1
|
Li J, Fang X, Cui D, Ma Z, Yang J, Niu Y, Liu H, Xiang P. Mechanistic insights into cadmium exacerbating 2-Ethylhexyl diphenyl phosphate-induced human keratinocyte toxicity: Oxidative damage, cell apoptosis, and tight junction disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116858. [PMID: 39137464 DOI: 10.1016/j.ecoenv.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xianlei Fang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ziya Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Li J, Cui D, Yang Z, Ma J, Liu J, Yu Y, Huang X, Xiang P. Health risk assessment of heavy metal(loid)s in road dust via dermal exposure pathway from a low latitude plateau provincial capital city: The importance of toxicological verification. ENVIRONMENTAL RESEARCH 2024; 252:118890. [PMID: 38615791 DOI: 10.1016/j.envres.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The human health risk assessment through the dermal exposure of metal (loid)s in dust from low latitude and high geological background plateau cities was largely unknown. In this study, the road dust samples were harvested from a typical low-latitude plateau provincial capital city Kunming, Southwest China. The total concentration and dermal bioaccessibility of heavy metal (loid)s in road dust were determined, and their health risks as well as cytotoxicity on human skin keratinocytes were also assessed. The average concentrations of As (28.5 mg/kg), Cd (2.65 mg/kg), Mn (671 mg/kg), and Zn (511 mg/kg) exceeded the soil background values. Arsenic had the highest bioaccessibility after 2 h (3.79%), 8 h (4.24%), and 24 h (16.6%) extraction. The dermal pathway when bioaccessibility is considered has a higher hazard quotient than the conventional method using total metal(loid)s in the dust. In addition, toxicological verification suggested that the dust extracts suppressed the cell viability, increased the reactive oxygen species (ROS) level and DNA damage, and eventually activated the mitochondria-mediated apoptosis pathway, evidenced by the upregulation of Caspase-3/9, Bax, and Bak-1. Cadmium was positively correlated with the mRNA expression of Bax. Taken together, our data indicated that both dermal bioaccessibility and cytotoxicity should be considered for accurate human skin health risk assessment of heavy metal(loid)s in road dust, which may provide new insight for accurate human health risk assessment and environmental management.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Ziyue Yang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jiaoyang Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianfeng Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhou J, Zhang Y, Zeng L, Wang X, Xiang W, Su P. Cadmium exposure induces pyroptosis of TM4 cells through oxidative stress damage and inflammasome activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115930. [PMID: 38184979 DOI: 10.1016/j.ecoenv.2024.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cadmium (Cd) is a harmful metal that seriously affects the male reproductive system, but the mechanism of how Cd exposure damages Sertoli cells is not fully understood. This study used TM4 cells to explore the mechanism of Cd damage to Sertoli cells. We found that Cd was concentration- and time-dependent on TM4 cell viability. Cd exposure increased intracellular reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH), and Interleukin-1β (IL-1β) release in TM4 cells, decreased mitochondrial function, and increased pyroptosis. N-acetylcysteine (NAC), MCC950 and BAY 11-7082 (BAY) alleviate the release of IL-1β and LDH induced by Cd. NAC reduced Cd induced increases in ROS, NLRP3, Caspase-1, Heme oxygenase-1(HO-1), superoxide dismutase (SOD2), and increased mitochondrial function. The activation of GSDMD is the main causes of pyroptosis, and NAC significantly inhibit its activation and formation. Our results suggest that Cd exposure induces a toxic mechanism of GSDMD-mediated pyroptosis in TM4 cells by increasing ROS levels and activating the inflammasome.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaofei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan HuaKe Reproductive Hospital, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan HuaKe Reproductive Hospital, Wuhan, China.
