1
|
Islam MS, Nur-E-Alam M, Iqbal MA, Khan MB, Mamun SA, Miah MY, Rasheduzzaman M, Appalasamy S, Salam MA. Spatial distribution of heavy metal abundance at distance gradients of roadside agricultural soil from the busiest highway in Bangladesh: A multi-index integration approach. ENVIRONMENTAL RESEARCH 2024; 250:118551. [PMID: 38408626 DOI: 10.1016/j.envres.2024.118551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.
Collapse
Affiliation(s)
- Md Saydul Islam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Nur-E-Alam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Anwar Iqbal
- Institute of Water and Flood Management (IWFM), Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Badiuzzaman Khan
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shamim Al Mamun
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Yunus Miah
- Department of Soil Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Rasheduzzaman
- Department of Environmental Science and Disaster Management, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - S Appalasamy
- Institute of Food Security and Sustainable Agriculture (IFSSA), Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia; Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
2
|
Mishra S, Agrawal SB, Agrawal M. Assessment of herbaceous community structure for identifying metal-tolerant species at different land uses in and around Varanasi city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6960-6976. [PMID: 38157166 DOI: 10.1007/s11356-023-31529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Plant community structure under different land uses provides an important understanding of vegetation dynamics to safeguard future restoration programmes and balance ecosystem services. Therefore, this study was carried out to estimate the alterations in soil properties and contamination by potentially toxic metals at different land uses (industrial, brick kiln, highway, and residential areas) compared to the reference (botanical garden area) site coupled with their subsequent influence on herbaceous community structure, bioconcentration, translocation, and extraction amount of metals in different plant species. Most of the total and phytoavailable metals (Co, Cr, Cd, Cu, Ni, Pb, Mn, and Zn) were higher at the contaminated sites compared to the reference site. The number of herbaceous species was highest at the reference site and minimum at the industrial site. Dominant and tolerant species were Cyanodon dactylon, Croton bonaplandianus, Achyranthus aspera, Malvestrum coromendelianum, Dicanthium annulatum, Nicotiana hindostana, Sporobolus virginicus, and Parthenium hysterophorus, found at the industrial, brick kiln, and highway sites. Based on transfer coefficients, C. bonaplandianus, D. annulatum, and Eleusine indica were recognized as potential accumulators, whereas C. dactylon, Commelina benghalensis, A. aspera, Amaranthus sessilis, and M. coromendelianum were found as excluder species for different metals. The identified tolerant herbaceous species could be used for future phytoremediation strategies and the prevention of hazardous risks to living components of contaminated sites.
Collapse
Affiliation(s)
- Srishti Mishra
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Zhu R, Yuan Y, Yang Y, Yang Q, Yu A. A simple method for microwave-assisted preparation of tire samples. Sci Rep 2023; 13:20208. [PMID: 37980434 PMCID: PMC10657420 DOI: 10.1038/s41598-023-47309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
Heavy metals content in tires affects the safety of soil and agricultural products. The digestion method is a pretreatment for determining heavy metals in tire samples, and will affect the efficiency and accuracy of the heavy metal determination. The microwave digestion process and reagents for tire samples are not currently standardized. Therefore, this study attempts to provide an appropriate method of resolution for scholars. All digestion processes were performed in Mars One. We tested 15 different acid mixtures to determine the best reagent type and dose and then investigated the effect of maximum temperature, holding time, and sample grams on the degree of digestion. In summary, the best condition to digest the tire sample was a mixture of 3 ml HNO3 and 7 ml H2SO4, taking 0.1 (± 0.0005) g tire sample, at the maximum digestion temperature of 220 °C for 25 min. The experimental conclusion will provide a reliable experimental method for scientists using MARS One to study heavy metals in tires. At the same time, researchers using the MARS series can also find valuable references in this paper.
