1
|
Khoshnood Z. A review on toxic effects of pesticides in Zebrafish, Danio rerio and common carp, Cyprinus carpio, emphasising Atrazine herbicide. Toxicol Rep 2024; 13:101694. [PMID: 39131695 PMCID: PMC11314875 DOI: 10.1016/j.toxrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The widespread use of pesticides has emerged as a pressing environmental concern nowadays. These chemical compounds pose a significant threat to aquatic organisms due to their toxic effects. Zebrafish and common carp are two common species used in pesticide toxicity studies. Atrazine, a widely used herbicide, is one of the most prevalent globally, detectable in nearly all surface waters. This article examines existing literature to provide a comprehensive review of the toxic effects of Atrazine on Zebrafish and common carp. The findings reveal that exposure to atrazine triggers a range of biochemical, physiological, behavioral, and genetic alterations in these fish species, even at concentrations deemed environmentally relevant. These changes could have severe consequences, including increased mortality rates, reproductive failures, and potentially leading to fish populations decline. It is, therefore, imperative to prioritize stringent regulatory measures to curb the usage of this herbicide and safeguard fish species as unintended victims of aquatic ecosystems.
Collapse
Affiliation(s)
- Zahra Khoshnood
- Department of Biology, Dezful Branch, Islamic Azad University, Dezful, Iran
| |
Collapse
|
2
|
Abarikwu SO, Ezim OE, Ikeji CN, Farombi EO. Atrazine: cytotoxicity, oxidative stress, apoptosis, testicular effects and chemopreventive Interventions. FRONTIERS IN TOXICOLOGY 2023; 5:1246708. [PMID: 37876981 PMCID: PMC10590919 DOI: 10.3389/ftox.2023.1246708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Atrazine (ATZ) is an environmental pollutant that interferes with several aspects of mammalian cellular processes including germ cell development, immunological, reproductive and neurological functions. At the level of human exposure, ATZ reduces sperm count and contribute to infertility in men. ATZ also induces morphological changes similar to apoptosis and initiates mitochondria-dependent cell death in several experimental models. When in vitro experimental models are exposed to ATZ, they are faced with increased levels of reactive oxygen species (ROS), cytotoxicity and decreased growth rate at dosages that may vary with cell types. This results in differing cytotoxic responses that are influenced by the nature of target cells, assay types and concentrations of ATZ. However, oxidative stress could play salient role in the observed cellular and genetic toxicity and apoptosis-like effects which could be abrogated by antioxidant vitamins and flavonoids, including vitamin E, quercetin, kolaviron, myricetin and bioactive extractives with antioxidant effects. This review focuses on the differential responses of cell types to ATZ toxicity, testicular effects of ATZ in both in vitro and in vivo models and chemopreventive strategies, so as to highlight the current state of the art on the toxicological outcomes of ATZ exposure in several experimental model systems.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Cynthia N. Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Destro ALF, Silva SB, Gregório KP, de Oliveira JM, Lozi AA, Zuanon JAS, Salaro AL, da Matta SLP, Gonçalves RV, Freitas MB. Effects of subchronic exposure to environmentally relevant concentrations of the herbicide atrazine in the Neotropical fish Astyanax altiparanae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111601. [PMID: 33396121 DOI: 10.1016/j.ecoenv.2020.111601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Atrazine (ATZ) is among the most widely used herbicides in the world, and yet it has a potential to contaminate aquatic environments due to pesticide leaching from agricultural areas. In the Neotropical region, studies about the effects of this herbicide in native aquatic wildlife is scarce.Our study aimed at investigating the effects of a 30-day exposure to a commercial atrazine formulation on oxidative stress parameters, histopathology in testis and liver, and hormone levels in males and female of yellow-tailed tetra fish (Astyanax altiparanae). Adults were exposed to low but environmentally relevant concentrations of atrazine as follows: 0 (CTL-control), 0.5 (ATZ0.5), 1 (ATZ1), 2 (ATZ2) and 10 (ATZ10) μg/L. Our results showed decreased GST activity in gills in all groups of exposed animals and increased CAT activity in gills from the ATZ10 group. In the liver, there was an increase in lipid peroxidation in fish from ATZ1 and ATZ2 groups. Histological analysis of the liver showed increased percentage of sinusoid capillaries in ATZ2 fish, increased vascular congestion in ATZ1 and increased leukocyte infiltration in the ATZ10 group. Hepatocyte diameter analysis revealed a decrease in cell size in all groups exposed to ATZ, and a decrease in hepatocyte nucleus diameter in ATZ1, ATZ2 and ATZ10 groups. Endocrine parameters did not show significant changes following ATZ exposure, although an increase of triiodothyronine/thyroxine (T3/T4) ratio was observed in ATZ2 fish. Our results provide evidence that even low, environmentally relevant concentrations of ATZ produced oxidative damage and histological alterations in adult yellow-tailed tetra.