| |
Collapse
|
4
|
Lv L, Liu B, Yu Y, Dong W, Gao L, He Y. Heavy metals in paired samples of hair and nails in China: occurrence, sources and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3171-3185. [PMID: 36167881 DOI: 10.1007/s10653-022-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
The occurrence of heavy metals including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) was investigated in paired samples of hair and nails collected from 121 volunteers in 16 cities, China. Results showed that the mean concentrations of Zn, Cu, As, Pb, Cr, Ni and Cd were 205, 18.0, 7.79, 6.18, 3.54, 2.02, 0.533 μg g-1 in hair and 103, 8.09, 0.760, 7.27, 6.07, 8.81, 0.485 μg g-1 in nails, respectively. The concentrations of Zn, Ni, Cr, Cd and Pb were positively correlated in paired samples of hair and nails, whereas a negative correlation was found for Cu and As between hair and nails. Higher concentrations of heavy metals were found in northern China than southern China. The multivariate analysis of variance revealed that dwelling environment was the dominant factor influencing the levels of Cd in hair (p < 0.05), while age was the dominant factor influencing the levels of Cr in nails (p < 0.05). Moreover, industrial pollution and smoking were also the important factors leading to the accumulation of heavy metals in human body. Principal component analysis (PCA) showed that industrial pollution and decoration material immersion were the main factors for the high concentrations of Cr and Ni in hair, accounting for 62.9% of the total variation; As in hair was dominantly related to groundwater pollution. The concentrations of heavy metals were within the recommended ranges in nails from this study. However, the mean levels of Cr, Ni and As in hair exceeded their recommended reference values, indicating potential health risks from heavy metals for residents in China.
Collapse
Affiliation(s)
- Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yaowei He
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
5
|
Yakamercan E, Aygün A. Health risk assessment of metal(loid)s for land application of domestic sewage sludge in city of Bursa, Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:733. [PMID: 37231226 DOI: 10.1007/s10661-023-11302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
This study aims to determine the potential health risks (Carcinogenic and non-carcinogenic) of metal(loid)s in sewage sludge samples for agricultural purposes. For this purpose, sewage sludge was collected annually from a domestic wastewater treatment plant, and metal(loid)s were determined by ICP-MS. Metal(loid)s concentration in sludge samples was within the legal standards. No statically significant seasonal variation of metal(loid)s were observed. The total cancer risk and the hazard index (HI) of metal(loid)s through ingestion, dermal, and inhalation exposure from sewage sludge samples were estimated. The main risk contributor to metal(loid)s were Pb, Zn, and Ni. The average HI values were 0.75 (child) and 0.09 (adult). The total carcinogenic risk (TCR) for child and adult was found to be 3.43 × 10-5 and 2.31 × 10-5, respectively. EPA risk assessment model and Monte Carlo Simulation were used to estimate probability and sensitivity distributions for carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that metal(loid)s concentration, exposure duration, exposure frequency, and body weight significantly affect total health risk. The sewage sludge can be applied safely in agriculture due to no important carcinogenic and non-carcinogenic risk for child and adult.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye
| | - Ahmet Aygün
- Department of Environmental Engineering, Bursa Technical University, Bursa, Türkiye.
| |
Collapse
|
6
|
Liu B, Yu X, Lv L, Dong W, Chen L, Wu W, Yu Y. A nationwide survey of polycyclic aromatic hydrocarbons (PAHs) in household dust in China: spatial distribution, sources, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01563-2. [PMID: 37014533 DOI: 10.1007/s10653-023-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
