has long been controversial. We sequenced parts of the genes coding for the largest subunit of nuclear RNA polymerase I, II, and III and combined these sequences with those of four chloroplast genes, two mitochondrial genes, and 18S rRNA genes to address this issue. Both maximum likelihood and maximum parsimony analyses of the sites not affected by high substitution levels strongly support a phylogeny where gymnosperms and angiosperms are monophyletic, where cycads are at the base of gymnosperm tree and are followed by ginkgos, and where gnetophytes are grouped within conifers as the sister group of pines. The evolution of several morphological and molecular characters of gnetophytes and conifers will therefore need to be reinterpreted.
Collapse
Affiliation(s)
- Mehrdad Hajibabaei
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, Ont., Canada, K1N 6N5
| | | | | |
Collapse
|
25
|
Stiller JW, Harrell L. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny. BMC Evol Biol 2005; 5:71. [PMID: 16336687 PMCID: PMC1326215 DOI: 10.1186/1471-2148-5-71] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 12/09/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary analyses of the largest subunit of RNA polymerase II (RPB1) have yielded important and at times provocative results. One particularly troublesome outcome is the consistent inference of independent origins of red algae and green plants, at odds with the more widely accepted view of a monophyletic Plantae comprising all eukaryotes with primary plastids. If the hypothesis of a broader kingdom Plantae is correct, then RPB1 trees likely reflect a persistent phylogenetic artifact. To gain a better understanding of RNAP II evolution, and the presumed artifact relating to green plants and red algae, we isolated and analyzed RPB1 from representatives of Glaucocystophyta, the third eukaryotic group with primary plastids. RESULTS Phylogenetic analyses incorporating glaucocystophytes do not recover a monophyletic Plantae; rather they result in additional conflicts with the most widely held views on eukaryotic relationships. In particular, glaucocystophytes are recovered as sister to several amoebozoans with strong support. A detailed investigation shows that this clade can be explained by what we call "short-branch exclusion," a phylogenetic artifact integrally associated with "long-branch attraction." Other systematic discrepancies observed in RPB1 trees can be explained as phylogenetic artifacts; however, these apparent artifacts also appear in regions of the tree that support widely held views of eukaryotic evolution. In fact, most of the RPB1 tree is consistent with artifacts of rate variation among sequences and co-variation due to functional constraints related to C-terminal domain based RNAP II transcription. CONCLUSION Our results reveal how subtle and easily overlooked biases can dominate the overall results of molecular phylogenetic analyses of ancient eukaryotic relationships. Sources of potential phylogenetic artifact should be investigated routinely, not just when obvious "long-branch attraction" is encountered.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC USA
| | - Leslie Harrell
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC USA
| |
Collapse
|
26
|
Miyagishima SY. Origin and evolution of the chloroplast division machinery. JOURNAL OF PLANT RESEARCH 2005; 118:295-306. [PMID: 16143878 DOI: 10.1007/s10265-005-0226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 05/04/2023]
Abstract
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Plant Biology, Michigan State University, East Lansing, 48824, USA.
| |
Collapse
|
27
|
Nozaki H. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended. JOURNAL OF PLANT RESEARCH 2005; 118:247-55. [PMID: 16032387 DOI: 10.1007/s10265-005-0219-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 05/06/2005] [Indexed: 05/03/2023]
Abstract
A recent hypothesis on the origin of eukaryotic phototrophs proposes that red algae, green plants (land plants plus green algae), and glaucophytes constitute the primary photosynthetic eukaryotes, whose plastids may have originated directly from a cyanobacterium-like prokaryote via primary endosymbiosis, whereas the plastids of other lineages of eukaryotic phototrophs appear to be the result of secondary endosymbiotic events involving a phototrophic eukaryote and a host cell. However, the phylogenetic relationships among the three lineages of primary photosynthetic eukaryotes remained unresolved because previous nuclear multigene phylogenies used incomplete red algal gene sequences derived mainly from Porphyra (Rhodophyceae, one of the two lineages of the Rhodophyta), and lacked sequences from the Cyanidiophyceae (the other red algal lineage). Recently, the complete nuclear genome sequences from the red alga Cyanidioschyzon merolae 10D of the Cyanidiophyceae were determined. Using this genomic information, nuclear multigene phylogenetic analyses of various lineages of mitochondrion-containing eukaryotes were conducted. Since bacterial and amitochondrial eukaryotic genes present serious problems to eukaryotic phylogenies, basal eukaryotes were deduced based on the paralogous comparison of the concatenated alpha- and beta-tubulin. The comparison demonstrated that cellular slime molds (Amoebozoa) represent the most basal position within the mitochondrion-containing organisms. With the cellular slime molds as the outgroup, phylogenetic analyses based on a 1,525-amino acid sequence of four concatenated nuclear genes [actin, elongation factor-1alpha( EF-1alpha), alpha-tubulin, and beta-tubulin] resolved the presence of two large, robust monophyletic groups and the basal eukaryotic lineages (Amoebozoa). One of the two groups corresponded to the Opisthokonta (Metazoa and Fungi), whereas the other included various lineages containing primary and secondary plastids (red algae, green plants, glaucophytes, euglenoids, heterokonts, and apicomplexans), Ciliophora, Kinetoplastida, dinoflagellates, and Heterolobosea, for which the red algae represented the most basal lineage. Therefore, the plastid primary endosymbiosis likely occurred once in the common ancestor of the latter group, and the primary plastids were subsequently lost in the ancestor(s) of organisms within the group that now lacks primary plastids. A new concept of Plantae was proposed for phototrophic and nonphototrophic organisms belonging to this group on the basis of their common history of plastid primary endosymbiosis. This new scenario of plastid evolution is discussed here, and is compared with recent genome information and findings on the secondary endosymbiosis of the Euglena plastid.