1
|
Niu C, Dong M, Niu Y. Lead toxicity and potential therapeutic effect of plant-derived polyphenols. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154789. [PMID: 37004401 DOI: 10.1016/j.phymed.2023.154789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Due to its unique physical and chemical properties, lead is still used worldwide in several applications, especially in industry. Both environmental and industrial lead exposures remain a public health problem in many developing and rapidly industrializing countries. Plant polyphenols are pleiotropic in their function and have historically made a major contribution to pharmacotherapy. PURPOSE To summarize available pre-clinical and limited clinical evidence on plant polyphenols as potential antidotes against lead poisoning and discuss toxic mechanisms of lead. METHOD A comprehensive search of peer-reviewed publications was performed from core collections of electronic databases such as PubMed, Web of Science, Google Scholar, and Science Direct. Articles written in English-language from inception until December 2022 were selected. RESULTS In this review, we review key toxic mechanisms of lead and its pathological effects on the neurological, reproductive, renal, cardiovascular, hematological, and hepatic systems. We focus on plant polyphenols against lead toxicity and involved mechanisms. Finally, we address scientific gaps and challenges associated with translating these promising preclinical discoveries into effective clinical therapies. CONCLUSION While preclinical evidence suggests that plant polyphenols exhibit bioprotective effects against lead toxicity, scant and equivocal clinical data highlight a need for clinical trials with those polyphenols.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
2
|
Słota M, Wąsik M, Stołtny T, Machoń-Grecka A, Kasperczyk A, Bellanti F, Dobrakowski M, Chwalba A, Kasperczyk S. Relationship between lead absorption and iron status and its association with oxidative stress markers in lead-exposed workers. J Trace Elem Med Biol 2021; 68:126841. [PMID: 34438315 DOI: 10.1016/j.jtemb.2021.126841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The emission of lead (Pb) occurring during the extraction, processing and industrial applications of this element remains a significant environmental risk factor. The absorbability of lead in humans is strongly associated with the general health status of exposed individuals. Existing mineral deficiencies are considered being a predisposition to an increased Pb uptake. Both, iron deficiency and lead poisoning are the major causative factors responsible for the prevalence of anemia within the vulnerable population, especially in children. Although some of the intervention programs of counteracting lead poisoning by iron supplementation proved to be effective in the Pb-exposed population, the exact mechanisms of this interaction still require further studies. The objective of the presented study was to examine the association of iron level on oxidative stress measures and its effects on the severity of lead toxicity in the exposed population. METHODS The analyzed population consisted of 270 male workers from the lead-zinc smelter. The studied population was divided into two sub-groups based on the serum iron concentration: low iron level group (L-Fe; Fe < median value) and high iron level group (H-Fe; Fe > median value). Measured traits comprised of blood lead (PbB), serum Fe and zinc protoporphyrin (ZPP) levels as well as a blood count and oxidative stress markers. RESULTS No significant correlation between serum iron concentration and PbB in the tested cohort was found. On the contrary, the analysis of ZPP levels (long-term marker related to a hematologic toxic effect of Pb) within the subgroups differing in serum Fe level shown that ZPP was 12.3 % lower (p = 0.043) in subjects classified within the H-Fe group. A positive correlation of serum Fe and total antioxidant capacity (TAC) was found (R = 0.1999). The conducted 3-D PCA analysis showed that individuals classified within the H-Fe group were characterized by the co-occurrence of higher Fe levels, lower ZPP, and higher TAC value. CONCLUSION These results support the existing evidence providing that maintaining the optimal status of Fe may play a significant role in preventing the lead poisoning and alleviating harmful effects of Pb on the oxidative balance in humans.
