1
|
Phongpao K, Kheansaard W, Pholngam N, Sriwantana T, Paiboonsukwong K, Fucharoen S, Pattanapanyasat K, Sibmooh N, Chaichompoo P, Svasti S. Extracellular vesicles modulate endothelial nitric oxide production in patients with β‑thalassaemia/HbE. Biomed Rep 2025; 22:79. [PMID: 40093508 PMCID: PMC11904759 DOI: 10.3892/br.2025.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Thrombosis is a significant complication in patients with β-thalassaemia/haemoglobin E (HbE), particularly in splenectomised patients. The endothelium is a key regulator of vascular haemostasis and homeostasis, through the secretion of various regulatory molecules. Nitric oxide (NO), produced by endothelial cells (ECs), regulates vascular functions by acting as a potent vasodilator and an inhibitor of platelet activation. Decreased NO bioavailability, a marker of vascular dysfunction, could be a contributing factor leading to thrombosis. Microparticles or medium extracellular vesicles (mEVs) are associated with thrombosis and vasculopathy in various diseases. Furthermore, elevated levels of mEVs have been observed in splenectomised patients with β-thalassaemia/HbE and could induce the expression of coagulation proteins, inflammatory cytokines and adhesion molecules in ECs. However, the effects of mEVs on NO regulation by ECs is currently unclear. In the present study, mEVs obtained from splenectomised patients with β-thalassaemia/HbE had significantly decreased NO production in human pulmonary artery ECs without affecting endothelial nitric oxide synthase expression or phosphorylation. Decreased NO production was attributed to increased haemoglobin levels in mEVs from splenectomised patients, leading to enhanced NO scavenging. These findings highlight a mechanism whereby haemoglobin-carrying mEVs directly scavenge NO, contributing to vascular dysfunction in β-thalassaemia/HbE disease.
Collapse
Affiliation(s)
- Kunwadee Phongpao
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nuttanan Pholngam
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuthawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Pornthip Chaichompoo
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
2
|
Tantawy AAG, Tadros MAR, Adly AAM, Ismail EAR, Ibrahim FA, Salah Eldin NM, Hussein MM, Alfeky MA, Ibrahim SM, Hashem MA, Ebeid FSE. Endothelin-1 gene polymorphism (G8002A) and endothelial monocyte-activating polypeptide II: Role in vascular dysfunction in pediatric patients with β-thalassemia major. Cytokine 2023; 161:156048. [PMID: 36279697 DOI: 10.1016/j.cyto.2022.156048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1), a potent endogenous vasoconstrictor, stimulates production of reactive oxygen species. Endothelial monocyte-activating polypeptide-II (EMAP-II) is a multifunctional polypeptide. AIM To assess ET-1 gene polymorphism (G8002A) in pediatric patients with β-thalassemia major (β-TM) as a potential genetic marker for vascular dysfunction and its possible relation to EMAP II, oxidative stress and vascular complications. METHODS β-TM patients (n = 95) without symptomatic cardiac or renal disease were compared with 95 healthy controls. Markers of hemolysis, serum ferritin, urinary albumin-to-creatinine ratio, serum EMAP II, malondialdehyde (MDA) and antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), glutathione reductase and catalase were measured. ET-1 gene polymorphism (G8002A) was determined using polymerase chain reaction‑restriction fragment length polymorphism. RESULTS β-TM patients had significantly higher EMAP II than healthy controls. EMAP II was significantly higher among patients with cardiac disease, pulmonary hypertension (PH) risk, nephropathy, poor compliance to therapy and ferritin ≥ 2500 μg/L. There were significant correlations between EMAP II and transfusion index, LDH, ferritin and oxidative stress markers. The AA genotype of ET-1 gene polymorphism (G8002A) was significantly higher among β-TM patients than controls. The number of patients with cardiac disease, PH risk or nephropathy was significantly higher among AA genotype compared with GG and GA genotypes. Lactate dehydrogenase (LDH), serum ferritin, EMAP II, MDA, SOD and GPx were significantly higher in AA genotype. CONCLUSION ET-1 gene polymorphism (G8002A) could be a possible genetic marker for prediction of increased susceptibility to cardiopulmonary and renal complications among pediatric patients with β-TM.
Collapse
Affiliation(s)
| | | | | | | | - Fatma A Ibrahim
- Biochemistry Department, National Research Center, Cairo, Egypt
| | | | | | | | - Sarah Mohammed Ibrahim
- Pediatric Department, Military Medical Services and Military Medical Academy, Cairo, Egypt
| | - Marwa Adel Hashem
- Pediatric Department, Military Medical Services and Military Medical Academy, Cairo, Egypt
| | | |
Collapse
|
3
|
Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics (Basel) 2022; 12:diagnostics12112817. [PMID: 36428877 PMCID: PMC9689457 DOI: 10.3390/diagnostics12112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular aging is a physiological, multifactorial process that involves every type of vessel, from large arteries to microcirculation. This manifests itself as impaired vasomotor function, altered secretory phenotype, deteriorated intercellular transport function, structural remodeling, and aggravated barrier function between the blood and the vascular smooth muscle layer. Iron disorders, particularly iron overload, may lead to oxidative stress and, among other effects, vascular aging. The elevated transferrin saturation and serum iron levels observed in iron overload lead to the formation of a non-transferrin-bound iron (NTBI) fraction with high pro-oxidant activity. NTBI can induce the production of reactive oxygen species (ROS), which induce lipid peroxidation and mediate iron-related damage as the elements of oxidative stress in many tissues, including heart and vessels' mitochondria. However, the available data make it difficult to precisely determine the impact of iron metabolism disorders on vascular aging; therefore, the relationship requires further investigation. Our study aims to present the current state of knowledge on vascular aging in patients with deteriorated iron metabolism.
Collapse
|
4
|
Dos Santos L, Bertoli SR, Ávila RA, Marques VB. Iron overload, oxidative stress and vascular dysfunction: Evidences from clinical studies and animal models. Biochim Biophys Acta Gen Subj 2022; 1866:130172. [PMID: 35597504 DOI: 10.1016/j.bbagen.2022.130172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/07/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Although iron is a metal involved in many in vital processes due to its redox capacity, body iron overloads lead to tissue damage, including the cardiovascular system. While cardiomyopathy was the focus since the 1960s, the impact on the vasculature was comparatively neglected for about 40 years, when clinical studies correlating iron overload, oxidative stress, endothelial dysfunction, arterial stiffness and atherosclerosis reinforced an "iron hypothesis". Due to controversial results from some epidemiological studies investigating atherosclerotic events and iron levels, well-controlled trials and animal studies provided essential data about the influence of iron, per se, on the vasculature. As a result, the pathophysiology of vascular dysfunction in iron overload have been revisited. This review summarizes the knowledge obtained from epidemiological studies, animal models and "in vitro" cellular systems in recent decades, highlighting a more harmful than innocent role of iron excess for the vascular homeostasis, which supports our proposal to hereafter denominate "iron overload vasculopathy". Additionally, evidence-based therapeutic targets are pointed out to be tested in pre-clinical research that may be useful in cardiovascular protection for patients with iron overload syndromes.