Collapse
Affiliation(s)
- Ana Luiza F Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Stella B Silva
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kemilli P Gregório
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Amanda A Lozi
- Department of Cellular and structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Ana Lúcia Salaro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Kao CM, Ou WJ, Lin HD, Eva AW, Wang TL, Chen SC. Toxicity of diuron in HepG2 cells and zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:432-438. [PMID: 30735975 DOI: 10.1016/j.ecoenv.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Diuron is an herbicide, which is used to control a wide variety of annual and perennial broadleaf, grassy weeds, and mosses. However, the toxicity of diuron in HepG2 cells and zebrafish embryos was unclear. In this study, HpeG2 cells and zebrafish embryos were exposed to different concentrations of diuron for 24 h and 48 h, respectively. Results reveal the diuron caused cytotoxicity and the generation of reactive oxygen species (ROS) in the treated HepG2 cells. The effects of diuron on the expression of catalase and superoxide dismutase (SOD1 and SOD2), an antioxidant enzyme, were investigated. Results showed that only SOD1 was significantly induced after treated diuron 48 h, but the expression of catalase and SOD2 was unaffected. Additionally, the cytotoxicity of diuron was not attenuated in cells pretreated with of N-acetyl-cysteine (NAC), a well-known antioxidant, indicating that oxidative stress could not contribute to cellular death in the treated HepG2 cells. In zebrafish embryos, results from proteomic analysis show that 332 differentially upregulated proteins and 199 down-regulated proteins were detected in the treated embryos (P < 0.05). In addition to the up-regulated antioxidant proteins (prdx3, cat, prdx4, txnrd1, prdx1, sod1, prdx2, and sod2), some decreased proteins were related to cytoskeleton formation, tight junction, and gap junction, which could be related to the malformation of the treated zebrafish embryos. In summary, diuron caused cytotoxicity in HepG2 cells, and the mechanisms of toxicity in zebrafish were addressed using the proteomic analysis.
Collapse
Affiliation(s)
- Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Jen Ou
- Hematology-Oncology Section, LANDSEED Hospital, Jhongli, Taiwan
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Ari Wahyuni Eva
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University, Taiwan
| | - Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|
5
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
6
|
Oliveira IB, Groh KJ, Schönenberger R, Barroso C, Thomas KV, Suter MJF. Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:164-174. [PMID: 28843204 DOI: 10.1016/j.aquatox.2017.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Antifouling (AF) systems provide the most cost-effective protection against biofouling. Several AF biocides have, however, caused deleterious effects in the environment. Subsequently, new compounds have emerged that claim to be more environment-friendly, but studies on their toxicity and environmental risk are necessary in order to ensure safety. This work aimed to assess the toxicity of three emerging AF biocides, tralopyril, triphenylborane pyridine (TPBP) and capsaicin, towards non-target freshwater organisms representing three trophic levels: algae (Chlamydomonas reinhardtii), crustacean (Daphnia magna) and fish (Danio rerio). From the three tested biocides, tralopyril had the strongest inhibitory effect on C. reinhardtii growth, effective quantum yield and adenosine triphosphate (ATP) content. TPBP caused sub-lethal effects at high concentrations (100 and 250μgL-1), and capsaicin had no significant effects on algae. In the D. magna acute immobilisation test, the most toxic compound was TPBP. However, tralopyril has a short half-life and quickly degrades in water. With exposure solution renewals, tralopyril's toxicity was similar to TPBP. Capsaicin did not cause any effects on daphnids. In the zebrafish embryo toxicity test (zFET) the most toxic compound was tralopyril with a 120h - LC50 of 5μgL-1. TPBP's 120h - LC50 was 447.5μgL-1. Capsaicin did not cause mortality in zebrafish up to 1mgL-1. Sub-lethal effects on the proteome of zebrafish embryos were analysed for tralopyril and TPBP. Both general stress-related and compound-specific protein changes were observed. Five proteins involved in energy metabolism, eye structure and cell differentiation were commonly regulated by both compounds. Tralopyril specifically induced the upregulation of 6 proteins implicated in energy metabolism, cytoskeleton, cell division and mRNA splicing whilst TPBP lead to the upregulation of 3 proteins involved in cytoskeleton, cell growth and protein folding. An ecological risk characterization was performed for a hypothetical freshwater marina. This analysis identified capsaicin as an environment-friendly compound while tralopyril and TPBP seem to pose a risk to freshwater ecosystems. Noneless, more studies on the characterization of the toxicity, behaviour and fate of these AF biocides in the environment are necessary since this information directly affects the outcome of the risk assessment.