As a carrier of toxic substances, household dust has a great impact on human health. Here we collected 73 household dust samples from 27 provinces and 1 municipality in China to investigate the levels, spatial distribution, sources, and carcinogenic risk of 16 polycyclic aromatic hydrocarbons (PAHs). The total concentrations of 14 detected PAHs (∑14 PAHs) ranged from 3.72 to 60,885 ng g-1. High ∑14 PAHs were found in Northeast and Southwest China. High molecular weights (HMW) PAHs (4-6 rings) were predominant PAHs in most dust samples, accounting for 93.6% of ∑14 PAHs. Household fuel, cooking frequency, air conditioning, and smoking were the main factors influencing PAH concentrations in household dust. Principal component analysis model indicated that fossil combustion (81.5%) and biomass combustion and vehicle exhaust (8.1%) are the primary sources of PAHs. Positive matrix factorization model suggested that household cooking and heating contributed about 70% of ∑14 PAHs, and smoking contributed another 30%. The values of benzo[a]pyrene equivalent in rural dust were found to be higher than those in urban dust. The sum of toxic equivalents (TEQs) of 14 PAHs were in range of 0.372-7241 ng g-1, in which 7 HMW PAHs accounted for 98.0 ± 1.98% of the total TEQs. Monte Carlo Simulation showed a low to moderate potential carcinogenic risk of PAHs in household dusts. This study documents comprehensive information on human exposure to PAHs in household dust at a national-scale.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Weihua Dong
- College of Geographic Sciences, Changchun Normal University, Changchun, 130032, China
| | - Lina Chen
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
7
|
Li C, Bai L, Qin J, Guo Y, Wang H, Xu X. Study on metal elements in indoor particulate matter: a case study of rural residential environment in Northeast China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:1-15. [PMID: 36959429 PMCID: PMC10035979 DOI: 10.1007/s10653-023-01543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The use of solid fuels for heating and cooking in rural Northeast China has led to severe indoor metal element pollution in particulate matter (PM), posing a direct threat to human health and creating immense pressure on the sustainability of residential environments. To investigate the levels, sources, and potential health hazards of indoor metal element pollution in this region, we conducted a year-long sampling and monitoring campaign in actual residential settings and used ICP-OES to measure six metal elements (Mn, Cr, Zn, Cu, Pb, and Ni). This study's findings reveal that indoor metal element pollution levels in PM (33,513.65 mg/kg per year) are higher in rural Northeast China compared to other rural areas. Straw burning is the primary source of metal element pollution, followed by motor vehicle emissions and natural soil sources. It is crucial to note that our results indicate a total carcinogenic risk greater than 10-4 according to the US EPA health risk model assessment, highlighting the high risk posed to human health by indoor metal elements in rural areas. By using a seriously polluted area in Northeast China as a case study, this research provides initial insights into the characteristics and sources of indoor metal pollution in rural areas, offering a reference for future prevention and control of indoor pollution in these regions. Ultimately, this work can help improve the rural habitat and enhance the health of the rural population.
Collapse
Affiliation(s)
- Chunhui Li
- School of Mechanical Engineering, Tongji University, Shanghai, 201804 China
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118 China
| | - Li Bai
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118 China
- Key Laboratory of Songliao Aquatic of Education, Jilin Jianzhu University, Changchun, 130118 China
| | - Jia Qin
- China Northeast Municipal Engineering Design & Research Institute Co., Ltd., Changchun, 130021 China
| | - Yuqi Guo
- China Northeast Municipal Engineering Design & Research Institute Co., Ltd., Changchun, 130021 China
| | - Han Wang
- Graduate School of Tangshan, Southwest Jiaotong University, Tangshan, 063000 China
| | - Xiuling Xu
- Jilin Jianzhu University Library, Jilin Jianzhu University, Changchun, 130118 China
| |
Collapse
|
8
|
Yu X, Liu B, Yu Y, Li H, Li Q, Cui Y, Ma Y. Polybrominated diphenyl ethers (PBDEs) in household dust: A systematic review on spatio-temporal distribution, sources, and health risk assessment. CHEMOSPHERE 2023; 314:137641. [PMID: 36584828 DOI: 10.1016/j.chemosphere.2022.137641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Much attention has been paid on polybrominated diphenyl ethers (PBDEs) in household dust due to their ubiquitous occurrences in the environment. Based on the data from 59 articles sampled from 2005 to 2020, we investigated the spatio-temporal distribution, sources, and health risk of 8 PBDE homologues in household dusts worldwide. BDE-209 is the predominant PBDE in household dusts, followed by BDE-99 and BDE-47. The total concentrations of PBDEs (∑8PBDEs) are found to be high in household dusts sampled from 2005 to 2008 and show a significant decline trend from 2009 to 2016 (p < 0.05) and a little upward tendency from 2017 to 2020. The concentrations