1
|
Ke H, Su X, Dong C, He Z, Song Q, song C, Zhou J, Liao W, Wang C, Yang S, Xiong Y. Sigma-1 receptor exerts protective effects on ameliorating nephrolithiasis by modulating endoplasmic reticulum-mitochondrion association and inhibiting endoplasmic reticulum stress-induced apoptosis in renal tubular epithelial cells. Redox Rep 2024; 29:2391139. [PMID: 39138590 PMCID: PMC11328816 DOI: 10.1080/13510002.2024.2391139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R's effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R's activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R's protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.
Collapse
Affiliation(s)
- Hu Ke
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiaozhe Su
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Caitao Dong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Ziqi He
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Qianlin Song
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chao song
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Jiawei Zhou
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wenbiao Liao
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Chuan Wang
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Sixing Yang
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
3
|
Hong SY, Qin BL. The Protective Role of Dietary Polyphenols in Urolithiasis: Insights into Antioxidant Effects and Mechanisms of Action. Nutrients 2023; 15:3753. [PMID: 37686790 PMCID: PMC10490426 DOI: 10.3390/nu15173753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing prevalence and high recurrence rates around the world. Numerous studies have indicated reactive oxygen species (ROS) and oxidative stress (OS) were crucial pathogenic factors in stone formation. Dietary polyphenols are a large group of natural antioxidant compounds widely distributed in plant-based foods and beverages. Their diverse health benefits have attracted growing scientific attention in recent decades. Many literatures have reported the effectiveness of dietary polyphenols against stone formation. The antiurolithiatic mechanisms of polyphenols have been explained by their antioxidant potential to scavenge free radicals and ROS, modulate the expression and the activity of endogenous antioxidant and prooxidant enzymes, regulate signaling pathways associated with OS, and maintain cell morphology and function. In this review, we first describe OS and its pathogenic effects in urolithiasis and summarize the classification and sources of dietary polyphenols. Then, we focus on the current evidence defining their antioxidant potential against stone formation and put forward challenges and future perspectives of dietary polyphenols. To conclude, dietary polyphenols offer potential applications in the treatment and prevention of urolithiasis.
Collapse
Affiliation(s)
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Song Q, He Z, Li B, Liu J, Liu L, Liao W, Xiong Y, Song C, Yang S, Liu Y. Melatonin inhibits oxalate-induced endoplasmic reticulum stress and apoptosis in HK-2 cells by activating the AMPK pathway. Cell Cycle 2020; 19:2600-2610. [PMID: 32871086 DOI: 10.1080/15384101.2020.1810401] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Deposition of various crystal and organic substances in the kidney can lead to kidney stone formation. Melatonin is an effective endogenous antioxidant that can prevent crystalluria and kidney damage due to crystal formation and aggregation. In this study, we investigated the mechanism by which melatonin inhibits endoplasmic reticulum (ER) stress and apoptosis. Methods: We treated HK-2 cells with oxalate to establish an in vitro kidney stone model, and treated these cells with different concentrations of melatonin (0, 5, 10, 20 μmol/L) and the AMP-activated protein kinase (AMPK) inhibitor Compound C. We measured levels of stress response markers including reactive oxygen species (ROS), lactate dehydrogenase (LDH), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and factors in the stress response pathway, such as ATF6, GRP78, DDIT3, PERK, p-PERK, IRE1, p-IRE1, XBP1s, AMPK, and p-AMPK, using real time-PCR, western blot, and immunofluorescence analyzes. We measured mitochondrial membrane potential and caspases-3 activity using the CCK8, enzyme-linked immunosorbent, and flow cytometry assays to assess HK-2 cell viability and apoptosis. Results: Melatonin improved the total antioxidant capacity (T-AOC) of the HK-2 cells, as evidenced by the dose-dependent reduction in apoptosis, ROS levels, and protein expression of ATF6, GRP78, DDIT3, p-PERK, p-IRE1, XBP1s, caspase-12, cleaved caspase-3 and cleaved caspase-9. Addition of the AMPK inhibitor, Compound C, partially reversed the protective effect of melatonin. Conclusion: Our study revealed that the protective effects of melatonin on oxalate-induced ER stress and apoptosis is partly dependent on AMPK activation in HK-2 cells. These findings provide insight into the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Bin Li