Collapse
Affiliation(s)
- Isabel B Oliveira
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | - Ksenia J Groh
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Food Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Rene Schönenberger
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlos Barroso
- Biology Department & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences(QAEHS), University of Queensland, 39 Kessels Road, Coopers Plains, 4108 Queensland, Australia
| | - Marc J-F Suter
- Eawag-Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH-Swiss Federal Institute of Technology, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Zhang C, Li XN, Xiang LR, Qin L, Lin J, Li JL. Atrazine triggers hepatic oxidative stress and apoptosis in quails (Coturnix C. coturnix) via blocking Nrf2-mediated defense response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:49-56. [PMID: 27915142 DOI: 10.1016/j.ecoenv.2016.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/05/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The bioaccumulation and environmental persistence of atrazine (ATZ) poses a severe hazard to animal ecosystem. Quail has strong sensitivity to environmental pollutant, thus it is one of the most important ecological pollution indicator. However, true proof for the effects of ATZ exposure on the liver of quails is lacking. To evaluate the liver injury and the role of Nrf2-mediated defense responses during ATZ exposure, male quails were treated with ATZ (0, 50, 250 and 500mg/kg) by oral gavage for 45 days. Histopathological and ultrastructural changes, oxidative stress indices, apoptosis-related factors and Nrf2 pathway were detected. ATZ caused irreparable mitochondrial damage and destroyed morphophysiological integrity of the quail liver. Lower level ATZ (<250mg/kg) activated Nrf2 signaling pathway to protect liver against oxidative stress and apoptosis via enhancing antioxidative activity. Higher level ATZ (>500mg/kg) induced oxidative stress and apoptosis through decrease of non-enzymatic antioxidant, antioxidant enzymes and anti-apoptosis factors and increase of apoptosis factors expressions. Taken together, our results suggested that ATZ-induced hepatotoxicity in quails was associated with blocking Nrf2-mediated defense response.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Li-Run Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Laboratory animal centre, Qiqihar Medical University, Qiqihar 161006, People's Republic of China
| | - Jia Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
8
|
Zheng Y, Qu J, Qiu L, Fan L, Meng S, Song C, Bing X, Chen J. Effect of 17α-methyltestosterone (MT) on oxidation stress in the liver of juvenile GIFT tilapia, Oreochromis niloticus. SPRINGERPLUS 2016; 5:338. [PMID: 27066359 PMCID: PMC4792819 DOI: 10.1186/s40064-016-1946-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The normal dose of 17α-methyltestosterone (MT) used in fish farming was 60 mg/L, and now the analysis of residual androgens was carried out in waste water obtained from the Beijing area, which could be detected in levels ranging from 4.1 to 7.0 ng/L. For the purpose of aquatic early warning, the present study clearly demonstrated that chronic exposure by higher concentration of MT than environmental relevant concentrations could trigger oxidative stress response to juvenile tilapia by modulating hepatic antioxidant enzyme activities and gene transcription. Some antioxidative parameters (T-GSH, GSH/GSSG and MDA) were significant decreased under 0.5 mg/L MT exposure at 7 and 14 days. Some antioxidant enzymes (SOD, CAT and GST) and transcriptional changes (sod and cat) were revealed significant decreases for MT treated groups at 7 days. Total antioxidant capacity was significant increased only in 5 mg/L MT exposure groups, but GR activities were not affected all through the whole exposure period. Almost all of the antioxidant enzymatic genes detected in the present study were showed significant increments for MT exposure both at 14 and 21 days, and the genotoxicity profile of antioxidant enzymatic genes were revealed dose-dependent manner. This study presented evidence that MT could result in oxidative stress response in the early stages of GIFT tilapia.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jianhong Qu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| |
Collapse
|
9
|
Marco-Ramell A, de Almeida AM, Cristobal S, Rodrigues P, Roncada P, Bassols A. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context. MOLECULAR BIOSYSTEMS 2016; 12:2024-35. [DOI: 10.1039/c5mb00788g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public.