of PBDEs in household dusts vary greatly in different countries of the world. The use of penta-BDE is the main source of three to five bromo-biphenyl ether monomers contributing 17.4% of ∑8PBDEs, while BDE-209 and BDE-183 are derived from the use of household appliances contributing 82.6% of ∑8PBDEs. Ingestion is the main exposure route for adults and toddlers, followed by dermal contact. The values of hazard index (HI) exposed to PBDEs in household dusts are all less than 1 for both adults and toddlers, indicating a low non-cancer risk. The incremental lifetime cancer risks (ILCRs) of BDE-209 are less than 10-6 for both adults and toddlers, suggesting a negligible risk. However, the total carcinogenic risk of toddlers is higher than that of adults, indicating that much attention should be paid to toddlers exposed to BDE-209 in household dust.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - He Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Qiuyan Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
9
|
Wang M, Lv Y, Lv X, Wang Q, Li Y, Lu P, Yu H, Wei P, Cao Z, An T. Distribution, sources and health risks of heavy metals in indoor dust across China. CHEMOSPHERE 2023; 313:137595. [PMID: 36563718 DOI: 10.1016/j.chemosphere.2022.137595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The potential effects of heavy metals on human health have attracted increasing attention as most people spend up to 90% of their time indoors. Human exposure to heavy metals in indoor dust have only been characterised for limited regions in China, and full-scale data for different functional areas are not available. Therefore, this review analysed the concentrations, contamination characteristics, and potential health risks of seven heavy metals (including zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), arsenic (As), and cadmium (Cd)) in indoor dust at 3392 sampling sites in 55 cities across 27 provincial regions of China based on literature data. Results revealed that the median heavy metal concentrations in indoor dust throughout China decreased in the following order: Zn > Pb > Cu > Cr > Ni > As > Cd. Traffic emissions and decorative materials are the primary sources of heavy metal pollution in indoor dust. No considerable non-carcinogenic risk was found for Zn, Cu, Cr, Ni, and Cd in indoor dust, while Pb and As exhibited potential non-carcinogenic risks to children, primarily distributed in cities across Southern China. Meanwhile, the carcinogenic risks posed by Cr and Ni were higher than those posed by As and Cd, especially in Southern China. Therefore, effective measures in Southern China should prioritised for controlling Pb, Cr, Ni and As pollution in indoor dust to reduce human health risk. This review is useful for policy decision-making and protecting human from exposure to heavy metals in indoor dust across China.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinyi Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyan Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qianhan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yiyi Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Quist AJL, Van Horne YO, Farzan SF, Johnston JE. Metal Exposures in Residents Living Near an Urban Oil Drilling Site in Los Angeles, California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15981-15989. [PMID: 36288551 PMCID: PMC9670842 DOI: 10.1021/acs.est.2c04926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Urban environmental justice communities are potentially exposed to multiple toxic metals, through contaminated air, soil, water, and food. However, information on metals and their sources is lacking. This study uses non-negative matrix factorization (NMF) in a community-based participatory research study to identify potential sources and to understand how these metals cluster in a population near an urban oil drilling site. We recruited 203 Latinx, Black, and Asian residents who lived within 1 km of an oil drilling site in south Los Angeles and collected toenail clippings to assess exposure to arsenic (As), cadmium (Cd), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and antimony (Sb). Using NMF, we identified three clusters based on concentrations in the participants' toenails. As, Cd, Pb, and Sb grouped together, indicative of an industrial source. A second grouping was composed of Ni and Mn, which may be related to oil drilling. We also identified a third source factor predominantly driven by Hg and As, which may arise from dietary sources. Utilizing NMF, a dimension reduction method, we identified a source factor high in Ni and Mn in residents living in a neighborhood near an active oil drilling site.