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Junwei Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Lang Liu
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
5
|
Periandavan K, Tamilarasan B, Karthikeyan P, Kannan P, Manchanda R, Khurana A, Nayak D, Palainivelu S. Understanding the role of homoeopathic preparation of Berberis vulgaris in mitigation of sodium oxalate- induced hyperoxaluria: An experimental approach. INDIAN JOURNAL OF RESEARCH IN HOMOEOPATHY 2020. [DOI: 10.4103/ijrh.ijrh_44_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
6
|
The Protective Roles of Estrogen Receptor β in Renal Calcium Oxalate Crystal Formation via Reducing the Liver Oxalate Biosynthesis and Renal Oxidative Stress-Mediated Cell Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5305014. [PMID: 31178964 PMCID: PMC6501165 DOI: 10.1155/2019/5305014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022]
Abstract
Females develop kidney stones less frequently than males do. However, it is unclear if this gender difference is related to altered estrogen/estrogen receptor (ER) signaling. Here, we found that ER beta (ERβ) signals could suppress hepatic oxalate biosynthesis via transcriptional upregulation of the glyoxylate aminotransferase (AGT1) expression. Results from multiple in vitro renal cell lines also found that ERβ could function via suppressing the oxalate-induced injury through increasing the reactive oxygen species (ROS) production that led to a decrease of the renal calcium oxalate (CaOx) crystal deposition. Mechanism study results showed that ERβ suppressed oxalate-induced oxidative stress via transcriptional suppression of the NADPH oxidase subunit 2 (NOX2) through direct binding to the estrogen response elements (EREs) on the NOX2 5′ promoter. We further applied two in vivo mouse models with glyoxylate-induced renal CaOx crystal deposition and one rat model with 5% hydroxyl-L-proline-induced renal CaOx crystal deposition. Our data demonstrated that mice lacking ERβ (ERβKO) as well as mice or rats treated with ERβ antagonist PHTPP had increased renal CaOx crystal deposition with increased urinary oxalate excretion and renal ROS production. Importantly, targeting ERβ-regulated NOX2 with the NADPH oxidase inhibitor, apocynin, can suppress the renal CaOx crystal deposition in the in vivo mouse model. Together, results from multiple in vitro cell lines and in vivo mouse/rat models all demonstrate that ERβ may protect against renal CaOx crystal deposition via inhibiting the hepatic oxalate biosynthesis and oxidative stress-induced renal injury.
Collapse
|
7
|
Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp Mol Med 2019; 51:1-10. [PMID: 30770784 PMCID: PMC6377648 DOI: 10.1038/s12276-019-0217-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Mesangial cell proliferation has been identified as a major factor contributing to glomerulosclerosis, which is a typical symptom of diabetic nephropathy (DN). Lysophosphatidic acid (LPA) levels are increased in the glomerulus of the kidney in diabetic mice. LPA is a critical regulator that induces mesangial cell proliferation; however, its effect and molecular mechanisms remain unknown. The proportion of α-SMA+/PCNA+ cells was increased in the kidney cortex of db/db mice compared with control mice. Treatment with LPA concomitantly increased the proliferation of mouse mesangial cells (SV40 MES13) and the expression of cyclin D1 and CDK4. On the other hand, the expression of p27Kip1 was decreased. The expression of Krüppel-like factor 5 (KLF5) was upregulated in the kidney cortex of db/db mice and LPA-treated SV40 MES13 cells. RNAi-mediated silencing of KLF5 reversed these effects and inhibited the proliferation of LPA-treated cells. Mitogen-activated protein kinases (MAPKs) were activated, and the expression of early growth response 1 (Egr1) was subsequently increased in LPA-treated SV40 MES13 cells and the kidney cortex of db/db mice. Moreover, LPA significantly increased the activity of the Ras-related C3 botulinum toxin substrate (Rac1) GTPase in SV40 MES13 cells, and the dominant-negative form of Rac1 partially inhibited the phosphorylation of p38 and upregulation of Egr1 and KLF5 induced by LPA. LPA-induced hyperproliferation was attenuated by the inhibition of Rac1 activity. Based on these results, the Rac1/MAPK/KLF5 signaling pathway was one of the mechanisms by which LPA induced mesangial cell proliferation in DN models.