Collapse
Affiliation(s)
- Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil.
| | - Sabrina Rodrigues Bertoli
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil; Faculdade Novo Milenio, Vila Velha, ES, Brazil
| | - Renata Andrade Ávila
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil; Faculdades Integradas São Pedro (FAESA), Vitória, ES, Brazil
| | | |
Collapse
|
5
|
CHEN SP, HU TH, ZHOU Q, CHEN TP, YIN D, HE H, HUANG Q, HE M. Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. Chin J Nat Med 2022; 20:22-32. [DOI: 10.1016/s1875-5364(21)60110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/03/2022]
|
6
|
Leal LB, Nogueira MS, Mageski JGA, Martini TP, Barauna VG, Dos Santos L, de Carvalho LFDCES. Diagnosis of Systemic Diseases Using Infrared Spectroscopy: Detection of Iron Overload in Plasma-Preliminary Study. Biol Trace Elem Res 2021; 199:3737-3751. [PMID: 33415581 DOI: 10.1007/s12011-020-02510-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Despite the important role of iron in cellular homeostasis, iron overload (IO) is associated with systemic and tissue deposits which damage several organs. In order to reduce the impact caused by IO, invasive diagnosis exams (e.g., biopsies) and minimally invasive methods were developed including computed tomography and magnetic resonance imaging. However, current diagnostic methods are still time-consuming and expensive. A cost-effective solution is using Fourier-transform infrared spectroscopy (FTIR) for real-time and molecular-sensitive biofluid analysis during conventional laboratory exams. In this study, we performed the first evaluation of the accuracy of FTIR for IO diagnosis. The study was performed by collecting FTIR spectra of plasma samples of five rats intravenously injected with iron-dextran and five control rats. We developed a classification model based on principal component analysis and supervised methods including J48, random forest, multilayer perceptron, and radial basis function network. We achieved 100% accuracy for the classification of the IO status and provided a list of possible biomolecules related to the vibrational modes detected. In this preliminary study, we give a first step towards real-time diagnosis for acute IO or intoxication. Furthermore, we have expanded the literature knowledge regarding the pathophysiological changes induced by iron overload.
Collapse
Affiliation(s)
- Leonardo Barbosa Leal
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil.
| | - Marcelo Saito Nogueira
- Tyndall National Institute/University College Cork - Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland
| | - Jandinay Gonzaga Alexandre Mageski
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Thiago Pereira Martini
- Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
| | - Valério Garrone Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Luis Felipe das Chagas E Silva de Carvalho
- Universidade de Taubaté. R. dos Operários, 09 - Centro, Taubaté, São Paulo, 12020-340, Brazil
- Centro Universitário Braz Cubas, Av. Francisco Rodrigues Filho, 1233 - Vila Mogilar, Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
7
|
Rossi EM, Ávila RA, Carneiro MTWD, Almenara CCP, Dos Santos L. Chronic Iron Overload Restrains the Benefits of Aerobic Exercise to the Vasculature. Biol Trace Elem Res 2020; 198:521-534. [PMID: 32124228 DOI: 10.1007/s12011-020-02078-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases. However, because iron is essential element in many physiological processes including hemoglobin and myoglobin synthesis, thereby playing a role on oxygen transport, many athletes use iron supplement to improve physical performance. Regarding this, iron overload is associated with oxidative stress and damage to various systems, including cardiovascular. Thus, we aimed to identify the vascular effects of aerobic exercise in a rat model of iron overload. Male Wistar rats were treated with 100 mg/kg/day iron-dextran, i.p., 5 days a week for 4 weeks, and then underwent aerobic exercise protocol on a treadmill at moderate intensity, 60 min/day, 5 days a week for 8 weeks. Exercise reduced vasoconstrictor response of isolated aortic rings by increasing participation of nitric oxide (NO) and reducing oxidative stress, but these benefits to the vasculature were not observed in rats previously subjected to iron overload. The reduced vasoconstriction in the exercised group was reversed by incubation with superoxide dismutase (SOD) inhibitor, suggesting that increased SOD activity by exercise was lost in iron overload rats. Iron overload groups increased serum levels of iron, transferrin saturation, and iron deposition in the liver, gastrocnemius muscle, and aorta, and the catalase was overexpressed in the aorta probably as a compensatory mechanism to the increased oxidative stress. In conclusion, despite the known beneficial effects of aerobic exercise on vasculature, our results indicate that previous iron overload impeded the anticontractile effect mediated by increased NO bioavailability and endogenous antioxidant response due to exercise protocol.
Collapse
Affiliation(s)
- Emilly Martinelli Rossi
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, ES, 29040-091, Brazil
| | - Renata Andrade Ávila
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, ES, 29040-091, Brazil
- Faculdades Integradas São Pedro (FAESA), Av. Vitória, 2220, Vitoria, ES, 29053-360, Brazil
| | - Maria Tereza W D Carneiro
- Department of Chemistry, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, ES, 29075-910, Brazil
| | - Camila C P Almenara
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, ES, 29040-091, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitoria, ES, 29040-091, Brazil.
| |
Collapse
|
8
|
Zhou Q, Chen S, Li H, Yang B, Chen T, Hu T, Yin D, He H, He M. Tetramethylpyrazine alleviates iron overload damage in vascular endothelium via upregulating DDAHII expression. Toxicol In Vitro 2020; 65:104817. [PMID: 32135237 DOI: 10.1016/j.tiv.2020.104817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Iron overload causes vascular endothelium damage. It has been thought to relate excessive reactive oxygen species (ROS) generation. Tetramethylpyrazine (TMP), an active ingredient of Ligusticum chuanxiong Hort, protects various cells by inhibiting oxidative stress and cascade reaction of apoptosis. However, whether TMP can increase DDAHII activity and expression against endothelial cell damage induced by iron overload, and the protective mechanism has not been elucidated. In this study, 50 μM iron dextran and 25 μM TMP were used to co-treat HUVECs for 48 h. TMP could increase cell viability and decrease LDH activity, enhance DDAHII expression and activity, p-eNOS/eNOS ratio, NO content, and reduce ADMA level. TMP also showed a strong antioxidant activity with inhibited ROS generation and oxidative stress. Moreover, TMP attenuated mitochondrial membrane potential loss, inhibited mitochondrial permeability transition pore openness, and decreased apoptosis induced by iron overload. While mentioned above, the protective effects of TMP were abolished with the addition of pAD/DDAHII-shRNA. The effects of TMP against iron overload were similar to the positive control groups, L-arginine, a competitive substrate of ADMA, or edaravone, free radical scavenger. These results signify that TMP alleviated iron overload damage in vascular endothelium via ROS/ADMA/ DDAHII/eNOS/NO pathway.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianpeng Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Tianhong Hu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| |
Collapse
|
9
|
Fidelis HG, Mageski JGA, Goes SCE, Botelho T, Marques VB, Ávila RA, Dos Santos L. Blockade of angiotensin AT 1 receptors prevents arterial remodelling and stiffening in iron-overloaded rats. Br J Pharmacol 2020; 177:1119-1130. [PMID: 31705542 DOI: 10.1111/bph.14904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/05/2019] [Accepted: 10/05/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Damage to the vasculature caused by chronic iron-overload in both humans and animal models, is characterized by endothelial dysfunction and reduced compliance. In vitro, blockade of the angiotensin II AT1 receptors reversed functional vascular changes induced by chronic iron-overload. In this study, the effect of chronic AT1 receptor blockade on aorta stiffening was assessed in iron-overloaded rats. EXPERIMENTAL APPROACH Male Wistar rats were treated for 15 days with saline as control group, iron dextran 200 mg·kg-1 ·day-1 , 5 days a week (iron-overload group), losartan (20 mg·kg-1 ·day-1 in drinking water), and iron dextran plus losartan. Mechanical properties of the aorta were assessed in vivo. In vitro, aortic geometry and biochemical composition were assessed with morphometric and histological methods. KEY RESULTS Thoracoabdominal aortic pulse wave velocity (PWV) increased significantly, indicating a decrease in aortic compliance. Co-treatment with losartan prevented changes on PWV, β-index, and elastic modulus in iron-overloaded rats. This iron-related increase in PWV was not related to changes in aortic geometry and wall stress. but to increased elastic modulus/wall stress ratio, suggesting that a change in the composition of the wall was responsible for the stiffness. Losartan treatment also ameliorated the increase in aorta collagen content of the iron-overload group, without affecting circulating iron or vascular deposits. CONCLUSIONS AND IMPLICATIONS Losartan prevented the structural and functional indices of aortic stiffness in iron-overloaded rats, implying that inhibition of the renin-angiotensin system would limit the vascular remodelling in chronic iron-overload.