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Guo Z, Stiller JW. Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Mol Biol Evol 2005; 22:2166-78. [PMID: 16014868 DOI: 10.1093/molbev/msi215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II provides an anchoring point for a wide variety of proteins involved in mRNA synthesis and processing. Most of what is known about CTD-protein interactions comes from animal and yeast models. The consensus sequence and repetitive structure of the CTD is conserved strongly across a wide range of organisms, implying that the same is true of many of its known functions. In some eukaryotic groups, however, the CTD has been allowed to degenerate, suggesting a comparable lack of essential protein interactions. To date, there has been no comprehensive examination of CTD-related proteins across the eukaryotic domain to determine which of its identified functions are correlated with strong stabilizing selection on CTD structure. Here we report a comparative investigation of genes encoding 50 CTD-associated proteins, identifying putative homologs from 12 completed or nearly completed eukaryotic genomes. The presence of a canonical CTD generally is correlated with the apparent presence and conservation of its known protein partners; however, no clear set of interactions emerges that is invariably linked to conservation of the CTD. General rates of evolution, phylogenetic patterns, and the conservation of modeled tertiary structure of capping enzyme guanylyltransferase (Cgt1) indicate a pattern of coevolution of components of a transcription factory organized around the CTD, presumably driven by common functional constraints. These constraints complicate efforts to determine orthologous gene relationships and can mislead phylogenetic and informatic algorithms.
Collapse
Affiliation(s)
- Zhenhua Guo
- Howell Science Complex N108, Department of Biology, East Carolina University, USA
| | | |
Collapse
|
29
|
Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF. Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes. Curr Biol 2005; 15:1325-30. [PMID: 16051178 DOI: 10.1016/j.cub.2005.06.040] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
Between 1 and 1.5 billion years ago, eukaryotic organisms acquired the ability to convert light into chemical energy through endosymbiosis with a Cyanobacterium (e.g.,). This event gave rise to "primary" plastids, which are present in green plants, red algae, and glaucophytes ("Plantae" sensu Cavalier-Smith). The widely accepted view that primary plastids arose only once implies two predictions: (1) all plastids form a monophyletic group, as do (2) primary photosynthetic eukaryotes. Nonetheless, unequivocal support for both predictions is lacking (e.g.,). In this report, we present two phylogenomic analyses, with 50 genes from 16 plastid and 15 cyanobacterial genomes and with 143 nuclear genes from 34 eukaryotic species, respectively. The nuclear dataset includes new sequences from glaucophytes, the less-studied group of primary photosynthetic eukaryotes. We find significant support for both predictions. Taken together, our analyses provide the first strong support for a single endosymbiotic event that gave rise to primary photosynthetic eukaryotes, the Plantae. Because our dataset does not cover the entire eukaryotic diversity (but only four of six major groups in), further testing of the monophyly of Plantae should include representatives from eukaryotic lineages for which currently insufficient sequence information is available.
Collapse
Affiliation(s)
- Naiara Rodríguez-Ezpeleta
- Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
The typical sperm is comprised of a head, midpiece and flagellum. Around this theme there is an enormous diversity of form--giant sperm, multi-flagellate sperm and also sperm that lack flagella entirely. Explaining this diversity in sperm morphology is a challenging question that evolutionary biologists have only recently engaged in. Nonetheless, one of the selective forces identified as being an important factor in the evolution of sperm form is sperm competition, which occurs when the sperm of two or more males compete to fertilize a female's ova. In species with a truly monandrous mating system, the absence of sperm competition means that the selection pressure on males to produce motile sperm may be relaxed. Potentially aflagellate sperm are less costly to produce, both in terms of energy and time. Thus, selection may therefore favour the loss of the sperm flagellum and any other motile mechanisms in monandrous taxa. A review of the literature revealed that 36 taxonomic groups, from red algae to fish, were found independently to have evolved aflagellate sperm. I review what is known about the mating systems of each of these taxa and their nearest sister taxa. A sister-group analysis using this information provided weak evidence suggesting that the evolution of aflagellate sperm could be linked to the removal of selective pressures generated by sperm competition.