Collapse
|
8
|
Donmez C, Konac E, Aydogan BT, Bilen CY. Might E-cadherin promoter polymorphisms of rs16260 and rs5030625 associate with the risk of nephrolithiasis? SPRINGERPLUS 2016; 5:1673. [PMID: 27733975 PMCID: PMC5040654 DOI: 10.1186/s40064-016-3363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
Purpose To study whether −160 C > A (rs16260) and −347 G > GA (rs5030625) single nucleotide polymorphisms of the regulatory region (rSNPs) of CDH1 gene modulate the risk of nephrolithiasis. Methods Genomic DNA of 101 patients with calcium oxalate nephrolithiasis and 114 healthy controls were screened for both polymorphisms, using polymerase chain reaction-restriction fragments length polymorphism method (PCR-RLFP). Haplotype frequencies were also analyzed. To determine the association of rSNPs of CDH1 gene with the clinicopathological features of nephrolithiasis, nearly all possible etiological factors were documented. These factors were family history, gender, age, body mass index, liquid consumption, eating habits, tea–coffee and meat (oxalate rich) consumption, adequate physical activity, and all serum and urine levels—the serum levels of Na, K, Cl, phosphate, Ca, Mg, uric acid, albumin, blood urea nitrogen (BUN), creatinine and serum parathyroid hormone (PTH) as well as 24 h urine excretions of creatinine, Na, K, Cl, phosphate, Ca, Mg, citrate, oxalate, uric acid, albumin and BUN. Results Significant differences were found between rs16260 and the risk of nephrolithiasis. Patients having CA genotype of rs16260 CDH1 polymorphism were associated with an almost trifold increased risk for developing kidney stone than those with the AA genotype (95 % CI 1.08–7.28, OR 2.8, P = 0.033). We also found that non-A allele carriers (CC) had significantly higher nephrolithiasis risk associated with the clinicopathological characteristics including serum calcium (P = 0.027) and 24 h urinary magnesium level (P = 0.042). Moreover, we did find a directly proportional relationship between the CA genotype and serum calcium levels (P = 0.041). There was no significant difference between patients and controls in terms of the distribution of rs5030625 genotypes and alleles (P > 0.05). Likewise, no associations between the rs16260 and rs5030625 haplotypes and susceptibility to kidney stone were observed (P > 0.05). Conclusion Regulatory variants of rs16260 of the CDH1 gene may confer susceptibility to nephrolithiasis. This may have important implications for understanding the pathophysiological mechanisms of the disease and suggesting novel targets for drug treatment.
Collapse
Affiliation(s)
- Cigdem Donmez
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510 Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510 Ankara, Turkey
| | - Batuhan T Aydogan
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey
| |
Collapse
|
9
|
Nuche-Berenguer B, Ramos-Álvarez I, Jensen RT. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1122-36. [PMID: 26912410 DOI: 10.1016/j.bbadis.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
10
|
Sharma M, Kaur T, Singla SK. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin. Mitochondrion 2016; 27:15-24. [PMID: 26779823 DOI: 10.1016/j.mito.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 01/06/2023]
Abstract
The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidase, are known to play an imperative role in the pathogenesis of hyperoxaluria-induced nephrolithiasis. The present study was designed to investigate the protective effect of a combinatorial therapy based on the attenuation of oxidative stress with antioxidant (N-acetyl cysteine), and NADPH oxidase inhibitor (apocynin), that might be required to effectively eliminate hyperoxaluric manifestations. Hyperoxaluria was induced in male Wistar rats by administering 0.4% ethylene glycol with 1% ammonium chloride in drinking water for 9 days. Hyperoxaluria accentuated renal oxidative stress in terms of increased ROS production and lipid peroxidation. Mitochondrial dysfunction, a central deleterious event in renal stone crystallization, was evident by decreased activities of electron transport chain complex I, II and IV, augmented mitochondrial ROS, reduced GSH/GSSG ratio, which resulted in the mitochondrial permeability transition pore (mPTP) opening as indicated by increased mitochondrial swelling in hyperoxaluric rats. Furthermore, NADPH oxidase activity was significantly increased, with raised expression of NOX1, NOX2, NOX4, p38MAPK and MnSOD, in the renal tissue of hyperoxaluric rats compared to control. However, combinatorial therapy with N-acetyl cysteine (50mg/kg/day) and apocynin (200mg/kg/day), intraperitoneally, significantly improved renal functions in hyperoxaluric rats and considerably ameliorated mitochondrial dysfunction. NAC with apocynin was also found to be effective in reducing the redundant activity of NADPH oxidase in renal tissue of hyperoxaluric rats. Hence, our investigation provides novel mechanistic insights that combinatorial approaches using targeted modulators of ROS offer therapeutic benefits in hyperoxaluria-induced nephrolithiasis.