Collapse
Affiliation(s)
- Renchao Zhu
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Yingqi Yuan
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Yu Yang
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Qiyue Yang
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Aihua Yu
- College of Civil Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
4
|
Kumar P, Singh RP. Assessment of Edaphic pollution indices and bioaccumulation of trace metals in Solanum lycopersicum, Spinacia oleracea and Triticum aestivum: an associated health risk evaluation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:588. [PMID: 37074470 DOI: 10.1007/s10661-023-11170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The present study investigates bioaccumulation factor (Bfc), Edaphic pollution indices and associated health risk assessment of trace metals (TMs) i.e., Cu, Fe, Zn, Mn and Co in the crops, agricultural soil (AgS), and irrigation water (IgW) collected from various peri-urban area of metropolitan city of India, Lucknow. Though the level of these TMs was within the permissible limits (PL) (FAO/WHO, 2011) in AgS and IgW however it was higher than PL in tomato, spinach and wheat cultivated in the fields. The bioaccumulation factor of Cu, Fe and Mn in edible parts of tomato, spinach and wheat was 8 to 25 times higher through the AgS and 10 to 300 times higher through the IgW in the tomato, spinach and wheat samples. The enrichment factor (Efc), contamination factor (Cfc), contamination degree (Cdg) and modified contamination degree (mCdg) values of Co, Cu, Mn, Fe and Zn ranged from low to high levels of contamination, whereas the geo-accumulation index reflected low contamination in agricultural soil. on the other hand, the metal pollution load index (Mpi) was found strongly contaminated in most of the study areas. Due to the consumption of these contaminated vegetables and cereal (VCs) by human consumers, the hazard quotient (HQ), total hazard quotient (THQ) and hazard index (HI) were found to be more than the requisite value of 1, which indicates a far-long health risk in this crowded city and its surrounding regions.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, U.P-226025, Lucknow, India
| | - Rana Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, U.P-226025, Lucknow, India.
| |
Collapse
|
5
|
Martini AN, Papafotiou M, Massas I, Chorianopoulou N. Growing of the Cretan Therapeutic Herb Origanum Dictamnus in The Urban Fabric: The Effect of Substrate and Cultivation Site on Plant Growth and Potential Toxic Element Accumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:336. [PMID: 36679049 PMCID: PMC9867495 DOI: 10.3390/plants12020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Origanum dictamnus L. (Lamiaceae) is a perennial herb endemic to the Greek island of Crete, widely used for tea preparation, medicinal purposes, and food flavoring, as well as an ornamental plant. The aim of this work was to introduce the species to the green roof sector while serving urban agriculture. Thus, its growth potential was investigated, along with the content of nutrients (N, P, K, Na) and the accumulation of heavy metals (Cu, Pb, Ni, Mn, Zn, Fe) in its tissues, in two cultivation sites in Athens, Greece, i.e., an extensive green roof and at ground level next to a moderate traffic road. Cultivation took place in plastic containers with a green roof infrastructure fitted, in two substrate types (grape marc compost, perlite, and pumice 3:3:4 v/v, and grape marc compost, perlite, pumice, and soil 3:3:2:2 v/v), with 10 cm depth. Plant growth was favored by the soil substrate, but it was also satisfactory in the soilless one. Cultivation site affected heavy metal accumulation, resulting in higher concentrations both in leaves and in flowers at street level, while no differences were observed in roots. Washing the tissues reduced heavy metal concentrations only in leaves produced at the street level. Substrate type significantly affected Mn concentration in all plant tissues and Fe in roots, with the highest values measured in the soil substrate. Thus, O. dictamnus could be effectively cultivated in sustainable green roofs, better on a soilless substrate to lower construction weight. Careful selection of the cultivation site could minimize contamination with environmental pollutants if human consumption is also desired.