Collapse
Affiliation(s)
| | | | | | - Tatiani Botelho
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
10
|
Iron Overload Damages the Endothelial Mitochondria via the ROS/ADMA/DDAHII/eNOS/NO Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2340392. [PMID: 31781327 PMCID: PMC6875360 DOI: 10.1155/2019/2340392] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
It has been recognized that iron overload may harm the body's health. Vascular endothelial cells (VECs) are one of the main targets of iron overload injury, and the mechanism involved was thought to be related to the excessive generation of reactive oxygen species (ROS). However, the subcellular and temporal characteristics of ROS generation, potential downstream mechanisms, and target organelles in VECs injured by iron overload have not been expounded yet. In this study, we elucidated the abovementioned issues through both in vivo and in vitro experiments. Mice were fed pellet diets that were supplemented with iron for 4 consecutive months. Results showed that the thoracic aortic strips' endothelium-dependent dilation was significantly impaired and associated with inflammatory changes, noticeable under brown TUNEL-positive staining in microscopy analysis. In addition, the serum content of asymmetric dimethylarginine (ADMA) increased, whereas nitric oxide (NO) levels decreased. Furthermore, the dimethylarginine dimethylaminohydrolase II (DDAHII) expression and activity, as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) in aortic tissue, were inhibited. Human umbilical vein endothelial cells were treated with 50 μM iron dextran for 48 hours, after which the cell viability, NO content, DDAHII expression and activity, and phosphorylation of eNOS decreased and lactate dehydrogenase and caspase-3 activity, ADMA content, and apoptotic cells significantly increased. After the addition of L-arginine (L-Arg) or pAD/DDAHII, the abovementioned changes were reversed. By dynamically detecting the changes of ROS generation in the cytoplasm and mitochondria and interfering with different aspects of signaling pathways, we have confirmed for the first time that excessive ROS originates from the cytoplasm and activates the ROS-induced ROS release (RIRR) mechanism, leading to mitochondrial dysfunction. Together, our data suggested that excessive free iron ions produced excess ROS in the cytoplasm. Thus, excess ROS create one vicious circle by activating the ADMA/eNOS/DDAHII/NO pathway and another vicious circle by activation of the RIRR mechanism, which, when combined, induce a ROS burst, resulting in mitochondrial dysfunction and damaged VECs.
Collapse
|
11
|
Somparn N, Prawan A, Senggunprai L, Kukongviriyapan U, Jetsrisuparb A, Lee MH, Kim DH, Kukongviriyapan V, Surh YJ. Cellular adaptation mediated through Nrf2-induced glutamate cysteine ligase up-regulation against oxidative stress caused by iron overload in β-thalassemia/HbE patients. Free Radic Res 2019; 53:791-799. [PMID: 31198069 DOI: 10.1080/10715762.2019.1632444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/28/2023]
Abstract
Oxidative stress caused as a result of iron overload is implicated in clinical manifestation of beta-thalassemia/haemoglobin E (β-Thal/HbE). In this study, we investigated the cellular adaptation against oxidative stress in β-Thal/HbE patients. Twenty-four paediatric β-Thal/HbE patients and 22 healthy controls were recruited in the study. Blood samples from patients exhibited iron overload, elevation of lipid peroxidation, and marked diminution in the reduced glutathione (GSH) level. However, expression of glutamate-cysteine ligase catalytic (GCLC) subunit, a key enzyme in GSH biosynthesis, was up-regulated when compared with that in controls. GCLC protein levels were correlated with serum iron. There was an enhanced binding activity of the oligonucleotide probe for Nrf2-driven antioxidant response element (ARE) to nuclear protein from blood mononuclear cells of thalassemia subjects. In conclusion, β-Thal/HbE patients exhibit elevated plasma levels of GCLC expression and Nrf2-ARE binding activity, which may account for their adaptive survival response to oxidative stress.
Collapse
Affiliation(s)
- Nuntiya Somparn
- a Department of Preclinical Sciences, Faculty of Medicine, Thammasat University , Pathum Thani , Thailand
| | - Auemduan Prawan
- b Department of Pharmacology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Laddawan Senggunprai
- b Department of Pharmacology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Upa Kukongviriyapan
- c Department of Physiology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Arunee Jetsrisuparb
- d Department of Pediatrics, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Mee-Hyun Lee
- e Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, South Korea
| | - Do-Hee Kim
- e Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, South Korea
| | | | - Young-Joon Surh
- e Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, South Korea
| |
Collapse
|
12
|
Uaprasert N, Satitthummanid S, Akkawat B, Sutcharitchan P, Rojnuckarin P. Vascular and hemostatic alterations associated with pulmonary hypertension in β-thalassemia hemoglobin E patients receiving regular transfusion and iron chelation. Thromb Res 2018; 174:104-112. [PMID: 30584959 DOI: 10.1016/j.thromres.2018.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is the commonest cardiac complication in β-thalassemia intermedia, including β-thalassemia/hemoglobin E (β-thal/HbE), and is strongly associated with splenectomy. We aimed to define the prevalence and comprehensively explore mechanisms of PH in β-thal/HbE patients receiving regular transfusion and iron chelation, which were reported to alleviate PH. MATERIALS AND METHODS β-Thal/HbE patients receiving regular transfusion and iron chelation over one year were enrolled. Patients at risk for PH were defined by tricuspid-regurgitant-jet-velocity (TRV) ≥ 2.5 m/s. Laboratory and echocardiographic variables were compared with healthy controls. RESULTS There were 68 β-thal/HbE, including 31 (45.6%) splenectomized patients, and 38 controls included for analysis. PH was detected in 29 β-thal/HbE (42.6%). β-Thal/HbE with PH had a significant reduction in nitric oxide metabolites (NOx) but elevations in thrombin-antithrombin (TAT) complex, soluble thrombomodulin (sTM), endothelin-1 (ET-1) and flow-mediated dilation (FMD) values compared to those without PH (all, p < 0.05). TRV was significantly correlated with NOx, TAT, sTM, ET-1 and FMD values (r = -0.514, r = 0.281, r = 0.313, r = 0.245 and r = -0.474; all p < 0.05). Erythropoietic activity, serum ferritin, circulating total tissue factor (TF) antigen, microparticle-associated TF activity, microparticle's procoagulant activity and soluble p-selectin levels were not different between PH and non-PH subgroups. Notably, there were no significant associations between splenectomy and PH. CONCLUSIONS PH remains prevalent in β-thal/HbE patients receiving long-term transfusion and iron chelation. PH is not associated with splenectomy status but correlated with NO depletion, TF-independent hypercoagulability and endothelial perturbation.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
| | - Sudarat Satitthummanid
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Benjaporn Akkawat
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pranee Sutcharitchan
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Decreased nitrite reductase activity of deoxyhemoglobin correlates with platelet activation in hemoglobin E/ß-thalassemia subjects. PLoS One 2018; 13:e0203955. [PMID: 30235277 PMCID: PMC6147434 DOI: 10.1371/journal.pone.0203955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/30/2018] [Indexed: 01/28/2023] Open
Abstract
Nitric oxide (NO) can be generated from nitrite by reductase activity of deoxygenated hemoglobin (deoxyHb) apparently to facilitate tissue perfusion under hypoxic condition. Although hemoglobin E (HbE) solutions have been shown to exhibit decreased rate of nitrite reduction to NO, this observation has never been reported in erythrocytes from subjects with hemoglobin E/ß-thalassemia (HbE/ß-thal). In this study, we investigated the nitrite reductase activity of deoxyHb dialysates from 58 non-splenectomized and 23 splenectomized HbE/ß-thal subjects compared to 47 age- and sex-matched normal subjects, and examined its correlation with platelet activity. Iron-nitrosyl-hemoglobin (HbNO) was measured by tri-iodide reductive chemiluminescence as a marker of NO generation. HbNO produced from the reaction of nitrite with deoxyHb dialysate from both non-splenectomized and splenectomized HbE/ß-thal subjects was lower than that of normal (AA) hemoglobin subjects. P-selectin expression, a marker of platelet activation, at baseline and in reactivity to stimulation by adenosine diphosphate (ADP), were higher in HbE/ß-thal subjects than normal subjects. HbNO formation from the reactions of nitrite and deoxyHb inversely correlated with baseline platelet P-selectin expression, HbE levels, and tricuspid regurgitant velocity (TRV). Nitrite plus deoxygenated erythrocytes from HbE/ß-thal subjects had a lower ability to inhibit ADP-induced P-selectin expression on platelets than erythrocytes from normal subjects. We conclude that deoxyHb in erythrocytes from HbE/ß-thal subjects has a decreased ability to reduce nitrite to NO, which is correlated with increased platelet activity in these individuals.