Collapse
Affiliation(s)
- Minu Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - S K Singla
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 2015; 34:89-95. [PMID: 25981400 DOI: 10.1007/s00345-015-1563-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Reactive oxygen species (ROS) are produced during the interaction between oxalate/calcium oxalate monohydrate (COM) crystals and renal epithelial cells and are responsible for the various cellular responses through the activation of NADPH oxidase (Nox). Ox and COM also activate the renin-angiotensin-aldosterone system (RAAS). Aldosterone stimulates ROS production through activation of Nox with the involvement of mineralocorticoid receptor (MR), Rac1 and mitogen-activated protein kinases (MAPK). We investigated RAAS pathways in vivo in an animal model of hyperoxaluria and in vitro by exposing renal epithelial cells to COM crystals. METHODS Hyperoxaluria was induced in male SD rats by administering ethylene glycol. One group of rats was additionally given spironolactone. Total RNA was extracted and subjected to genomic microarrays to obtain global transcriptome data. Normal rat kidney cell line (NRK-52E) was incubated with aldosterone(10(-7) M) and COM(67 μg/cm(2)) with or without spironolactone(10(-5) M), a selective inhibitor of SRC family of kinases; protein phosphatase 2(pp2) (10(-5) M) and Nox inhibitor; diphenylene iodonium (DPI) (10(-5) M). RESULTS Relative expression of genes encoding for AGT, angiotensin receptors 1b and 2, Renin 1, Cyp11b, HSD11B2, Nr3c2, NOx4 and Rac1 was upregulated in the kidneys of rats with hyperoxaluria. Treatment with spironolactone reversed the effect of hyperoxaluria. Both aldosterone and COM crystals activated Nox and Rac1 expression in NRK52E, while spironolactone inhibited Nox and Rac1 expression. Increased Rac1 expression was significantly attenuated by treatment with PP2 and spironolactone. CONCLUSIONS Results indicate that hyperoxaluria-induced production of ROS, injury and inflammation are in part associated with the activation of Nox through renin-angiotensin-aldosterone pathway.
Collapse
|
12
|
Abstract
Since the first demonstration of Nox enzyme expression in the kidney in the early 1990s and the subsequent identification of Nox4, or RENOX, a decade later, it has become apparent that the Nox family of reactive oxygen species (ROS) generating enzymes plays an integral role in the normal physiological function of the kidney. As our knowledge of Nox expression patterns and functions in various structures and specialized cell types within the kidney grows, so does the realization that Nox-derived oxidative stress contributes significantly to a wide variety of renal pathologies through their ability to modify lipids and proteins, damage DNA and activate transcriptional programmes. Diverse studies demonstrate key roles for Nox-derived ROS in kidney fibrosis, particularly in settings of chronic renal disease such as diabetic nephropathy. As the most abundant Nox family member in the kidney, much emphasis has been placed on the role of Nox4 in this setting. However, an ever growing body of work continues to uncover key roles for other Nox family members, not only in diabetic kidney disease, but in a diverse array of renal pathological conditions. The objective of the present review is to highlight the latest novel developments in renal Nox biology with an emphasis not only on diabetic nephropathy but many of the other renal disease contexts where oxidative stress is implicated.
