1
|
González-Penagos CE, Zamora-Briseño JA, Améndola-Pimenta M, Cruz-Quintana Y, Santana-Piñeros AM, Torres-García JR, Cañizares-Martínez MA, Pérez-Vega JA, Peñuela-Mendoza AC, Rodríguez-Canul R. Sargassum spp. Ethanolic Extract Elicits Toxic Responses and Malformations in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38477677 DOI: 10.1002/etc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
The amount of Sargassum spp. arriving in the Caribbean Sea has increased steadily in the last few years, producing a profound environmental impact on the ecological dynamics of the coasts of the Yucatan Peninsula. We characterized the toxicological effects of an ethanolic extract of Sargassum spp. on zebrafish (Danio rerio) embryos (ZFEs) in a 96-h static bioassay using T1 (0.01 mg/L), T2 (0.1 mg/L), T3 (1 mg/L), T4 (10 mg/L), T5 (25 mg/L), T6 (50 mg/L), T7 (75 mg/L), T8 (100 mg/L), T9 (200 mg/L), and T10 (400 mg/L). In this extract, we detected 74 compounds by gas chromatography-mass spectrometry (GC-MS), of which hexadecanoic acid methyl ester, and 2-pentanone 4-hydroxy-4-methyl, were the most abundant. In ZFEs, a median lethal concentration of 251 mg/L was estimated. Exposed embryos exhibited extensive morphological changes, including edema in the yolk sac, scoliosis, and loss of pigmentation, as well as malformations of the head, tail, and eyes. By integrating these abnormalities using the Integrated Biological Response (IBRv2) and General Morphological Score (GMS) indices, we were able to determine that ZFEs exposed to 200 mg/L (T9) exhibited the most pronounced biological response in comparison with the other groups. In the comparative transcriptomic analysis, 66 genes were upregulated, and 246 genes were downregulated in the group exposed to 200 mg/L compared with the control group. In the upregulated genes, we identified several gene ontology-enriched terms, such as response to xenobiotic stimuli, cellular response to chemical stimulus, transcriptional regulation, pigment metabolic process, erythrocyte differentiation and embryonic hemopoiesis, extracellular matrix organization, and chondrocyte differentiation involved in endochondral bone morphogenesis, among others. In the down-regulated genes, we found many genes associated with nervous system processes, sensory and visual perception, response to abiotic stimulus, and the nucleoside phosphate biosynthetic process. The probable connections among the morphological changes observed in the transcriptome are thoroughly discussed. Our findings suggest that Sargassum spp. exposure can induce a wide negative impact on zebrafish embryos. Environ Toxicol Chem 2024;00:1-15. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carlos E González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | | | - Mónica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Ana M Santana-Piñeros
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
| | - Jesús R Torres-García
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Michoacán, México
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, México
| | - Mayra A Cañizares-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Juan A Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Ana C Peñuela-Mendoza
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
2
|
Guerreiro ADS, Guterres BDV, Costa PG, Bianchini A, Botelho SSDC, Sandrini JZ. Combined physiological and behavioral approaches as tools to evaluate environmental risk assessment of the water accommodated-fraction of diesel oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106230. [PMID: 35797851 DOI: 10.1016/j.aquatox.2022.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing concern related to the toxic effects of the soluble portion of diesel oil on aquatic ecosystems and the organisms living in them. In this context, the aim of this study was to analyze the effects of diesel water accommodated-fraction (WAF) on behavioral and biochemical responses of mussels Perna perna. Animals were exposed to 5 and 20% of WAF for 96 h. Prior to the beginning of the experiments, Hall effect sensors and magnets were attached to the valves of the mussels. Valve gaping behavior was continuously recorded for 12 h of exposure and tissues (gills and digestive gland) were separated after 96 h of exposure. Overall, both behavior and biochemical biomarkers were altered due to WAF exposure. Animals exposed to WAF reduced the average amplitude of the valves and the fraction of time opened, and presented greater transition frequency, demonstrating avoidance behavior over the 12 h period. Furthermore, the biochemical biomarkers (GSH, GST, SOD and CAT) were altered following the 96 h of exposure to WAF. Considering the results presented, this study demonstrates the toxic potential of WAF in both shorter and longer exposure periods.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Bruna de Vargas Guterres