Collapse
|
14
|
Sriwantana T, Vivithanaporn P, Paiboonsukwong K, Rattanawonsakul K, Srihirun S, Sibmooh N. Deferiprone increases endothelial nitric oxide synthase phosphorylation and nitric oxide production. Can J Physiol Pharmacol 2018; 96:879-885. [PMID: 29806986 DOI: 10.1139/cjpp-2018-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron chelation can improve endothelial function. However, effect on endothelial function of deferiprone has not been reported. We hypothesized deferiprone could promote nitric oxide (NO) production in endothelial cells. We studied effects of deferiprone on blood nitrite and blood pressure after single oral dose (25 mg/kg) in healthy subjects and hemoglobin E/β-thalassemia patients. Further, effects of deferiprone on NO production and endothelial NO synthase (eNOS) phosphorylation in primary human pulmonary artery endothelial cells (HPAEC) were investigated in vitro. Blood nitrite levels were higher in patients with deferiprone therapy than those without deferiprone (P = 0.023, n = 16 each). Deferiprone increased nitrite in plasma and whole blood of healthy subjects (P = 0.002 and 0.044) and thalassemia patients (P = 0.003 and 0.046) at time 180 min (n = 20 each). Asymptomatic reduction in diastolic blood pressure (P = 0.005) and increase in heart rate (P = 0.009) were observed in healthy subjects, but not in thalassemia patients. In HPAEC, deferiprone increased cellular nitrite and phospho-eNOS (Ser1177) (P = 0.012 and 0.035, n = 6) without alteration in total eNOS protein and mRNA. We conclude that deferiprone can induce NO production by enhancing eNOS phosphorylation in endothelial cells.
Collapse
Affiliation(s)
- Thanaporn Sriwantana
- a Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand
| | - Pornpun Vivithanaporn
- a Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand
| | - Kittiphong Paiboonsukwong
- b Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Krit Rattanawonsakul
- c Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Sirada Srihirun
- c Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Nathawut Sibmooh
- a Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Jana S, Meng F, Hirsch RE, Friedman JM, Alayash AI. Oxidized Mutant Human Hemoglobins S and E Induce Oxidative Stress and Bioenergetic Dysfunction in Human Pulmonary Endothelial Cells. Front Physiol 2017; 8:1082. [PMID: 29311995 PMCID: PMC5742253 DOI: 10.3389/fphys.2017.01082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 12/19/2022] Open
Abstract
Cell free hemoglobin (Hb), becomes oxidized in the circulation during hemolytic episodes in sickle cell disease (SCD) or thalassemia and may potentially cause major complications that are damaging to the vascular system. Hemolytic anemias are commonly associated with pulmonary hypertension (PH) and often result from dysfunction of lung endothelial cells. The aim of this study was to determine the effect of different Hbs on cultured human lung endothelial function. Toward this goal, endothelial permeability, oxidative stress response parameters, glycolytic and mitochondrial bioenergetic functions were monitored in cultured human pulmonary arterial endothelial cells (HPAEC) following incubation with human adult Hb (HbA), and Hb isolated from patients with sickle cell Hb (HbS, βV6E) and HbE (βE26K) that commonly co-exist with β-thalassemia. These mutant Hbs are known for their distinct oxidative profiles. HPAEC treated with the ferrous forms of HbE, HbS for 24 h showed higher loss of endothelial monolayer integrity with concomitant rise in reactive oxygen radical production, lipid hydroperoxide formation and higher expressions of oxidative stress response proteins including heme oxygenase-1 (HO-1) accompanied by a rise in uncoupled mitochondrial respiration. Loss of membrane permeability was diminished in part by haptoglobin (Hp, protein scavenger), hemopexin (Hpx, heme scavenger) or ascorbate (reducing agent). To understand the role of Hb oxidation, HPAEC were exposed to ferric or ferryl states of the mutant Hbs. Ferryl forms of all proteins caused a significant damage to the endothelial monolayer integrity at a higher degree than their respective ferric Hbs. Ferryl forms of HbS and HbE also caused a loss of respiratory chain complex activities in isolated endothelial mitochondria and basal oxygen consumption in HPAEC. However, longer incubation with ferryl Hbs produced bioenergetic reprogramming including higher degree of uncoupled respiration and glycolytic rate. The data in this report collectively indicate that higher oxidation forms of HbS and HbE cause endothelial dysfunction through distinct damaging mechanisms involving mitochondrial bioenergetic function.
Collapse
Affiliation(s)
- Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Fantao Meng
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Rhoda E Hirsch
- Hematology Division, Department of Medicine and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
16
|
Chronic iron overload induces functional and structural vascular changes in small resistance arteries via NADPH oxidase-dependent O 2 − production. Toxicol Lett 2017; 279:43-52. [DOI: 10.1016/j.toxlet.2017.07.497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
17
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Depleted nitric oxide and prostaglandin E 2 levels are correlated with endothelial dysfunction in β-thalassemia/HbE patients. Int J Hematol 2017; 106:366-374. [PMID: 28474291 DOI: 10.1007/s12185-017-2247-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 01/22/2023]
Abstract
Mechanisms of vascular disorders in β-thalassemia/HbE patients remain poorly understood. In the present study, we aimed to determine the presence of endothelial dysfunction and its association with altered vascular mediators in this population. Forty-three β-thalassemia/HbE patients without clinically documented vascular symptoms and 43 age-sex-matched healthy controls were enrolled. Endothelial function was assessed using flow-mediated dilatation (FMD) before and after administration of nitroglycerine (NTG). β-Thalassemia/HbE patients showed a significant endothelial dysfunction using FMD. The percentage change in the brachial artery diameter before NTG was significantly lower in the thalassemia group compared to the control (5.0 ± 5.9 vs. 9.0 ± 4.0%, p < 0.01) while no significant differences after NTG (18.4 ± 8.3 vs. 17.8 ± 6.3%, p = 0.71). Plasma nitric oxide metabolites (NO x ) and prostaglandin E2 (PGE2) levels were significantly decreased in β-thalassemia/HbE (117.2 ± 27.3 vs. 135.8 ± 11.3 µmol/L, p < 0.01) and (701.9 ± 676.0 vs. 1374.7 ± 716.5 pg/mL, p < 0.01), respectively, while a significant elevation in soluble thrombomodulin levels in β-thalassemia/HbE (3587.7 ± 1310.0 vs. 3093.9 ± 583.8 pg/mL, p = 0.028). NO x and PGE2 levels were significantly correlated with FMD (r = 0.27, p = 0.025) and (r = 0.35, p = 0.003), respectively. These findings suggest roles for endothelial mediators and a new mechanism underlying endothelial dysfunction in β-thalassemia/HbE patients.
Collapse
|
19
|
Pentraxin-3 Levels in Beta Thalassemia Major and Minor Patients and Its Relationship With Antioxidant Capacity and Total Oxidant Stress. J Pediatr Hematol Oncol 2016; 38:12-6. [PMID: 26599985 DOI: 10.1097/mph.0000000000000466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thalassemia major (TM) results in hemolytic anemia, an increase in intestinal iron absorption, and occurrence of iron loading due to erythrocyte transfusion; the disease is characterized by oxidative damage in major organs. Oxidative stress leads to vascular endothelial damage and forms the basis for serious cardiovascular diseases. Pentraxin-3 (PTX-3) is one of the markers of vascular endothelial damage that increases in response to the oxidative stress, which can be used as an early diagnostic marker for inflammation. This study's purpose is to define the relation between PTX-3 and the vascular endothelial damage that increases with oxidative stress in thalassemia patients. Our study included 35 TM patients, 30 β-thalassemia minor patients, and 30 healthy children. As a result of our study, in TM patients, a positive relation was detected between the PTX-3 levels and the total oxidative stress, triglyceride, and very low-density lipoprotein values, whereas a negative relation was detected with the total antioxidant capacity and high-density lipoprotein values. This result shows that as oxidant stress increases, PTX-3 levels also increase; very low-density lipoprotein and triglyceride contribute to the endothelial damage occurring with oxidative stress. As a result, it was concluded that vascular endothelial damage in thalassemia patients can be evaluated through the serum PTX-3 level.