Collapse
|
13
|
Thamilselvan V, Menon M, Thamilselvan S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU Int 2014; 114:140-50. [PMID: 24460843 DOI: 10.1111/bju.12642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To test our hypothesis that physiological levels of urinary oxalate induce oxidative renal cell injury, as studies to date have shown that oxalate causes oxidative injury only at supra-physiological levels. To study the combined effect of α-tocopherol and ascorbic acid against oxalate-induced oxidative injury, as oxalate-induced oxidative cell injury is known to promote initial attachment of calcium oxalate crystals to injured renal tubules and subsequent development of kidney stones. MATERIALS AND METHODS Cultures of normal (antioxidant-undepleted) and antioxidant-depleted LLC-PK1 cells were exposed to oxalate at human physiological urine concentrations. After exposure, markers of oxidative stress and cell injury were measured in the cells and media, respectively. In addition, we also evaluated the combined effects of α-tocopherol and ascorbic acid on oxalate-induced oxidative cell injury. RESULTS Exposure of renal cells to oxalate at urinary physiological levels increased the oxidative cell injury as assessed by increased lactate dehydrogenase (LDH) leakage and increased lipid hydroperoxide in the renal cells; however, this effect was not seen until 24 h after oxalate exposure, at which point the injury was milder. On the other hand, when cellular reduced glutathione (GSH) and catalase were depleted in renal epithelial cells with pharmacological inhibitors, the physiological levels of urinary oxalate caused significant oxidative cell injury at 24 h, and remarkably, when additional endogenous antioxidants were depleted, the oxalate at the upper limit of normal 24 h urine caused a significant amount of cell injury in a shorter period of time, which was comparable to that seen in cells exposed to higher levels of oxalate. Exposure of LLC-PK1 cells to oxalate resulted in increased levels of H2 O2 and lipid hydroperoxide, correlating with increased release of cell injury markers, including LDH, alkaline phosphate, and γ-glutamyl transpeptidase from renal tubular epithelial cells. Oxalate exposure decreased the activity and protein expression of superoxide dismutase and glutathione peroxidase in a time-dependent manner. LLC-PK1 cells treated with oxalate and either α-tocopherol or ascorbic acid alone exhibited a significant decrease in oxidative cell injury and restored endogenous renal antioxidants towards normal levels, and interestingly, combined treatment with α-tocopherol and ascorbic was more efficient at preventing oxalate-induced toxicity than treatment with either agent alone. CONCLUSION To our knowledge this is the first study to show that oxalate alone at human physiological urine concentrations (in the absence of calcium oxalate crystal formation), induced oxidative renal injury in renal epithelial cells when endogenous antioxidants are depleted. Our data further suggests that a combination of α-tocopherol and ascorbic acid may be more effective than each individual agent in reducing oxalate-induced oxidative renal injury and subsequent calcium oxalate crystal deposition in recurrent stone formers.
Collapse
|
14
|
Xu Y, Zeng G, Mai Z, Ou L. Association study of DGKH gene polymorphisms with calcium oxalate stone in Chinese population. Urolithiasis 2014; 42:379-85. [DOI: 10.1007/s00240-014-0692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/15/2014] [Indexed: 01/13/2023]
|
15
|
Farooq SM, Boppana NB, Asokan D, Sekaran SD, Shankar EM, Li C, Gopal K, Bakar SA, Karthik HS, Ebrahim AS. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. [PMID: 24691130 PMCID: PMC3972226 DOI: 10.1371/journal.pone.0093056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/02/2014] [Indexed: 12/04/2022] Open
Abstract
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
Collapse
Affiliation(s)
- Shukkur M. Farooq
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Nithin B. Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Devarajan Asokan
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M. Shankar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Kaliappan Gopal
- Department of Orthopedics, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly A. Bakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Harve S. Karthik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abdul S. Ebrahim
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| |
Collapse
|
16
|
Khan A, Byer K, Khan SR. Exposure of Madin-Darby canine kidney (MDCK) cells to oxalate and calcium oxalate crystals activates nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. Urology 2013; 83:510.e1-7. [PMID: 24360063 DOI: 10.1016/j.urology.2013.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity in Madin-Darby canine kidney (MDCK) cells and the production of reactive oxygen species on exposure to oxalate (Ox) or calcium oxalate (CaOx) crystals. METHODS Monolayers of confluent Madin-Darby canine kidney cells were exposed to 100, 300, 500 μmol, 1 mmol Ox or 33, 66, 132 μg/cm(2) CaOx crystals for 15 minutes, 30 minutes, 1 hour, 2 hours, or 3 hours. After specified periods of exposure to Ox and CaOx crystals, lactate dehydrogenase release, trypan blue exclusion, activation of NADPH oxidase, and superoxide production were determined using standard procedures. The production of Nox4, a membrane associated subunit of the NADPH oxidase enzyme, was determined by western blot analysis. RESULTS Exposure to Ox and CaOx crystals leads to time- and concentration-dependent activation of NADPH oxidase. Western blot analysis showed an increase in the production of Nox4. The production of superoxide also changed in a time- and concentration-dependent manner, with maximum increases after 30-minute exposure to the highest concentrations of Ox and CaOx crystals. Longer exposures did not change the results or resulted in decreased activities. Exposure to higher concentrations also caused increased lactate dehydrogenase release and trypan blue exclusion indicating cell damage. CONCLUSION Results indicate that cells of the distal tubular origin are equipped with NADPH oxidase that is activated by exposures to Ox and CaOx crystals. Higher concentrations of both lead to cell injury, most probably through the increased reactive oxygen species production by the exposed cells.