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Patricia Gomes Costa
- Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Silvia Silva da Costa Botelho
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| |
Collapse
|
3
|
González-Penagos CE, Zamora-Briseño JA, Améndola-Pimenta M, Elizalde-Contreras JM, Árcega-Cabrera F, Cruz-Quintana Y, Santana-Piñeros AM, Cañizárez-Martínez MA, Pérez-Vega JA, Ruiz-May E, Rodríguez-Canul R. Integrative description of changes occurring on zebrafish embryos exposed to water-soluble crude oil components and its mixture with a chemical surfactant. Toxicol Appl Pharmacol 2022; 445:116033. [PMID: 35452689 DOI: 10.1016/j.taap.2022.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
The effects of crude oil spills are an ongoing problem for wildlife and human health in both marine and freshwater aquatic environments. Bioassays of model organisms are a convenient way to assess the potential risks of the substances involved in oil spills. Zebrafish embryos (ZFE) are a useful to reach a fast and detailed description of the toxicity of the pollutants, including both the components of the crude oil itself and substances that are commonly used for crude oil spill mitigation (e.g. surfactants). Here, we evaluated the survival rate, as well as histological, morphological, and proteomic changes in ZFE exposed to Water Accumulated Fraction (WAF) of light crude oil and in mixture with dioctyl sulfosuccinate sodium (DOSS, e.g. CEWAF: Chemically Enhanced WAF), a surfactant that is frequently used in chemical dispersant formulations. Furthermore, we compared de hydrocarbon concentration of WAF and CEWAF of the sublethal dilution. In histological, morphological, and gene expression variables, the ZFE exposed to WAF showed less changes than those exposed to CEWAF. Proteomic changes were more dramatic in ZFE exposed to WAF, with important alterations in spliceosomal and ribosomal proteins, as well as proteins related to eye and retinal photoreceptor development and heart function. We also found that the concentration of high molecular weight hydrocarbons in water was slighly higher in presence of DOSS, but the low molecular weight hydrocarbons concentration was higher in WAF. These results provide an important starting point for identifying useful crude-oil exposure biomarkers in fish species.
Collapse
Affiliation(s)
- Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - José Miguel Elizalde-Contreras
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatán 97356, Mexico
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental, Facultad de Ciencias Veterinarias, Departamento de Acuicultura y Pesca, Universidad Técnica de Manabí, Ciudadela Universitaria, Bahía de Caráquez, Manabí 130104, Ecuador
| | - Ana María Santana-Piñeros
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental, Facultad de Ciencias Veterinarias, Departamento de Acuicultura y Pesca, Universidad Técnica de Manabí, Ciudadela Universitaria, Bahía de Caráquez, Manabí 130104, Ecuador
| | - Mayra Alejandra Cañizárez-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico
| | - Eliel Ruiz-May
- Laboratorio de Entomología Molecular, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, El Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, CP 91070, Mexico.
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Antigua carretera a Progreso Km. 6, CP 97310 Mérida, Yucatán, Mexico.
| |
Collapse
|
4
|
Li X, Wang C, Li N, Gao Y, Ju Z, Liao G, Xiong D. Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber ( Apostichopus japonicus, Selenka). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020801. [PMID: 33477823 PMCID: PMC7832845 DOI: 10.3390/ijerph18020801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.