Collapse
Affiliation(s)
- Aikaterini N. Martini
- Laboratory of Floriculture and Landscape Architecture, Department of Crop Science, School of Plant Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Maria Papafotiou
- Laboratory of Floriculture and Landscape Architecture, Department of Crop Science, School of Plant Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioannis Massas
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources and Agricultural Engineering, School of Plant Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikoleta Chorianopoulou
- Laboratory of Floriculture and Landscape Architecture, Department of Crop Science, School of Plant Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
6
|
Xu J, Wang M, Zhong T, Zhao Z, Lu Y, Zhao X, Cai X. Insights into site-specific influences of emission sources on accumulation of heavy metal(loid)s in soils by wheat grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73131-73146. [PMID: 35622279 DOI: 10.1007/s11356-022-21022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Excessive accumulation of heavy metal(loid)s in agricultural environment usually originates from anthropogenic activities. Both large diversities of emission sources and complexity of plant accumulation challenge the understanding of the site-specific effects of emission sources on heavy metal(loid)s in wheat grains. Herein, both soil samples and wheat grain samples (n = 80) were collected from the farmland of Jiyuan City, China. Soil and grain burdens of heavy metal(loid)s were determined by inductively coupled plasma mass spectrometry (ICP-MS) and/or X-ray fluorescence spectrometry (XRF). The quotients (Q) were developed to indicate relative impacts of industrial plants and traffic to soil sites. Principal component analysis-absolute principal component scores-multivariate linear regression (PCA-APCS-MLR) analysis was conducted to reveal the source contributions to heavy metal(loid)s in grains, considering Q values, soil, and wheat grain data. Results showed that contributions of main sources and factors drastically varied with soil sites, and usually overlapped to different extents. For grain Cd and grain Pb, natural soil silicate (0.066/0.104 mg/kg) and iron-bearing minerals (- 0.044/ - 0.174 mg/kg) contributed to high extents, while metal smelting activities (0.018/0.019 mg/kg) and agronomic activities (- 0.017/ - 0.019 mg/kg) unexpectedly posed low or moderate contributions. The pH-mediated availability of soil Cd (0.035 mg/kg) and the sand-dust weather (0.028 mg/kg) also made considerable contributions to grain Cd. For grain As, both natural soil iron-bearing (- 0.048 mg/kg) and silicate minerals (- 0.013 mg/kg) made negative contributions. The results benefit to the decision-making of pollution remediation of farmland soils in the regional scales.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tianxiang Zhong
- CECEP DADI Environmental Remediation Co., Ltd, Beijing, 100089, China
| | - Zongsheng Zhao
- Key Laboratory of Heavy-Metal Pollution Monitoring and Remediation of Henan Province, Jiyuan, 459000, China
| | - Yifu Lu
- Key Laboratory of Heavy-Metal Pollution Monitoring and Remediation of Henan Province, Jiyuan, 459000, China
| | - Xiaoxue Zhao
- Key Laboratory of Heavy-Metal Pollution Monitoring and Remediation of Henan Province, Jiyuan, 459000, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Using the Halophyte Crithmum maritimum in Green Roofs for Sustainable Urban Horticulture: Effect of Substrate and Nutrient Content Analysis including Potentially Toxic Elements. SUSTAINABILITY 2022. [DOI: 10.3390/su14084713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of substrate type and cultivation site in the urban fabric on growth, nutrient content and potentially toxic element (PTE) accumulation in tissues of the halophyte Crithmum maritimum was studied. Plantlets were cultivated for twelve months in containers with a green-roof infrastructure fitted and placed either on an urban second-floor roof or on ground level by the side of a moderate-traffic street. Two substrate types were used; one comprising grape marc compost, perlite and pumice (3:3:4, v/v) and one composed of grape marc compost, perlite, pumice and soil (3:3:2:2, v/v), with 10 cm depth. Plants grew well on both sites, although aboveground growth parameters and nutrient content in leaves were greater at street level. Both cultivation site and substrate type affected heavy-metal accumulation in plant tissues. Cu, Ni and Fe concentrations in leaves and Pb in roots were higher in street-level-grown plants compared to the roof-grown plants, and concentrations of Cu and Mn in leaves and Fe in both leaves and roots were lower in the soilless substrate compared to the soil-substrate, making the soilless type preferable in the interest of both safer produce for human consumption and lower construction weight in the case of green-roof cultivation.