Collapse
|
20
|
Marques VB, Nascimento TB, Ribeiro RF, Broseghini-Filho GB, Rossi EM, Graceli JB, dos Santos L. Chronic iron overload in rats increases vascular reactivity by increasing oxidative stress and reducing nitric oxide bioavailability. Life Sci 2015; 143:89-97. [PMID: 26523985 DOI: 10.1016/j.lfs.2015.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
Abstract
AIMS Iron overload in animal models and humans increases oxidative stress and induces cardiomyopathy. It has been suggested that the vasculature is also damaged, but the impacts on vascular reactivity and the underlying mechanisms remain poorly understood. In this study, we aimed to identify possible changes in the vascular reactivity of aortas from iron overloaded rats and investigate the underlying mechanisms. MAIN METHODS Rats were treated with 100mg/kg/day iron-dextran, ip, five days a week for four weeks and compared to a saline-injected group. KEY FINDINGS Chronic iron administration increased serum iron and transferrin saturation with significant deposition in the liver. Additionally, iron overload significantly increased the vasoconstrictor response in aortic rings as assessed in vitro, with reduced influence of endothelial denudation or l-NAME incubation on the vascular reactivity. In vitro assay with DAF-2 indicated reduced NO production in the iron overload group. Iron overload-induced vascular hyperactivity was reversed by incubation with tiron, catalase, apocynin, allopurinol and losartan. Moreover, malondialdehyde was elevated in the plasma, and O2(•-) generation and NADPH oxidase subunit (p22phox) expression were increased in the aortas of iron-loaded rats. SIGNIFICANCE Our results demonstrated that chronic iron overload is associated with altered vascular reactivity and the loss of endothelial modulation of the vascular tone. This iron loading-induced endothelial dysfunction and reduced nitric oxide bioavailability may be a result of increased production of reactive oxygen species and local renin-angiotensin system activation.
Collapse
Affiliation(s)
| | | | | | | | - Emilly Martinelly Rossi
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
21
|
Antioxidant and free radical scavenging activity of iron chelators. Toxicol Rep 2015; 2:721-728. [PMID: 28962407 PMCID: PMC5598521 DOI: 10.1016/j.toxrep.2015.04.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023] Open
Abstract
Inside the human body, reactive derivatives of oxygen, known as reactive oxygen species (ROS) such as the superoxide radical (O2•), hydroxyl radical (•OH) and hydrogen peroxide (H2O2), are constantly generated. The ROS easily cause oxidative damage to various biomolecules such as proteins, lipids and DNA leading to various disease conditions. Iron chelators function as antioxidants by scavenging ROS and also reduce the amount of available iron thereby decreasing the quantity of •OH generated by Fenton reactions. In this study, the antioxidant activity of the iron chelators: caffeic acid (CA), 2,3-dihydroxybenzoic acid (DHBA), desferroxamine B (FOB) and benzohydroxamic acid (BHA) were determined using five different in vitro antioxidant assays. The antioxidant assays used were: iron binding ability, reducing ability using the potassium ferricyanide reduction method, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, H2O2 scavenging activity and •OH scavenging activity. The standard used for the iron binding ability was Na2EDTA whereas vitamin C was used as a standard for the remaining assays. The iron chelators showed a concentration dependent increase in their radical scavenging activities as well as their reducing ability. At the concentration of 1 mM, FOB had the highest iron binding ability of 93.7% whereas DHBA had the lowest iron binding ability of 5.0% compared to the standard Na2EDTA which had 94.8%. The iron chelators, with the exception of BHA, showed good reducing ability than vitamin C. Caffeic acid showed significant DPPH, hydrogen peroxide and hydroxyl radical scavenging activities of 84.7%, 99.8% and 14.5%, respectively. All the iron chelators were observed to show significant activities in all five antioxidant assays.
Collapse
|
22
|
Molecular mechanism of yisui shengxue granule, a complex chinese medicine, on thalassemia patients suffering from hemolysis and anemia of erythrocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:213782. [PMID: 25574177 PMCID: PMC4276282 DOI: 10.1155/2014/213782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the therapeutic biological mechanism of Yisui Shengxue Granule (YSSXG), a complex Chinese medicine, on the hemolysis and anemia of erythrocytes from patient with thalassemia disease. Sixteen patients with thalassemia (8 cases of α-thalassemia and 8 cases of β-thalassemia) disease were collected and treated with YSSXG for 3 months. The improvements of blood parameter demonstrated that YSSXG had a positive clinical effect on patients with thalassemia disease. For patients with α-thalassemia disease, RT-PCR showed that YSSXG upregulated the relative mRNA expression level of α-globin to β-globin and downregulated DNMT1, DNMT3a, and DNMT3b mRNA compared with pretreatment. Western blotting showed that YSSXG downregulated the expression of DNMT1 and DNMT3a. For patients with β-thalassemia disease, the relative expression level of Aγ-globin to α-globin had an increasing trend and the level of BCL11A mRNA expression obviously increased. For all patients, RT-PCR showed that YSSXG upregulated mRNA expression of SPTA1 and SPTB. Activities of SOD and GSH-Px significantly increased and MDA obviously reduced on erythrocyte and blood serum after YSSXG treatment. TEM showed that YSSXG decreased the content of inclusion bodies. Activities of Na+K+-ATPtase and T-ATPtase of erythrocyte increased significantly after YSSXG treatment. This study provides the basis for mechanisms of YSSXG on thalassemia suffering with hemolysis and anemia of erythrocytes from patient.
Collapse
|
23
|
Ye BH, Lee SJ, Choi YW, Park SY, Kim CD. Preventive effect of gomisin J from Schisandra chinensis on angiotensin II-induced hypertension via an increased nitric oxide bioavailability. Hypertens Res 2014; 38:169-77. [DOI: 10.1038/hr.2014.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
|
24
|
Adly AAM, El-Sherif NH, Ismail EAR, El-Zaher YA, Farouk A, El-Refaey AM, Wahba MS. Vascular Dysfunction in Patients With Young β-Thalassemia. Clin Appl Thromb Hemost 2014; 21:733-44. [DOI: 10.1177/1076029614541515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We aimed to study the endothelial dysfunction among children and adolescents with transfusion-dependent β-thalassemia using von Willebrand factor antigen (VWF:Ag) and flow cytometric analysis of circulating CD144+ endothelial microparticles (EMPs) and endothelial progenitor cells (CD34+VEGFR2+) and assess their relation to iron overload, erythropoietin and chelation therapy as well as echocardiographic parameters and carotid intima–media thickness. The VWF:Ag, EMPs, and CD34+VEGFR2+ cells were significantly higher among patients with β-thalassemia than controls ( P < .001). The type of chelation and patients’ compliance did not influence the results. No significant correlations were found between the studied vascular markers. Patients with evident heart disease had higher VWF: Ag, EMPs, and CD34+VEGFR2+ cells than those without. Carotid intima–media thickness was increased among patients but not correlated with vascular markers. We suggest that procoagulant EMPs and VWF: Ag are involved in cardiovascular complications in patients with young β-thalassemia. CD34+VEGFR2+ cells were further increased in response to tissue injury contributing to reendothelialization and neovascularization.