Collapse
Affiliation(s)
- Xishan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Nan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Yali Gao
- School of Marine Engineering, Jimei University, Xiamen 361021, China;
| | - Zhonglei Ju
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
- Correspondence: ; Tel.: +86-0411-8478-3810
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| |
Collapse
|
5
|
Miserazzi A, Perrigault M, Sow M, Gelber C, Ciret P, Lomenech AM, Dalens JM, Weber C, Le Floch S, Lacroix C, Blanc P, Massabuau JC. Proteome changes in muscles, ganglia, and gills in Corbicula fluminea clams exposed to crude oil: Relationship with behavioural disturbances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105482. [PMID: 32371337 DOI: 10.1016/j.aquatox.2020.105482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The use of online remote control for 24/7 behavioural monitoring can play a key role in estimating the environmental status of aquatic ecosystems. Recording the valve activity of bivalve molluscs is a relevant approach in this context. However, a clear understanding of the underlying disturbances associated with behaviour is a key step. In this work, we studied freshwater Asian clams after exposure to crude oil (measured concentration, 167 ± 28 μg·L-1) for three days in a semi-natural environment using outdoor artificial streams. Three complementary approaches to assess and explore disturbances were used: behaviour by high frequency non-invasive (HFNI) valvometry, tissue contamination with polycyclic aromatic hydrocarbons (PAH), and proteomic analysis. Two tissues were targeted: the pool adductor muscles - retractor pedal muscle - cerebral and visceral ganglia, which is the effector of any valve movement and the gills, which are on the frontline during contamination. The behavioural response was marked by an increase in valve closure-duration, a decrease in valve opening-amplitude and an increase in valve agitation index during opening periods. There was no significant PAH accumulation in the muscle plus nervous ganglia pool, contrary to the situation in the gills, although the latter remained in the low range of data available in literature. Major proteomic changes included (i) a slowdown in metabolic and/or cellular processes in muscles plus ganglia pool associated with minor toxicological effect and (ii) an increase of metabolic and/or cellular processes in gills associated with a greater toxicological effect. The nature of the proteomic changes is discussed in terms of unequal PAH distribution and allows to propose a set of explanatory mechanisms to associate behaviour to underlying physiological changes following oil exposure. First, the first tissues facing contaminated water are the inhalant siphon, the mantle edge and the gills. The routine nervous activity in the visceral ganglia should be modified by nervous information originating from these tissues. Second, the nervous activity in the visceral ganglia could be modified by its own specific contamination. Third, a decrease in nervous activity of the cerebral ganglia close to the mouth, including some kind of narcosis, could contribute to a decrease in visceral ganglia activity via a decrease or blockage of the downward neuromodulation by the cerebro-visceral connective. This whole set of events can explain the decrease of metabolic activity in the adductor muscles, contribute to initiate the catch mechanism and then deeply modify the valve behaviour.
Collapse
Affiliation(s)
- A Miserazzi
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Perrigault
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - M Sow
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - C Gelber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - P Ciret
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France
| | - A M Lomenech
- Center of Functional Genomics, Bordeaux University, Bordeaux, France
| | - J M Dalens
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | - C Weber
- Pôles d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | - P Blanc
- CSTJF, TOTAL SA, Pau, France
| | - J C Massabuau
- University of Bordeaux, EPOC, UMR 5805, Arcachon, France; CNRS, EPOC, UMR 5805, Talence, France.
| |
Collapse
|
6
|
Hani YMI, Turies C, Palluel O, Delahaut L, Bado-Nilles A, Geffard A, Dedourge-Geffard O, Porcher JM. Effects of a chronic exposure to different water temperatures and/or to an environmental cadmium concentration on the reproduction of the threespine stickleback (Gasterosteus aculeatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:48-57. [PMID: 30818260 DOI: 10.1016/j.ecoenv.2019.02.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Knowledge about combined effects of chemicals and temperature on reproductive capacity of fish are rare in literature, especially when it comes to the effects of chronic low-dose chemical exposure combined to the thermal stress. The aim of the study was to evaluate the single and combined effects of temperature (16, 18, 21 °C) and an environmentally relevant concentration of waterborne cadmium (1 µg L-1, nominal concentration) on the reproductive outputs of threespine stickleback (Gasterosteus aculeatus), and their consequences on offspring survival parameters. The high temperature (21 °C) was the only factor that affected parental parameters (gonadosomatic index "GSI", and vitellogenin "VTG" particularly). On females, 21 °C had a stimulating effect on gonadal development evaluated by an early increase, followed by a sharp decrease of GSI, probably indicating gonadal atresia. Promoting effect of temperature was corroborated by an early production of VTG. In vitro fertilization assays showed interesting results, particularly cadmium effects. As it was supposed, high temperature had a negative impact on offspring parameters (significant decrease in survival and an increase of unhatched embryos). Parental exposure to the very low concentration of cadmium had also negative consequences on mortality rate (significant increase) and hatching rate (significant decrease). Our results indicate that in a global warming context, high temperature and its combination with contaminant may impact reproductive capacity of G. aculeatus, by decreasing parental investment (low eggs and/or sperm quality).