Collapse
|
8
|
Petukhov A, Kremleva T, Petukhova G, Khritokhin N. Biochemical Responses of Medicinal Plant Tussilago farfara L. to Elevated Heavy Metal Concentrations in Soils of Urban Areas. TOXICS 2021; 9:171. [PMID: 34357914 PMCID: PMC8309739 DOI: 10.3390/toxics9070171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
This study was conducted in Tyumen (Russian Federation) to establish the effects of heavy metals' (Cu, Zn, Fe, Mn, Pb, and Cd) accumulation in soil and coltsfoot, as well as plants' biochemical responses to such an accumulation. The mobile and acid-soluble heavy metal fractions in soils, and the heavy metal contents in plants, were determined by atomic absorption spectrophotometry. The Cu, Zn, Fe, Mn, and Pb concentrations in soils exceeded background values. Pb content at the battery manufacturing plant was above the maximum permitted concentration. The percentages of the mobile heavy metal fractions decreased in the following order: Mn > Zn > Cu > Fe. The greatest heavy metal accumulation in soils and plants was found at the battery manufacturing and metallurgical plants examined in our study. Heavy metals' accumulation in the aboveground part of Tussilago farfara decreased in the following order: Fe > Zn > Cu > Mn > Pb > Cd. The accumulation of heavy metals stimulated the synthesis of photosynthetic pigments by 6-30%. Heavy metals provoked oxidative stress in cells, increasing the concentration of lipid peroxidation in products by up to 80%. Plant phenolics and flavonoids in the urban area of our study decreased compared to those in the control by 1.05, reaching up to 6.5 times. The change in coltsfoot catalase activity both increased and declined. Biochemical responses and heavy metal accumulation in coltsfoot from urban areas limit its use for medicinal purposes.
Collapse
Affiliation(s)
- Alexander Petukhov
- Institute of Chemistry, University of Tyumen, 625003 Tyumen, Russia; (T.K.); (G.P.); (N.K.)
| | | | | | | |
Collapse
|
9
|
Medvedeva Y, Kucher A, Lipsa J, Hełdak M. Human Health Risk Assessment on the Consumption of Apples Growing in Urbanized Areas: Case of Kharkiv, Ukraine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041504. [PMID: 33562497 PMCID: PMC7916046 DOI: 10.3390/ijerph18041504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
This study aims to determine the safety of consumption of plant products grown in Kharkiv, Ukraine. Kharkiv, as well as many other post-Soviet cities, is environmentally characterized by the widespread growing of edible plants—from industrial areas to school gardens—as well as the presence of a significant number of nature management conflicts, the location of heavy industry, the prevalence of obsolete environmentally unfriendly transport, etc. The article presents the results of the study of apple samples taken in different functional zones of Kharkiv city, Ukraine. The results of the study showed that the maximum levels of heavy metals were exceeded in apple samples from all sampling sites: Pb—from 11.47 to 38.86 times; Cd—from 1.76 to 5.68 times (of the norms of the FAO and EU). The most polluted were samples from the residential areas, which is partly due to significant land pollution from various types of waste. Levels of hazard index (HI) differ by age groups: from 24.37 to 70.11 HI (children group, 1–6 years); from 10.28 to 29.59 HI (children group, 7–16 years); from 0.88 to 2.53 HI (adult group, 18–65 years). Non-carcinogenic risks can be related to disorders of the immune system, blood, urinoexcretory, and nervous systems as well as problems in the functioning of liver and kidneys. The total carcinogenic risk of eating apples exceeds the permissible level.