Collapse
Affiliation(s)
- Arbor J. L. Quist
- Department of Population
and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, Los Angeles, California90032, United States
| | - Yoshira Ornelas Van Horne
- Department of Population
and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, Los Angeles, California90032, United States
| | - Shohreh F. Farzan
- Department of Population
and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, Los Angeles, California90032, United States
| | - Jill E. Johnston
- Department of Population
and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, Los Angeles, California90032, United States
| |
Collapse
|
11
|
Mechanisms of Cd-induced Cytotoxicity in Normal Human Skin Keratinocytes: Implication for Human Health. Int J Mol Sci 2022; 23:ijms231911767. [PMID: 36233064 PMCID: PMC9570009 DOI: 10.3390/ijms231911767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is one of the toxic heavy metals found widely in the environment. Skin is an important target organ of Cd exposure. However, the adverse effects of Cd on human skin are still not well known. In this study, normal human skin keratinocytes (HaCaT cells) were studied for changes in cell viability, morphology, DNA damage, cycle, apoptosis, and the expression of endoplasmic reticulum (ER) stress-related genes (XBP-1, BiP, ATF-4, and CHOP) after exposure to Cd for 24 h. We found that Cd decreased cell viability in a concentration-dependent manner, with a median lethal concentration (LC50) of 11 µM. DNA damage induction was evidenced by upregulation of the level of γ-H2AX. Furthermore, Cd induced G0/G1 phase cell cycle arrest and apoptosis in a dose-dependent manner and upregulated the mRNA levels of ER stress biomarker genes (XBP-1, BiP, ATF4, and CHOP). Taken together, our results showed that Cd induced cytotoxicity and DNA damage in HaCaT cells, eventually resulting in cell cycle arrest in the G0/G1 phase and apoptosis. In addition, ER stress may be involved in Cd-induced HaCaT apoptosis. Our data imply the importance of reducing Cd pollution in the environment to reduce its adverse impacts on human skin.
Collapse
|
12
|
Liu B, Lv L, An M, Wang T, Li M, Yu Y. Heavy metals in marine food web from Laizhou Bay, China: Levels, trophic magnification, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156818. [PMID: 35728646 DOI: 10.1016/j.scitotenv.2022.156818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals in ocean may accumulate in seafood through food web and pose risks to human health. This study investigated the occurrence, trophic magnification, and health risks of 7 heavy metals in 20 marine organisms (n = 222) in Laizhou Bay (LZB), China. Results showed that Zn was the most abundant metal, followed by Cu, As, Cd, Cr, Ni and Pb. The total concentrations of 7 heavy metals in the organisms ranked in the order of crab ˃ shellfish ˃ algae ˃ fish ˃ starfish. Interspecific differences were found in the concentrations of Cr, Ni, Cu and Cd in marine organisms from LZB. Crab and shellfish showed much higher enrichment ability of heavy metals than that of algae, starfish and fish. Cd is the most biological accumulated element with the mean biota-sediment accumulation factor (BSAF) of 12.9. Stable isotope analysis showed a significant difference of δ15N among these five species (p < 0.01), and a food web was constructed accordingly. A biodilution pattern was found for Pb, As and Ni and no trophic interference in metal uptake was observed for Zn, Cu, Ni and Cr in the food web of LZB. The estimated daily intake (EDI) and target hazard quotients (THQs) of As and Cd indicated an adverse health effect on consumption of the seafood. The mean lifetime cancer risks (LCRs) for Cd and As suggested a potential carcinogenic effect on consumption of these seafood. This study provides a basis for health risk assessment of heavy metals in marine foods.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Miao An
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Tingting Wang
- Jilin Province Huijin Analysis Test CO., LTD, Changchun 130015, China
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Civil and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
13
|
Occurrence of Trace Heavy Metals in Leaves of Urban Greening Plants in Fuxin, Northeast China: Spatial Distribution & Plant Purification Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14148445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Trace element analysis, in the leaves of five kinds of greening plants (Buxus, Picea, Pine, Juniperus and Platycladus) from eight uniform distribution sites in Fuxin, a typical traditional resource-based city in northeast China, was carried out to study the purification ability difference of urban greening plants and spatial distribution tendency of heavy metal elements in the whole city area. In terms of the purification ability analysis, Platycladus had a better environmental purification capacity for Cd, As, Pb and Cr. Juniperus also showed a certain environmental purification potential for As, Pb and Cu. Furthermore, Mn has the highest point mean of element content in all plants, ranging from 64.044–114.290 µg/g, and the MnPA content of Buxus and Juniperus was 60% higher than that of the other three plants, which showed a better Mn purification effect. In terms of the spatial distribution tendency analysis, point pollution source location and the urban climate factors (mainly for the wind factor) were the main controlling factors. However, the specificity of Mn distribution suggested that its polluting behavior had a close relation with minerals transportation during exploiting and transferring in the city’s coal mining industry in the past.
Collapse
|