1
|
Zhang L, Xu L, Zhang L, Zhang Y, Chen Y. Adsorption-desorption characteristics of atrazine on soil and vermicompost prepared with different ratios of raw materials. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:583-593. [PMID: 37614009 DOI: 10.1080/03601234.2023.2247942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In this work, vermicompost was prepared with maize stover and cattle dung in ratios of 60:40 (VC1), 50:50 (VC2) and 40:60 (VC3), and the physicochemical properties of the vermicompost were related to the ratio of the raw materials used. The effect of the vermicomposts on the adsorption kinetics, adsorption isotherms and desorption of atrazine were investigated in unamended soil (S) and soil amended with 4% (w/w) of VC1(S-VC1), VC2(S-VC2) and VC3(S-VC3). The total organic carbon (TOC) content of VC1, VC2 and VC3 was 38.46, 37.33 and 34.47%, the HA content was 43.50, 42.22 and 39.28 g/kg, and the HA/FA ratios was 1.47, 0.44 and 0.83, respectively. The adsorption of atrazine on the soil, on the vermicompost and on soils amended with vermicompost followed a pseudo-second-order kinetic model. The Freundlich equation better fitted the adsorption isotherm of atrazine. The vermicomposts enhanced atrazine adsorption and decreased atrazine desorption. Correlation analysis showed that the TOC and HA were significantly positively correlated with Kf, which indicated that TOC and HA of the vermicomposts contributed significantly to the adsorption and desorption of atrazine. This study demonstrated that vermicomposts have great potential in the bioremediation of atrazine pollution and that their role is related to the raw materials used to prepare them.
Collapse
Affiliation(s)
- Luwen Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Lixin Xu
- College of Life Sciences, Jilin University, Changchun, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, Starkville, Mississippi, USA
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
2
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Lin Z, Zhen Z, Luo S, Ren L, Chen Y, Wu W, Zhang W, Liang YQ, Song Z, Li Y, Zhang D. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125212. [PMID: 33524732 DOI: 10.1016/j.jhazmat.2021.125212] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study explored the change of tetracycline degradation efficiency, metabolic pathway, soil physiochemical properties and degraders in vermiremediation by two earthworm species of epigeic Eisenia fetida and endogeic Amynthas robustus. We found a significant acceleration of tetracycline degradation in both earthworm treatments, and 4-epitetracycline dehydration pathway was remarkably enhanced only by vermiremediation. Tetracycline degraders from soils, earthworm intestines and casts were different. Ralstonia and Sphingomonas were potential tetracycline degraders in soils and metabolized tetracycline through direct dehydration pathway. Degraders in earthworm casts (Comamonas, Acinetobacter and Stenotrophomonas) and intestines (Pseudomonas and Arthrobacter) dehydrated 4-epitetracycline into 4-epianhydrotetracycline. More bacterial lineages resisting tetracycline were found in earthworm treatments, indicating the adaptation of soil and intestinal flora under tetracycline pressure. Earthworm amendment primarily enhanced tetracycline degradation by neutralizing soil pH and consuming organic matters, stimulating both direct dehydration and epimerization-dehydration pathways. Our findings proved that vermicomposting with earthworms is effective to alter soil microenvironment and accelerate tetracycline degradation, behaving as a potential approach in soil remediation at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhiguang Song
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Lin Z, Zhen Z, Liang Y, Li J, Yang J, Zhong L, Zhao L, Li Y, Luo C, Ren L, Zhang D. Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:710-719. [PMID: 30412844 DOI: 10.1016/j.jhazmat.2018.04.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a triazine herbicide intensively used in agricultural production and is often detected in different environmental matrices at concentrations above the permitted limit. This study investigated the influence of two earthworm species (epigeic Eisenia foetida and endogeic Amynthas robustus) on atrazine speciation and the degradation pathway. Our results revealed that both earthworms significantly accelerated atrazine degradation in a 28-day vermiremediation, and the residual atrazine declined from 4.23 ± 0.21 mg/kg in bulk soils to 0.51 ± 0.29 mg/kg (E. foetida) and 0.43 ± 0.19 mg/kg (A. robustus). By consuming organic matter (from 40.37 ± 1.14 to 36.31 ± 1.55 and 34.59 ± 1.13 g/kg for E. foetida and A. robustus) and neutralizing the soil pH (from 5.37 ± 0.27 to 6.36 ± 0.11 and 6.61 ± 0.30 for E. foetida and A. robustus), both earthworms reduced humus-fixed atrazine and increased the available atrazine. The percentage of available atrazine increased from 8.80 ± 0.21% in bulk soil to 10.30 ± 0.29% and 16.42 ± 0.18% in the vermiremediation treatments. Both earthworms promoted the hydroxyatrazine pathway by consuming soil organic matter and encouraged the deethylatrazine/deisopropylatrazine pathway by neutralizing the soil pH. Our findings unravel a new mechanism of vermiremediation by improving the soil physical-chemical properties and altering the atrazine degradation pathway, providing new insights into the influential factors on atrazine bioremediation in red soil.