Collapse
Affiliation(s)
- A. Marco-Ramell
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| | - A. M. de Almeida
- Instituto de Biologia Experimental e Tecnologica
- Oeiras
- Portugal
- CIISA/FMV – Centro Interdisciplinar de Investigação em Sanidade Animal
- Faculdade de Medicina Veterinária
| | - S. Cristobal
- Department of Clinical and Experimental Medicine
- Cell Biology
- Faculty of Medicine
- Linköping University
- Linköping
| | - P. Rodrigues
- CCMAR
- Center of Marine Science
- University of Algarve
- 8005-139 Faro
- Portugal
| | - P. Roncada
- Istituto Sperimentale Italiano L. Spallanzani
- Milano
- Italy
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular
- Facultat de Veterinària
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès
- Spain
| |
Collapse
|
10
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
11
|
Dramatic improvement of proteomic analysis of zebrafish liver tumor by effective protein extraction with sodium deoxycholate and heat denaturation. Int J Anal Chem 2015; 2015:763969. [PMID: 25873971 PMCID: PMC4383156 DOI: 10.1155/2015/763969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022] Open
Abstract
Majority of the proteomic studies on tissue samples involve the use of gel-based approach for profiling and digestion. The laborious gel-based approach is slowly being replaced by the advancing in-solution digestion approach. However, there are still several difficulties such as difficult-to-solubilize proteins, poor proteomic analysis in complex tissue samples, and the presence of sample impurities. Henceforth, there is a great demand to formulate a highly efficient protein extraction buffer with high protein extraction efficiency from tissue samples, high compatibility with in-solution digestion, reduced number of sample handling steps to reduce sample loss, low time consumption, low cost, and ease of usage. Here, we evaluated various existing protein extraction buffers with zebrafish liver tumor samples and found that sodium deoxycholate- (DOC-) based extraction buffer with heat denaturation was the most effective approach for highly efficient extraction of proteins from complex tissues such as the zebrafish liver tumor. A total of 4,790 proteins have been identified using shotgun proteomics approach with 2D LC, which to our knowledge is the most comprehensive study for zebrafish liver tumor proteome.
Collapse
|
12
|
Groh KJ, Suter MJF. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:1-12. [PMID: 25498419 DOI: 10.1016/j.aquatox.2014.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over-interpret the experimental results and to prevent the proliferation of false positive linkages between the chemical and the cellular functions it perturbs. We further discuss the implications of the identified "top lists" of frequently responding proteins and protein families, and suggest further directions for proteomics research in ecotoxicology. Apart from improving the proteome coverage, further research should focus on defining the significance of the observed stress response patterns for organism phenotypes and on searching for common upstream regulators that can be targeted by specific assays.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Carlson P, Smalley DM, Van Beneden RJ. Proteomic Analysis of Arsenic-Exposed Zebrafish (Danio rerio) Identifies Altered Expression in Proteins Involved in Fibrosis and Lipid Uptake in a Gender-Specific Manner. Toxicol Sci 2013; 134:83-91. [DOI: 10.1093/toxsci/kft086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Abstract
The aim of this study was to investigate the effects of subchronic exposure to atrazine on fish growth and the development of histopathological changes in selected organs (gill, kidney, liver) in Danio rerio. Juvenile growth tests were performed on D. rerio according to OECD method No. 215. For 28 days, fish at an initial age of 30 days were exposed to the environmental atrazine concentration commonly detected in Czech rivers (0.3 microg/L) and a range of sublethal concentrations of atrazine (3.0, 30.0 and 90.0 microg/L). The results showed decreasing growth rates and morphological changes in the liver (dystrophic lesions of hepatocytes) at 90.0 microg/L of atrazine. The environmental concentration of atrazine in Czech rivers did not have any effect on fish growth and development of histopathological changes in D. rerio. The value of NOEC was 30.0 microg/L and the value of LOEC was 90.0 microg/L.
Collapse
|
15
|
Peng XX. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:63-71. [PMID: 22484215 DOI: 10.1016/j.dci.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals.
Collapse
Affiliation(s)
- Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
16
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|