Collapse
Affiliation(s)
| | | | | | - Yosra Abd El-Zaher
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal Farouk
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mohammed Samy Wahba
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 2014; 6:1194-1208. [PMID: 24662163 PMCID: PMC3967187 DOI: 10.3390/nu6031194] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022] Open
Abstract
Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd)-induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L) in drinking water for eight weeks. Curcumin (50 or 100 mg/kg) was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Praphassorn Surawattanawan
- Research and Development Institute, Government Pharmaceutical Organization, Rama 6 Road, Rajatevee, Bangkok 10400, Thailand.
| |
Collapse
|
26
|
Naoum FA, Espósito BP, Ruiz LP, Ruiz MA, Tanaka PY, Sobreira JT, Cançado RD, de Barros JC. Assessment of labile plasma iron in patients who undergo hematopoietic stem cell transplantation. Acta Haematol 2013; 131:222-6. [PMID: 24335268 DOI: 10.1159/000355192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/18/2013] [Indexed: 01/19/2023]
Abstract
Body iron disorders have been reported after myeloablative conditioning in patients undergoing hematopoietic stem cell transplantation (HSCT). There is a concern that labile plasma iron (LPI), the redox-active form of iron, can be involved in the occurrence of toxicity and other complications commonly observed in the early post-HSCT period. In order to better understand the LPI kinetics and its determinants and implications, we undertook sequential LPI determinations before and after conditioning until engraftment in 25 auto-HSCT patients. Increased LPI was present in only 5 patients before starting conditioning. Shortly after conditioning, LPI levels were increased in 23 patients, with peak at day 0, returning to normal range upon engraftment in 21 patients. Overall, LPI levels correlated weakly with serum ferritin and more strongly with transferrin saturation; however, both parameters were apparently not applicable as surrogate markers for increased LPI. Although this was a small cohort, logistic regression suggested that baseline LPI levels could predict occurrence of grade III or IV toxicity. In conclusion, LPI kinetics is influenced by aplasia following conditioning and engraftment. Measuring LPI before starting conditioning can offer an opportunity to predict toxicity and, perhaps, the need for chelation therapy.
Collapse
|
27
|
Suvachananonda T, Wankham A, Srihirun S, Tanratana P, Unchern S, Fucharoen S, Chuansumrit A, Sirachainan N, Sibmooh N. Decreased nitrite levels in erythrocytes of children with β-thalassemia/hemoglobin E. Nitric Oxide 2013; 33:1-5. [DOI: 10.1016/j.niox.2013.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 01/19/2023]
|
28
|
Pennell DJ, Udelson JE, Arai AE, Bozkurt B, Cohen AR, Galanello R, Hoffman TM, Kiernan MS, Lerakis S, Piga A, Porter JB, Walker JM, Wood J. Cardiovascular function and treatment in β-thalassemia major: a consensus statement from the American Heart Association. Circulation 2013; 128:281-308. [PMID: 23775258 DOI: 10.1161/cir.0b013e31829b2be6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This aim of this statement is to report an expert consensus on the diagnosis and treatment of cardiac dysfunction in β-thalassemia major (TM). This consensus statement does not cover other hemoglobinopathies, including thalassemia intermedia and sickle cell anemia, in which a different spectrum of cardiovascular complications is typical. There are considerable uncertainties in this field, with a few randomized controlled trials relating to treatment of chronic myocardial siderosis but none relating to treatment of acute heart failure. The principles of diagnosis and treatment of cardiac iron loading in TM are directly relevant to other iron-overload conditions, including in particular Diamond-Blackfan anemia, sideroblastic anemia, and hereditary hemochromatosis. Heart failure is the most common cause of death in TM and primarily results from cardiac iron accumulation. The diagnosis of ventricular dysfunction in TM patients differs from that in nonanemic patients because of the cardiovascular adaptation to chronic anemia in non-cardiac-loaded TM patients, which includes resting tachycardia, low blood pressure, enlarged end-diastolic volume, high ejection fraction, and high cardiac output. Chronic anemia also leads to background symptomatology such as dyspnea, which can mask the clinical diagnosis of cardiac dysfunction. Central to early identification of cardiac iron overload in TM is the estimation of cardiac iron by cardiac T2* magnetic resonance. Cardiac T2* <10 ms is the most important predictor of development of heart failure. Serum ferritin and liver iron concentration are not adequate surrogates for cardiac iron measurement. Assessment of cardiac function by noninvasive techniques can also be valuable clinically, but serial measurements to establish trends are usually required because interpretation of single absolute values is complicated by the abnormal cardiovascular hemodynamics in TM and measurement imprecision. Acute decompensated heart failure is a medical emergency and requires urgent consultation with a center with expertise in its management. The first principle of management of acute heart failure is control of cardiac toxicity related to free iron by urgent commencement of a continuous, uninterrupted infusion of high-dose intravenous deferoxamine, augmented by oral deferiprone. Considerable care is required to not exacerbate cardiovascular problems from overuse of diuretics or inotropes because of the unusual loading conditions in TM. The current knowledge on the efficacy of removal of cardiac iron by the 3 commercially available iron chelators is summarized for cardiac iron overload without overt cardiac dysfunction. Evidence from well-conducted randomized controlled trials shows superior efficacy of deferiprone versus deferoxamine, the superiority of combined deferiprone with deferoxamine versus deferoxamine alone, and the equivalence of deferasirox versus deferoxamine.
Collapse
|
29
|
Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Donpunha W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol 2012; 90:1345-1353. [PMID: 22873715 DOI: 10.1139/y2012-101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Quercetin, a dietary antioxidant flavonoid, possesses strong anti-inflammatory and cytoprotective activities. The effects were investigated in an animal model of lipopolysaccharide (LPS)-induced endotoxaemia and vascular dysfunction in vivo. Male ICR mice were injected with LPS (10 mg/kg; i.p.). Quercetin (50 or 100 mg/kg) was intragastrically administered either before or after LPS administration. Fifteen hours after LPS injection, mice were found in endotoxaemic condition, as manifested by hypotension, tachycardia, and blunted vascular responses to vasodilators and vasoconstrictor. The symptoms were accompanied by increased aortic iNOS protein expression, decreased aortic eNOS protein expression, marked suppression of cellular glutathione (GSH) redox status, enhanced aortic superoxide production, increased plasma malodialdehyde and protein carbonyl, and elevated urinary nitrate/nitrite. Treatment with quercetin either before or after LPS preserved the vascular function, as blood pressure, heart rate, vascular responsiveness were restored to near normal values, particularly when quercetin was given as a preventive regimen. The vascular protective effects were associated with upregulation of eNOS expression, reduction of oxidative stress, and maintained blood GSH redox ratio. Overall findings suggest the beneficial effect of quercetin on the prevention and restoration of a failing eNOS system and alleviation of oxidative stress and vascular dysfunction against endotoxin-induced shock in mice.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/administration & dosage
- Antioxidants/therapeutic use
- Dietary Supplements
- Disease Models, Animal
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endotoxemia/diet therapy
- Endotoxemia/metabolism
- Endotoxemia/physiopathology
- Endotoxemia/prevention & control
- Glutathione/blood
- Lipopolysaccharides
- Male
- Mice
- Mice, Inbred ICR
- Nitric Oxide Synthase Type III/metabolism
- Oxidation-Reduction
- Oxidative Stress
- Quercetin/administration & dosage
- Quercetin/therapeutic use
- Random Allocation
- Shock, Septic/diet therapy
- Shock, Septic/metabolism
- Shock, Septic/physiopathology
- Shock, Septic/prevention & control
- Up-Regulation
- Vasculitis/etiology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | |
Collapse
|
30
|
Detchaporn P, Kukongviriyapan U, Prawan A, Jetsrisuparb A, Greenwald SE, Kukongviriyapan V. Altered vascular function, arterial stiffness, and antioxidant gene responses in pediatric thalassemia patients. Pediatr Cardiol 2012; 33:1054-1060. [PMID: 22349676 DOI: 10.1007/s00246-012-0225-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/03/2012] [Indexed: 01/19/2023]
Abstract
Patients with thalassemia major are susceptible to cardiovascular complications by mechanisms not fully understood. Although overt cardiovascular complications usually occur after puberty, their underlying pathogenesis may begin much earlier. This study investigated whether there were early changes in vascular endothelial function and arterial stiffness in young patients with beta-thalassemia and hemoglobin E, and whether these changes were associated with oxidative stress and expression of antioxidant genes. The study recruited 30 pediatric patients and 30 age-matched control subjects. Compared with the control subjects, the patients had increased levels of oxidant biomarkers including malondialdehyde, protein carbonyl, and non-transferrin-bound iron and a decreased glutathione redox ratio. There were clear signs of vascular endothelial dysfunction and increased arterial stiffness, as shown by marked suppression of forearm blood flow after reactive hyperemia and increased pulse-wave velocity in the trunk and legs. The changes in FBF were associated with oxidative stress markers and free iron. An adaptive antioxidant gene response was activated in blood mononuclear cells, as shown by upregulation of GCLC and Bach-1 mRNA but downregulation of heme oxygenase-1 and thioredoxin mRNA. The results highlight the vascular changes seen even in young patients during treatment. These changes were associated with oxidative stress and suggest an adaptive response that serves to protect host cells from further oxidative damage.