Collapse
Affiliation(s)
- Yuliia Medvedeva
- National Scientific Center «Institute for Soil Science and Agrochemistry Research Named after O. N. Sokolovsky», 4, Chaikovska Street, 61024 Kharkiv, Ukraine;
| | - Anatolii Kucher
- Department of Ecology and Neoecology, V. N. Karazin Kharkiv National University, Svobody sq., 6, 61022 Kharkiv, Ukraine;
| | - Joanna Lipsa
- Institute of Spatial Management, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 55, 50-357 Wroclaw, Poland;
| | - Maria Hełdak
- Institute of Spatial Management, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 55, 50-357 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
10
|
Shahid M, Khalid S. Foliar application of lead and arsenic solutions to Spinacia oleracea: biophysiochemical analysis and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39763-39773. [PMID: 32166684 DOI: 10.1007/s11356-019-06519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/10/2019] [Indexed: 05/06/2023]
Abstract
Atmospheric contamination by heavy metal(loid)s is a widespread global issue. Recent studies have shown foliar pathway of heavy metal(loid) uptake by plants, thus menacing plant productivity and threatening health risks. In contrast to root uptake of heavy metal(loid)s, there is scarce data available on heavy metal(loid) foliar uptake, accumulation in different plant parts, changes in growth and other biophysiochemical processes/reactions, detoxification mechanisms and associated health risks due to the consumption of contaminated vegetables. This study evaluated the effect of foliar application of two potentially toxic metal(loid)s (arsenic (As) and lead (Pb)) on their uptake by Spinacia oleracea, plant growth, pigment contents, physiological changes, and activation of antioxidative enzymes. Results revealed that S. oleracea seedlings can accumulate both the metal(loid)s in their leaves via foliar pathway. Arsenic was transferred from the leaves towards the roots, while Pb was mainly sequestered in S. oleracea leaves. Both the metal(loid)s significantly decreased plant growth and pigment contents, As being more toxic than Pb. Foliar application of As and Pb did not cause lipid peroxidation and overproduction of reactive oxygen species (ROS). However, both the metal(loid)s enhanced the activities of antioxidative enzymes. We also calculated possible health risks (both non-carcinogenic and carcinogenic) due to As and Pb accumulation in the edible parts for both the adults and children. It was observed that As can induce non-carcinogenic effects (HQ > 1) in children only, while both As and Pb can cause carcinogenic hazards in both adults and children under their all applied foliar levels. Therefore, it is proposed that As and Pb contents in the atmosphere must be monitored continuously for their possible foliar uptake and accumulation in edible plant parts to avoid cancer risks. Moreover, multivariate analysis traced weak-strong correlations between metal(loid) treatments and plant response variables.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| |
Collapse
|
11
|
Li C, Sanchez GM, Wu Z, Cheng J, Zhang S, Wang Q, Li F, Sun G, Meentemeyer RK. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989-2018) in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114075. [PMID: 32014753 DOI: 10.1016/j.envpol.2020.114075] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 05/06/2023]
Abstract
This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384), 2009 (521), and 2018 (421) for heavy metals of As, Cr, Cd, Cu, Hg, Ni, Pb and Zn. Multiple pollution indices and Structural Equation Models (SEMs) were used in attribution analysis and comprehensive assessments. Data showed that majority of the sampling sites was contaminated by one or more heavy metals, but pollutant concentrations had not reached levels of concerns for food security or human health. There was an increasing trend in heavy metal contamination over time and the variations of soil contamination were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped with highly industrialized and populated areas in western part of the study region. A dozen SEMs path analyses were used to compare the relative influences of key environmental factors on soil contamination across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were primarily affected by soil properties during the study period, except 1989-2005, followed by land use patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and overall soil pollution during 1989-2005. We hypothesized that other factors not considered in the present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also important to explain the variability of soil contamination. This study implied that strategies to improve soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil contamination. Future studies should monitor pollutant sources identified by this study to fully understand the causes of heavy metal contamination in rapidly industrialized regions in southern China.