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France.
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France
| |
Collapse
|
7
|
Mu X, Liu J, Yang K, Huang Y, Li X, Yang W, Qi S, Tu W, Shen G, Li Y. 0# Diesel water-accommodated fraction induced lipid homeostasis alteration in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:952-961. [PMID: 30373040 DOI: 10.1016/j.envpol.2018.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
To investigate the developmental effects and corresponding molecular mechanism of diesel in freshwater organisms, zebrafish embryos were exposed to 0# diesel water-accommodated fraction (WAF) at different concentrations. Mortality, embryonic morphological endpoints, transcriptional profile and lipid profile were evaluated after exposure. Exposure to 0# diesel WAF had no significant effect on the survival of zebrafish embryos from 1.5 to 96 hpf. However, a significant increase in mortality was observed at 144 and 196 hpf in the groups of 20 and 40 mg/L 0# diesel WAF. RNA-Seq results demonstrated that 0# diesel WAF could induce significant alterations in transcription profile at concentrations of 0.05 mg/L (the limit for petroleum hydrocarbon concentration in surface water in China) and 5 mg/L. Gene Ontology enrichment and similarity analysis indicated that lipid metabolism, lipid synthesis, biological transport, drug metabolism and homeostatic processes were the most altered biological processes after exposure to 0# diesel WAF. Further, transcription levels of genes involved in cholesterol and fatty acid synthesis were significantly inhibited by diesel WAF according to qPCR results. Lipidomics results also indicated that several lipid species (cholesterol ester, fatty acid, diglyceride and triglyceride) decreased after 0# diesel WAF exposure. These results reflect the potential risk of diesel pollution in freshwater ecosystems especially on the alteration of lipid homeostasis and enable a better understanding of the molecular pathways underlying the action of diesel WAF in zebrafish embryos.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Brown TM, Takada H. Indicators of Marine Pollution in the North Pacific Ocean. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:171-175. [PMID: 28710502 DOI: 10.1007/s00244-017-0424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
The complex nature of ocean pollution underscores the utility in identifying and characterizing a limited number of "indicators" that enables scientists and managers to track trends over space and time. This paper introduces a special issue on indicators of marine pollution in the North Pacific Ocean and builds on a scientific session that was held at the North Pacific Marine Science Organization. The special issue highlights studies using a variety of indicators to provide insight into the identification of legacy and emerging contaminants, the ranking of priority pollutants from various sources, and the effects of contaminants on ecosystem health in the North Pacific Ocean. Examples include the use of mussels to illustrate spatial and temporal trends of a number of contaminants following the 2011 tsunami in Japan, the use of molecular marker (linear alkylbenzenes, hopanes, and polycyclic aromatic hydrocarbons) profiles to identify pollution sources, and the use of plastic resin pellets to illustrate spatial trends of petroleum pollution around the world. Stable isotopes were used to strengthen the utility of the Glaucous-winged gull (Larus glaucescens) as an indicator of marine pollution. Examples also demonstrate the development and application of biomarker approaches, including gene transcripts, oxidative stress, estradiol, hatchability, and respiration and swimming behavior abnormalities, as a function of exposure to polychlorinated biphenyls, sulfur-diesel, Pinghu crude oil, galaxolide and antifouling biocides. We provide a brief review of indicators of marine pollution, identify research gaps, and summarize key findings from the articles published within the issue. This special issue represents the first compilation of research pertaining to marine pollution indicators in the North Pacific Ocean and provides guidance to inform mitigation and monitoring efforts of contaminants in the region.
Collapse
Affiliation(s)
- Tanya M Brown
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|