Collapse
Affiliation(s)
- Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332, Bukowno, Poland
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska 62, 41-940, Piekary Śląskie, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Artur Chwalba
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland.
| |
Collapse
|
3
|
Słota M, Wąsik M, Stołtny T, Machoń-Grecka A, Kasperczyk S. Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicol Appl Pharmacol 2021; 434:115794. [PMID: 34780723 DOI: 10.1016/j.taap.2021.115794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Discrepancies are present in the findings from clinical trials evaluating a physiological role of iron status in the lead-exposed population. OBJECTIVE The purpose of this article was to summarize the current understanding of cellular mechanisms of lead toxicity and present a comprehensive review of existing clinical trials related to associations of lead poisoning and iron status. Although an association of iron metabolism pathways that are affected by lead intoxication has been studied, there are still aspects that remain to be elucidated. The existence of additional Pb uptake pathways besides DMT1 transporter-mediated is postulated to non-specifically regulate lead absorption. METHODS Authors performed a systematic search of PubMed, EMBASE® and Web of Science databases to identify studies that reported an association between health risks of non-organic lead that are associated with iron status markers as possible effect modifier. RESULTS There were 58 studies that met the pre-defined inclusion criteria for the systematic review. There is a strong body of evidence supporting the hypothesis that alleviated blood lead level can be correlated with a reduced body iron store and increasing the risk of anemia. This association is of a high significance in cases of a young adolescent, weaker in groups of older children and often without a statistical significance in adults. DISCUSSION Discrepancies in the observations may result from different specificities of lead absorption pathways in children and adults, as well as the power of the statistical tests in varying population sizes. It may be assumed that the extent of iron deficits coupled together with source, timing, and severity of lead exposure, significantly influence the correlation between these factors. Some of the intervention programs of counteracting lead poisoning by iron supplementation proved to be effective and may be a promising prevention strategy for the exposed population.
Collapse
Affiliation(s)
- Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332 Bukowno, Poland
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska 62, 41-940 Piekary Śląskie, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| |
Collapse
|
4
|
Nourmohammadi E, Hosseinkhani S, Nedaeinia R, Khoshdel-Sarkarizi H, Nedaeinia M, Ranjbar M, Ebrahimi N, Farjami Z, Nourmohammadi M, Mahmoudi A, Goli M, Ferns GA, Sadeghizadeh M. Construction of a sensitive and specific lead biosensor using a genetically engineered bacterial system with a luciferase gene reporter controlled by pbr and cadA promoters. Biomed Eng Online 2020; 19:79. [PMID: 33076919 PMCID: PMC7574304 DOI: 10.1186/s12938-020-00816-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/05/2020] [Indexed: 12/04/2022] Open
Abstract
Background A bacterial biosensor refers to genetically engineered bacteria that produce an assessable signal in the presence of a physical or chemical agent in the environment. Methods We have designed and evaluated a bacterial biosensor expressing a luciferase reporter gene controlled by pbr and cadA promoters in Cupriavidus metallidurans (previously termed Ralstonia metallidurans) containing the CH34 and pI258 plasmids of Staphylococcus aureus, respectively, and that can be used for the detection of heavy metals. In the present study, we have produced and evaluated biosensor plasmids designated pGL3-luc/pbr biosensor and pGL3-luc/cad biosensor, that were based on the expression of luc+ and under the control of the cad promoter and the cadC gene of S. aureus plasmid pI258 and pbr promoter and pbrR gene from plasmid pMOL30 of Cupriavidus metallidurans. Results We found that the pGL3-luc/pbr biosensor may be used to measure lead concentrations between 1–100 μM in the presence of other metals, including zinc, cadmium, tin and nickel. The latter metals did not result in any significant signal. The pGL3-luc/cad biosensor could detect lead concentrations between 10 nM to 10 μM. Conclusions This biosensor was found to be specific for measuring lead ions in both environmental and biological samples.
Collapse
Affiliation(s)
- Esmail Nourmohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hoda Khoshdel-Sarkarizi
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mozhdeh Nedaeinia
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ranjbar
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Neshat Ebrahimi
- Laboratory of Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zahra Farjami
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Nourmohammadi
- Department of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|