Collapse
Affiliation(s)
- Cheng Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Georgina M Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27606, USA; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Zhifeng Wu
- School of Geographical Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Jiong Cheng
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Siyi Zhang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Ge Sun
- USDA Forest Service Eastern Forest Environment Threat Assessment Center, Research Triangle Park, NC, 27709, USA.
| | - Ross K Meentemeyer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27606, USA; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
12
|
Shim MJ, Jung TY, Yoon DH, Yang YM, Rumky J, Yoon YY. HNO 2 treatment of sludge: An alternative way of sludge usage as fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110016. [PMID: 31929058 DOI: 10.1016/j.jenvman.2019.110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The research was conducted to evaluate the sludge quality as fertilizer after heavy metal removal by using free nitrous acid (FNA, HNO2) solution. To meet up the Korean criteria of fertilizer, FNA treatment with the ultrasonic process was studied here. The sample was taken from a local wastewater and sewage treatment plants and FNA with FNA plus ultrasonic used to treat them. As and Cd concentrations were met the Korean criteria after FNA treatment. In contrast, Al of sludge from sewage treatment plant did not decrease down to the criteria, possibly suggesting that it may be related to the coagulants of the sludge during thickening and dewatering. FNA treatment showed satisfactory results in comparison with the other acidic treatment of citric acid, oxalic acid, HNO3 or HCl. Removal efficiency of the Fenton-like reaction was more effective than the FNA method. Despite this result, the FNA treatment may be better for sludge recycling as fertilizer because the Fenton-like process removed the necessary organic matter, nitrogen as well as metals. Moreover, the addition of ultrasound process has in conserving time and expenditure in metal removal and FNA with ultrasound became more effective in shorter reaction time. Therefore, FNA treated sludge could be a better option for sludge recycling as fertilizer. In conclusion, a proper plan of sludge management should be required for future work to use sludge as fertilizer.
Collapse
Affiliation(s)
- Moo Joon Shim
- Daeyang Environment Technology Co. LTD., Gangneung, South Korea
| | - Tae Yoon Jung
- Catholic Kwandong University, Department of Environmental Engineering, Gangneung, South Korea
| | - Dong Hyck Yoon
- Catholic Kwandong University, Department of Environmental Engineering, Gangneung, South Korea
| | - Yun Mo Yang
- National Institute of Environment Research, Geum River Research Center, Okcheon, South Korea
| | - Jannatul Rumky
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Yi Yong Yoon
- Catholic Kwandong University, Department of Environmental Engineering, Gangneung, South Korea.
| |
Collapse
|
13
|
Laniyan TA, Adewumi AJ. Evaluation of Contamination and Ecological Risk of Heavy Metals Associated with Cement Production in Ewekoro, Southwest Nigeria. J Health Pollut 2020; 10:200306. [PMID: 32175177 PMCID: PMC7058134 DOI: 10.5696/2156-9614-10.25.200306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/03/2019] [Indexed: 04/20/2023]
Abstract
BACKGROUND Exposure to heavy metals emanating from cement production and other anthropogenic activities can pose ecological risks. OBJECTIVES A detailed investigation was carried out to assess the contamination and ecological risk of heavy metals associated with dust released during cement production. METHODS Sixty samples, including 30 soils and 30 plants, were collected around Lafarge Cement Production Company. Control samples of soil and plants were collected in areas where human activities are limited. Samples were dried, sieved (for soil; 65 μm), packaged and analyzed using inductively coupled plasma mass spectrometry at Acme Laboratory in Canada. RESULTS The average concentration of heavy metals in soils of the area are: copper (Cu): 41.63 mg/kg; lead (Pb): 35.43 mg/kg; zinc (Zn): 213.64 mg/kg; chromium (Cr): 35.60 mg/kg; cobalt (Co): 3.84 mg/kg and nickel (Ni): 5.13 mg/kg. Concentrations of Cr in soils were above the recommended standards, while other metals were below recommended limits. The average concentrations of heavy metals in plants were: Cu: 26.32 mg/kg; Pb: 15.46 mg/kg; Zn: 213.94 mg/kg; Cr: 30.62 mg/kg; Co: 0.45 mg/kg and Ni: 3.77 mg/kg. Levels of heavy metals in plants were all above international limits. Geo-accumulation of metals in soils ranged between -0.15 and 6.32, while the contamination factor ranged between 0.53 and 119.59. Ecological risk index of heavy metals in soils ranged between 49.71 and 749. DISCUSSION All metals in soils of the study area except for Cr were below the allowable limits, while the levels of metals in plants were above the permissible limits. Levels of heavy metals reported in this study were higher than those from similar cement production areas. Soils around the Ewekoro cement production area were low to extremely contaminated by toxic metals. Cement production, processing, transportation in conjunction with the abandoned railway track in the area greatly contribute to the high degree of contamination observed in the area. Metal transfers from soil to plant are a common phenomenon. The metals pose low to considerable ecological risk. CONCLUSIONS Anthropogenic sources, especially cement processing activities, release heavy metals which leads to progressive pollution of the environment and poses high ecological risk. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Temitope Ayodeji Laniyan
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
14
|
Li C, Sun G, Wu Z, Zhong H, Wang R, Liu X, Guo Z, Cheng J. Soil physiochemical properties and landscape patterns control trace metal contamination at the urban-rural interface in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:537-545. [PMID: 31026701 DOI: 10.1016/j.envpol.2019.04.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
This study examined the influences of three subsets of environmental factors (i.e. soil physicochemical properties including pH, organic matters and soil texture, landscape patterns, and parent materials) on the spatial variations and sources of soil trace metal contamination across an urban-rural environmental gradient in Guangzhou City, southern China. We collected 318 surface soil samples from forests, orchards, farmlands, and urban lawns using a random tessellation design for selecting sample sites. The geo-accumulation indices showed that 18%-88% of soil samples were contaminated: moderate to high contamination with Cd and Hg, low to moderate contamination with Cu, Pb, Zn and Ni, and low contamination with As and Cr. However, less than 13% of soil samples were considered to have exceeded the national standards causing environmental and human health concerns. The mean geo-accumulation indices increased in the order of forest, paddy field/orchard, vegetable, road/residential, and park/residential areas for As, Cd, Ni, Pb, Zn, closely following a land disturbance gradient. Spearman Correlation and Cluster Analyses showed that Pb-Cu-Zn had traffic-related origins, Cd-Hg were mainly influenced by fertilization or industrial emissions, and As-Cr-Ni had geogenic origins for agricultural soils. In contrast, the Ni, Hg and Cd contamination sources for urban soils included both anthropogenic and geogenic origins. The Stepwise Regression and Partial Redundancy Analyses showed that three subsets of environmental factors explained 43%-87% of variations of soil contamination for both agricultural and urban soils. We concluded that soil contamination was mainly controlled by soil physiochemical properties followed by landscape patterns. Soil absorption of aerial loads of trace metal pollutants dominated the soil contamination processes. Our findings implied that improving soil physiochemical properties and landscape designs can strengthen environmental buffering and carrying capacity, thus alleviating soil contamination and reducing non-point-source pollution in the study region.
Collapse
Affiliation(s)
- Cheng Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| | - Ge Sun
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Research Triangle Park, NC, 27709, USA.
| | - Zhifeng Wu
- School of Geographical Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Honglin Zhong
- Department of Geographical Sciences, University of Maryland, College Park, 20742, USA.
| | - Rongping Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| | - Xiaonan Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| | - Zhixing Guo
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| | - Jiong Cheng
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| |
Collapse
|
15
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 700] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
16
|
Henríquez-Hernández LA, Luzardo OP, Boada LD, Carranza C, Pérez Arellano JL, González-Antuña A, Almeida-González M, Barry-Rodríguez C, Zumbado M, Camacho M. Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:817-828. [PMID: 28734263 DOI: 10.1016/j.envpol.2017.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V -all of them frequently found in e-waste-, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of contamination of the population of the continent.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Cristina Carranza
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Sciences and Surgery Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Luis Pérez Arellano
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Sciences and Surgery Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana González-Antuña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Carlos Barry-Rodríguez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| |
Collapse
|