Collapse
Affiliation(s)
- Pantipa Detchaporn
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | |
Collapse
|
31
|
Antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability. Hypertens Res 2012; 35:928-34. [PMID: 22534517 PMCID: PMC3434368 DOI: 10.1038/hr.2012.50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gomisin A (GA) is a small molecular weight lignan present in Schisandra chinensis, and has been demonstrated to have vasodilatory activity. In the present study, we investigated the effect of GA on blood pressure (BP) in angiotensin II (Ang II)-induced hypertensive mice. C57/BL6 mice infused subcutaneously with Ang II (1 and 2 μg kg−1 per min for 2 weeks) showed an increase in BP with a decrease in nitric oxide (NO) metabolites in plasma, and a negative correlation between these two parameters was demonstrated. In the thoracic aorta from Ang II-induced hypertensive mice, a decrease in vascular NO that was accompanied by a diminution of phosphorylated endothelial nitric oxide synthase (eNOS), as well as by increased reactive oxygen species (ROS) production, was demonstrated. These alterations in BP, eNOS phosphorylation and ROS production in the vasculature of Ang II-treated mice were markedly and dose-dependently reversed by simultaneous administration of GA (2 and 10 μg kg−1 per min). In addition, Ang II-induced ROS production in cultured vascular cells such as endothelial cells and vascular smooth muscle cells was markedly attenuated by GA. These results suggested that GA attenuated the increase in BP via preservation of vascular NO bioavailability not only by inhibiting ROS production but also by preventing the impairment of eNOS function in the vasculature of Ang II-induced hypertensive mice.
Collapse
|
32
|
Karakukcu C, Karakukcu M, Unal E, Patiroglu T, Ozdemir MA, Torun YA, Tang PH. Coenzyme Q10 levels in β-thalassemia and its association with ferritin levels and chelation therapy. Hemoglobin 2012; 36:219-29. [PMID: 22483337 DOI: 10.3109/03630269.2012.672507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate the plasma coenzyme Q(10) (CoQ(10)) concentration, a vitamin-like substance found in every cell, which is also viewed as the most effective membrane antioxidant, of thalassemic patients and investigate the effect of chelating agents and ferritin levels on its concentration in patients with β-thalassemia major (β-TM). The study included 44 β-TM patients undergoing deferasirox (DFRA) or deferoxamine (DFO) chelation monotherapies or combined therapy with deferiprone (L1) and DFO, 20 patients with β-thalassemia (β-thal) traits and a control group of 22 healthy sex- and age-matched subjects. Complete blood counts, liver and renal function tests, lipid profiles, ferritin and plasma CoQ(10) [by high performance liquid chromatography (HPLC)] were analyzed. The mean age (14.7 ± 7.3 years; median 14.3 years) and sex (26 males, 18 females) of the β-TM patients were not statistically different from the β-thal trait patients and the control group. The plasma CoQ(10) concentration was 0.425 ± 0.136 μmol/L in β-TM patients, 0.508 ± 0.159 μmol/L in the β-thal trait patients and 0.534 ± 0.133 μmol/L in the control group. The difference was significant in both the β-TM (p < 0.001) and β-thal trait patients (p <0.05) compared to the control group. The CoQ(10) concentration was also associated with ferritin levels in β-TM patients; the β-TM patients with high ferritin levels had a lower CoQ(10) (p <0.05) concentration. Also, higher plasma CoQ(10) levels were detected in β-TM patients undergoing DFRA treatment, according to combined therapy administered (0.457 ± 0.115 vs. 0.382 ± 0.127 mg/dL respectively, p <0.05). In conclusion, both the β-thal trait and β-TM patients have lower antioxidant capacity as demonstrated by the lower CoQ(10) levels. The type of chelating agents and ferritin levels are factors effecting CoQ(10) concentration in β-TM patients.
Collapse
Affiliation(s)
- Cigdem Karakukcu
- Department of Biochmistry, Training and Research Hospital, Ataturk Street, Kayseri, Turkey.
| | | | | | | | | | | | | |
Collapse
|
33
|
Nakmareong S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Kongyingyoes B, Donpunha W, Prachaney P, Phisalaphong C. Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency. Hypertens Res 2012; 35:418-425. [PMID: 22072109 DOI: 10.1038/hr.2011.180] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetrahydrocurcumin (THC), a major metabolite of curcumin, possesses strong antioxidant and cardioprotective properties. However, the activities of THC in hypertension and its associated complications remain unknown. The aim of this study was to investigate the effect of THC on hemodynamic status, aortic elasticity and oxidative stress in rats with N-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Hypertension was induced in male Sprague-Dawley rats by administration of L-NAME (50 mg kg(-1) body weight) in drinking water for 5 weeks. THC at a dose of 50 or 100 mg kg(-1) per day was administered daily during the fourth and fifth weeks when the hypertensive state had been established. The effects of THC on hemodynamics, aortic elasticity, endothelial nitric oxide synthase (eNOS) protein expression and oxidative stress markers were assessed. Marked increases in blood pressure, peripheral vascular resistance, aortic stiffness and oxidative stress were found in rats after L-NAME administration. THC significantly reversed these deleterious effects by reducing aortic wall thickness and stiffness. These effects were associated with increased aortic eNOS expression, elevated plasma nitrate/nitrite, decreased oxidative stress with reduced superoxide production and enhanced blood glutathione. Our results provide the first evidence that THC attenuates the detrimental effect of L-NAME by improving the hemodynamic status and aortic elasticity concomitant with reduction of oxidative stress. The present study suggests that THC might be used as a dietary supplement to protect against cardiovascular alterations under nitric oxide-deficient conditions.