Collapse
Affiliation(s)
- Aslam Khan
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Karen Byer
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
17
|
Babelova A, Jansen F, Sander K, Löhn M, Schäfer L, Fork C, Ruetten H, Plettenburg O, Stark H, Daniel C, Amann K, Pavenstädt H, Jung O, Brandes RP. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS One 2013; 8:e80328. [PMID: 24244677 PMCID: PMC3820652 DOI: 10.1371/journal.pone.0080328] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022] Open
Abstract
Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD.
Collapse
Affiliation(s)
| | - Felix Jansen
- Physiology I, Goethe-University, Frankfurt am Main, Germany
| | - Kerstin Sander
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | | | - Liliana Schäfer
- General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany
| | - Christian Fork
- Physiology I, Goethe-University, Frankfurt am Main, Germany
| | | | | | - Holger Stark
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Christoph Daniel
- Department of Pathology, Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Pathology, Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Pavenstädt
- Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Oliver Jung
- Physiology I, Goethe-University, Frankfurt am Main, Germany
- Internal Medicine/Nephrology, Goethe-University, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Physiology I, Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
18
|
Gumustekin M, Micili SC, Arici MA, Karaman M, Guneli ME, Tekmen I. The Effect of Insulin Treatment on Rac1 Expression in Diabetic Kidney. Ren Fail 2013; 35:396-402. [DOI: 10.3109/0886022x.2013.764256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 2012; 189:803-11. [PMID: 23022011 DOI: 10.1016/j.juro.2012.05.078] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE Idiopathic calcium oxalate kidney stones form while attached to Randall plaques, the subepithelial deposits on renal papillary surfaces. Plaque formation and growth mechanisms are poorly understood. Plaque formation elsewhere in the body is triggered by reactive oxygen species and oxidative stress. This review explores possible reactive oxygen species involvement in plaque formation and calcium oxalate nephrolithiasis. MATERIALS AND METHODS A search of various databases for the last 8 years identified literature on reactive oxygen species involvement in calcium oxalate nephrolithiasis. The literature was reviewed and results are discussed. RESULTS Under normal conditions reactive oxygen species production is controlled, increasing as needed and regulating crystallization modulator production. Reactive oxygen species overproduction or decreased antioxidants lead to oxidative stress, inflammation and injury, and are involved in stone comorbidity. All major chronic inflammation markers are detectable in stone patient urine. Patients also have increased urinary excretion of the IαI and the thrombin protein families. Results of a recent study of 17,695 participants in NHANES III (National Health and Nutrition Examination Survey) showed significantly lower antioxidants, carotene and β-cryptoxanthin in those with a kidney stone history. Animal model and tissue culture studies revealed that high oxalate, calcium oxalate and calcium phosphate crystals provoked renal cell reactive oxygen species mediated inflammatory responses. Calcium oxalate crystals induce renin up-regulation and angiotensin II generation. Nonphagocytic NADPH oxidase leads to reactive oxygen species production mediated by protein kinase C. The P-38 MAPK/JNK transduction pathway is turned on. Transcriptional and growth factors, and generated secondary mediators become involved. Chemoattractant and osteopontin production is increased and macrophages infiltrate the renal interstitium around the crystal. Phagocytic NADPH oxidase is probably activated, producing additional reactive oxygen species. Localized inflammation, extracellular matrix and fibrosis develop. Crystallization modulators have a significant role in inflammation and tissue repair. CONCLUSIONS Based on available data, Randall plaque formation is similar to extracellular matrix mineralization at many body sites. Renal interstitial collagen becomes mineralized, assisting plaque growth through the interstitium until the mineralizing front reaches papillary surface epithelium. Plaque exposure to pelvic urine may also be a result of reactive oxygen species triggered epithelial sloughing.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
20
|