Collapse
Affiliation(s)
- Edward H Morrow
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
32
|
Raymond J, Blankenship RE. Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci U S A 2003; 100:7419-20. [PMID: 12810941 PMCID: PMC164597 DOI: 10.1073/pnas.1533212100] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jason Raymond
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
33
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
34
|
Douglas AE, Raven JA. Genomes at the interface between bacteria and organelles. Philos Trans R Soc Lond B Biol Sci 2003; 358:5-17; discussion 517-8. [PMID: 12594915 PMCID: PMC1693093 DOI: 10.1098/rstb.2002.1188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | |
Collapse
|
35
|
Abstract
The phylogeny and timescale of life are becoming better understood as the analysis of genomic data from model organisms continues to grow. As a result, discoveries are being made about the early history of life and the origin and development of complex multicellular life. This emerging comparative framework and the emphasis on historical patterns is helping to bridge barriers among organism-based research communities.
Collapse
Affiliation(s)
- S Blair Hedges
- NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
36
|
Dacks JB, Marinets A, Ford Doolittle W, Cavalier-Smith T, Logsdon JM. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. Mol Biol Evol 2002; 19:830-40. [PMID: 12032239 DOI: 10.1093/oxfordjournals.molbev.a004140] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.
Collapse
Affiliation(s)
- Joel B Dacks
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax
| | | | | | | | | |
Collapse
|
37
|
Stiller JW, Hall BD. Evolution of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 2002; 99:6091-6. [PMID: 11972039 PMCID: PMC122907 DOI: 10.1073/pnas.082646199] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Indexed: 11/18/2022] Open
Abstract
In recent years a great deal of biochemical and genetic research has focused on the C-terminal domain (CTD) of the largest subunit (RPB1) of DNA-dependent RNA polymerase II. This strongly conserved domain of tandemly repeated heptapeptides has been linked functionally to important steps in the initiation and processing of mRNA transcripts in both animals and fungi. Although they are absolutely required for viability in these organisms, C-terminal tandem repeats do not occur in RPB1 sequences from diverse eukaryotic taxa. Here we present phylogenetic analyses of RPB1 sequences showing that canonical CTD heptads are strongly conserved in only a subset of eukaryotic groups, all apparently descended from a single common ancestor. Moreover, eukaryotic groups in which the most complex patterns of ontogenetic development occur are descended from this CTD-containing ancestor. Consistent with the results of genetic and biochemical investigations of CTD function, these analyses suggest that the enhanced control over RNA polymerase II transcription conveyed by acquired CTD/protein interactions was an important step in the evolution of intricate patterns of gene expression that are a hallmark of large, developmentally complex eukaryotic organisms.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
38
|
Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, Philippe H. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 2002; 99:1414-9. [PMID: 11830664 PMCID: PMC122205 DOI: 10.1073/pnas.032662799] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 12/11/2001] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationships of amoebae are poorly resolved. To address this difficult question, we have sequenced 1,280 expressed sequence tags from Mastigamoeba balamuthi and assembled a large data set containing 123 genes for representatives of three phenotypically highly divergent major amoeboid lineages: Pelobionta, Entamoebidae, and Mycetozoa. Phylogenetic reconstruction was performed on approximately 25,000 aa positions for 30 species by using maximum-likelihood approaches. All well-established eukaryotic groups were recovered with high statistical support, validating our approach. Interestingly, the three amoeboid lineages strongly clustered together in agreement with the Conosa hypothesis [as defined by T. Cavalier-Smith (1998) Biol. Rev. Cambridge Philos. Soc. 73, 203-266]. Two amitochondriate amoebae, the free-living Mastigamoeba and the human parasite Entamoeba, formed a significant sister group to the exclusion of the mycetozoan Dictyostelium. This result suggested that a part of the reductive process in the evolution of Entamoeba (e.g., loss of typical mitochondria) occurred in its free-living ancestors. Applying this inexpensive expressed sequence tag approach to many other lineages will surely improve our understanding of eukaryotic evolution.
Collapse
Affiliation(s)
- Eric Bapteste
- Unité Mixte de Recherche 7622 Centre National de la Recherche Scientifique, Université Paris 6, 9 Quai Saint Bernard, Bât C, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|