Collapse
Affiliation(s)
- Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhen Zhen
- Agriculture College, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jin Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jiewen Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Laiyuan Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Lirong Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Lei Ren
- Agriculture College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
5
|
Lin Z, Zhen Z, Chen C, Li Y, Luo C, Zhong L, Hu H, Li J, Zhang Y, Liang Y, Yang J, Zhang D. Rhizospheric effects on atrazine speciation and degradation in laterite soils of Pennisetum alopecuroides (L.) Spreng. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12407-12418. [PMID: 29460244 DOI: 10.1007/s11356-018-1468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a worldwide-used herbicide and often detected in agricultural soils and groundwater at concentrations above the permitted limit, because of its high mobility, persistence, and massive application. This study applied pot experiments to investigate the atrazine contents and speciation during the phytoremediation process by Pennisetum alopecuroides (L.) Spreng. in laterite soils. From the change of the total atrazine and bioavailable atrazine measured by diffusive gradients in thin film (DGT), P. alopecuroides significantly improved atrazine degradation efficiency from 15.22 to 51.46%, attributing to the increasing bioavailable atrazine in rhizosphere. Only a small amount of atrazine was taken up by P. alopecuroides root and the acropetal translocation from roots to shoots was limited. The atrazine speciation was significantly different between rhizosphere and non-rhizosphere, attributing to the declining pH and organic matters in rhizosphere. The relationship between pH and soil-bound/humus-fixed atrazine illustrated the pH-dependant release of the atrazine from soils and the competition between humus adsorption and uptake by P. alopecuroides. The present study reveals the important roles of soil pH and organic matters in atrazine speciation and availability in laterite soils, and provides new insights in the rhizospheric effects on effective phytoremediation of atrazine.
Collapse
Affiliation(s)
- Zhong Lin
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Zhen Zhen
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Changer Chen
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Laiyuan Zhong
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Hanqiao Hu
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jin Li
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yueqin Zhang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yanqiu Liang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jiewen Yang
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
6
|
Lin Z, Zhen Z, Wu Z, Yang J, Zhong L, Hu H, Luo C, Bai J, Li Y, Zhang D. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:35-45. [PMID: 26342149 DOI: 10.1016/j.jhazmat.2015.08.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.
Collapse
Affiliation(s)
- Zhong Lin
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhen Zhen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhihao Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiewen Yang
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Laiyuan Zhong
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Hanqiao Hu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jing Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 2YW, UK.
| |
Collapse
|
7
|
Kong HG, Bae JY, Lee HJ, Joo HJ, Jung EJ, Chung E, Lee SW. Induction of the viable but nonculturable state of Ralstonia solanacearum by low temperature in the soil microcosm and its resuscitation by catalase. PLoS One 2014; 9:e109792. [PMID: 25296177 PMCID: PMC4190316 DOI: 10.1371/journal.pone.0109792] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state.
Collapse
Affiliation(s)
- Hyun Gi Kong
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Ju Young Bae
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hae Jin Joo
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Eun Joo Jung
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Eunsook Chung
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
8
|
Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Bláha L, Hilscherová K, Cáp T, Klánová J, Machát J, Zeman J, Holoubek I. Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:507-514. [PMID: 20821472 DOI: 10.1002/etc.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present study represents the first broader evaluation of the rapid 30-s kinetic bioluminescence assay with Vibrio fisheri (microplate format modification) for contact toxicity testing of whole sediments. The present study focused on river sediments from the Morava River basin, Czech Republic, repeatedly sampled during 2005 to 2006 and analyzed for geological and geochemical parameters, content of toxic metals, major organic pollutants, and toxicity. High natural variation in toxicity (50% inhibitory concentration [IC50] values ranging from 0.8 to >80 mg sediment dry wt/ml) was found (among different sampling periods and years, among sites), and this could be related to the sediment dynamics affected by spring high flows and summer droughts. From the 46 sediment descriptors, exchangeable protons (H(+)) was the only parameter that consistently correlated with toxicity. Three other descriptors (i.e., content of organic carbon plus two parameters from the detailed silicate analysis of sediments: percentage of SO(3) representing total sulfur content, structural water H(2)O+) also significantly correlated with toxicity. There were only minor and variable correlations with contamination. We propose sediment safety guideline categories for the V. fisheri kinetic test with severe toxicity threshold of IC50 < 1 mg dry wt/ml. Although sediments are considered a rather stable matrix in comparison with river water, we confirmed high variability and dynamics that should be reflected in monitoring plans and field studies.
Collapse
Affiliation(s)
- Ludek Bláha
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kamenice 3, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|