Lee HJ, Jeong SJ, Park MN, Linnes M, Han HJ, Kim JH, Lieske JC, Kim SH. Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells. Biol Pharm Bull 2012; 35:539-44. [PMID: 22466558 DOI: 10.1248/bpb.35.539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium oxalate monohydrate (COM) crystals bind avidly to the surface of proliferating and migrating renal endothelial cells, perhaps a key event in kidney stone formation. Oxalate-induced pre-oxidative stress can further promote crystal attachment cells. Natural products including gallotannins found in green teas have been studied as potentially novel treatments to prevent crystal retention and kidney stone formation. Gallotannin significantly inhibited COM crystal growth and binding to Madin-Darby Canine Kidney Cells type I (MDCK I) renal epithelial cells at non-toxic concentrations. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that gallotannin significantly attenuated oxalate-induced mRNA and protein expressions of monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p22(phox) and p47(phox) in human primary renal epithelial cells (HRCs). Gallotannin also reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) as well as enhanced antioxidant enzyme superoxide dismutase (SOD) activity in oxalate treated HRCs. Taken together, our findings suggest that gallotannin can contribute to nephrolithiasis prevention via direct effects on renal epithelial cells including suppression of COM binding and MCP-1 and OPN expression, along with augmenting antioxidant activity.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Effects of different concentrations of artemisinin and artemisinin-iron combination treatment on Madin Darby Canine Kidney (MDCK) cells. Interdiscip Toxicol 2012; 5:30-7. [PMID: 22783147 PMCID: PMC3389507 DOI: 10.2478/v10102-012-0006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/10/2012] [Accepted: 02/23/2012] [Indexed: 11/23/2022] Open
Abstract
Artemisinin is a sesquitrepenelactone with an endoperoxide bridge. It is a naturally occurring substance from Artemisia species plants. Artemisia species have been used in oriental medicine for centuries to treat malaria, gastrointestinal helminthosia, diarrhea, and as an antipyretic and sedative agent. Antileishmanial activity of the plants has been announced a few years ago. Dogs are the most important reservoir of leishmaniasis in some parts of the world. To use it as an antileishmanial drug in dogs, its side effects on different organs, among them the kidney as the organ of elimination have to be elucidated. Artemisinin with different concentrations (0.15, 0.3, 0.6 and 1.2 μg/ml) was added to the culture of MDCK (Madin darby canine kidney) cells with and without iron (86 μg/dl). All the changes were controlled and photographed every 12 hours using an invert microscope. After 60 hours, supernatants and cell extracts were examined for LDH (lactate dehydrogenase) concentration and total protein. Also TBARS (thiobarbituric acid reactive substances) test was performed on cell extracts. Some microscopic slides were prepared from the cells and stained with hematoxylin-eosin for microscopic exams. Biochemical parameters showed cellular reaction and injury in a concentration dependent manner. Cell injury was more severe in the iron-added groups. Microscopic exams showed cell and nuclear swelling, granular degeneration, vacuole and vesicle formation, cellular detachment, piknosis, karyorrhexis, cellular necrosis and inhibition of new mitosis. On using the drug for leishmaniasis treatment in the dog, it should be done with caution and supervision.
Collapse
|
22
|
Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? ACTA ACUST UNITED AC 2012; 40:95-112. [PMID: 22213019 DOI: 10.1007/s00240-011-0448-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/10/2011] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have provided the evidence for association between nephrolithiasis and a number of cardiovascular diseases including hypertension, diabetes, chronic kidney disease, metabolic syndrome. Many of the co-morbidities may not only lead to stone disease but also be triggered by it. Nephrolithiasis is a risk factor for development of hypertension and have higher prevalence of diabetes mellitus and some hypertensive and diabetic patients are at greater risk for stone formation. An analysis of the association between stone disease and other simultaneously appearing disorders, as well as factors involved in their pathogenesis, may provide an insight into stone formation and improved therapies for stone recurrence and prevention. It is our hypothesis that association between stone formation and development of co-morbidities is a result of certain common pathological features. Review of the recent literature indicates that production of reactive oxygen species (ROS) and development of oxidative stress (OS) may be such a common pathway. OS is a common feature of all cardiovascular diseases (CVD) including hypertension, diabetes mellitus, atherosclerosis and myocardial infarct. There is increasing evidence that ROS are also produced during idiopathic calcium oxalate (CaOx) nephrolithiasis. Both tissue culture and animal model studies demonstrate that ROS are produced during interaction between CaOx/calcium phosphate (CaP) crystals and renal epithelial cells. Clinical studies have also provided evidence for the development of oxidative stress in the kidneys of stone forming patients. Renal disorders which lead to OS appear to be a continuum. Stress produced by one disorder may trigger the other under the right circumstances.
Collapse
|