Collapse
Affiliation(s)
- Saowanee Nakmareong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Baccan MM, Chiarelli-Neto O, Pereira RMS, Espósito BP. Quercetin as a shuttle for labile iron. J Inorg Biochem 2012; 107:34-9. [DOI: 10.1016/j.jinorgbio.2011.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/18/2011] [Accepted: 11/15/2011] [Indexed: 12/30/2022]
|
35
|
Roche CJ, Malashkevich V, Balazs TC, Dantsker D, Chen Q, Moreira J, Almo SC, Friedman JM, Hirsch RE. Structural and functional studies indicating altered redox properties of hemoglobin E: implications for production of bioactive nitric oxide. J Biol Chem 2011; 286:23452-66. [PMID: 21531715 PMCID: PMC3123109 DOI: 10.1074/jbc.m110.183186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 04/28/2011] [Indexed: 12/22/2022] Open
Abstract
Hemoglobin (Hb) E (β-Glu26Lys) remains an enigma in terms of its contributions to red blood cell (RBC) pathophysiological mechanisms; for example, EE individuals exhibit a mild chronic anemia, and HbE/β-thalassemia individuals show a range of clinical manifestations, including high morbidity and death, often resulting from cardiac dysfunction. The purpose of this study was to determine and evaluate structural and functional consequences of the HbE mutation that might account for the pathophysiology. Functional studies indicate minimal allosteric consequence to both oxygen and carbon monoxide binding properties of the ferrous derivatives of HbE. In contrast, redox-sensitive reactions are clearly impacted as seen in the following: 1) the ∼2.5 times decrease in the rate at which HbE catalyzes nitrite reduction to nitric oxide (NO) relative to HbA, and 2) the accelerated rate of reduction of aquometHbE by L-cysteine (L-Cys). Sol-gel encapsulation studies imply a shift toward a higher redox potential for both the T and R HbE structures that can explain the origin of the reduced nitrite reductase activity of deoxyHbE and the accelerated rate of reduction of aquometHbE by cysteine. Deoxy- and CO HbE crystal structures (derived from crystals grown at or near physiological pH) show loss of hydrogen bonds in the microenvironment of βLys-26 and no significant tertiary conformational perturbations at the allosteric transition sites in the R and T states. Together, these data suggest a model in which the HbE mutation, as a consequence of a relative change in redox properties, decreases the overall rate of Hb-mediated production of bioactive NO.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Moreira
- From the Departments of Physiology and Biophysics
| | | | | | - Rhoda Elison Hirsch
- Medicine (Division of Hematology), and
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
36
|
Nakmareong S, Kukongviriyapan U, Pakdeechote P, Donpunha W, Kukongviriyapan V, Kongyingyoes B, Sompamit K, Phisalaphong C. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:519-529. [PMID: 21448566 DOI: 10.1007/s00210-011-0624-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/13/2011] [Indexed: 12/16/2022]
Abstract
Inhibition of nitric oxide synthesis with N ( ω )-nitro-L-arginine methyl ester (L-NAME) induces marked hypertension and oxidative stress. Curcumin (CUR) has been shown strong antioxidant property. Tetrahydrocurcumin (THU), a major metabolite of CUR, possesses several pharmacological effects similar to CUR; however, it is less studied than CUR. We investigated whether CUR and THU could prevent vascular dysfunction and inhibit development of hypertension in L-NAME-treated rats. Male Sprague-Dawley rats were administered with L-NAME (50 mg/kg/day) in drinking water for 3 weeks. CUR or THU (50 and 100 mg/kg/day) was fed to animals simultaneously with L-NAME. L-NAME administration induced increased arterial blood pressure and elevated peripheral vascular resistance accompanied with impaired vascular responses to angiotensin II and acetylcholine. CUR and THU significantly suppressed the blood pressure elevation, decreased vascular resistance, and restored vascular responsiveness. The improvement of vascular dysfunction was associated with reinstating the marked suppression of eNOS protein expression in the aortic tissue and plasma nitrate/nitrite. Moreover, CUR and THU reduced vascular superoxide production, decreased oxidative stress, and increased the previously depressed blood glutathione (GSH) and the redox ratios of GSH in L-NAME hypertensive rats. The antihypertensive and some antioxidant effects of THU are apparently more potent than those of CUR. This study suggests that CUR and THU prevented the development of vascular dysfunction induced by L-NAME and that the effects are associated with alleviation of oxidative stress.
Collapse
Affiliation(s)
- Saowanee Nakmareong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 2011; 24:105-115. [PMID: 20872046 DOI: 10.1007/s10534-010-9379-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/15/2010] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) is one of the most important environmental pollutants that cause a number of adverse health effects in humans and animals. Recent studies have shown that Cd-induced oxidative damage within the vascular tissues results in vascular dysfunction. The current study was aimed to investigate whether ascorbic acid could protect against Cd-induced vascular dysfunction in mice. Male ICR mice were received CdCl(2) (100 mg/l) via drinking water for 8 weeks alone or received ascorbic acid supplementation at doses of 50 and 100 mg/kg/day for every other day. Results showed that Cd administration increased arterial blood pressure and blunted the vascular responses to vasoactive agents. These alterations were related to increased superoxide production in thoracic aorta, increased urinary nitrate/nitrite, increased plasma protein carbonyl, elevated malondialdehyde (MDA) concentrations in plasma and tissues, decreased blood glutathione (GSH), and increased Cd contents in blood and tissues. Ascorbic acid dose-dependently normalized the blood pressure, improved vascular reactivities to acetylcholine (ACh), phenylephrine (Phe) and sodium nitroprusside (SNP). These improvements were associated with significant suppression of oxidant formation, prevention of GSH depletion, and partial reduction of Cd contents in blood and tissues. The findings in this study provide the first evidence in pharmacological effects of ascorbic acid on alleviation of oxidative damage and improvement of vascular function in a mouse model of Cd-induced hypertension and vascular dysfunction. Moreover, our study suggests that dietary supplementation of ascorbic acid may provide beneficial effects by reversing the oxidative stress and vascular dysfunction in Cd-induced toxicity.
Collapse
Affiliation(s)
- Wanida Donpunha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
38
|
Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U. Consumption of Syzygium gratum promotes the antioxidant defense system in mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:403-409. [PMID: 21104319 DOI: 10.1007/s11130-010-0200-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several vegetables have been shown to possess cytoprotective and antioxidant effects with various mechanisms of action. The aim of this study was to determine the antioxidant effects and mechanism underlying of Syzygium gratum, a dietary and herbal plant commonly found in the Southeast Asia. Additionally, its effects on the induction of endogenous antioxidant defensive system were also investigated. Results showed that the leaf extract possessed an exceptionally strong antioxidant and intracellular oxygen radical scavenging activity in both aqueous and ethanolic extracts. The plant aqueous extract was further studied in C57BL/6J mice to evaluate its effects in vivo. The extract was well tolerated by the animals throughout the 30 days of study. The cytoprotective enzyme, heme oxygenase (HO-1) activity was significantly increased in the high dose-treated animals (1 g/kg/day). Consistent with the enzymatic activity, the expression of HO-1 mRNA tended to increase in those mice. There was no significant increase in hepatic γ-glutamylcysteine ligase (γ-GCL) activity, glutathione levels and GCL mRNA expression. Taken together, this study provides evidence that S. gratum exhibits potent direct antioxidant properties and can induce cytoprotective enzyme in vivo. Consumption of S. gratum may provide a health benefit against oxidative stress and other related disorders.
Collapse
Affiliation(s)
- Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | |
Collapse
|
39
|
Sompamit K, Kukongviriyapan U, Donpunha W, Nakmareong S, Kukongviriyapan V. Reversal of cadmium-induced vascular dysfunction and oxidative stress by meso-2,3-dimercaptosuccinic acid in mice. Toxicol Lett 2010; 198:77-82. [PMID: 20399841 DOI: 10.1016/j.toxlet.2010.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022]
Abstract
Cadmium (Cd) is a heavy metal which causes concern as an environmental toxicant. Therapy with chelating agents is considered to be the rational treatment against metal poisoning. This study was designed to evaluate whether meso-2,3-dimercaptosuccinic acid (DMSA) could alleviate oxidative stress and vascular dysfunction in mice with subchronic exposure to Cd. Male ICR mice received CdCl2 (100 mg/L) via drinking water for 8 weeks. After Cd exposure, DMSA at a dose of 25 mg/kg or 50 mg/kg was intragastrically administered once daily for 5 consecutive days at the end of Cd treatment. It was found that Cd-induced hypertension and markedly blunted vascular responses to vasoactive agents, including acetylcholine, phenylephrine and sodium nitroprusside. Treatment with DMSA significantly restored blood pressure and improved vascular responsiveness when compared with Cd-treated controls. Moreover, DMSA protected against Cd-induced severe oxidative stress by normalization of the redox ratios of glutathione to glutathione disulfide and suppression of plasma malondialdehyde, plasma protein carbonyl, urinary nitrate/nitrite, and superoxide production from thoracic aorta. DMSA partially reduced Cd contents in the blood, heart, liver and kidneys. In conclusion, our present study provides the first evidence of the therapeutic efficacy of DMSA against oxidative stress and vascular dysfunction in Cd-intoxicated mice.
Collapse
Affiliation(s)
- Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | | | | | | | | |
Collapse
|
40
|
Unchern S, Laohareungpanya N, Sanvarinda Y, Pattanapanyasat K, Tanratana P, Chantharaksri U, Sibmooh N. Oxidative modification and poor protective activity of HDL on LDL oxidation in thalassemia. Lipids 2010; 45:627-33. [PMID: 20532993 DOI: 10.1007/s11745-010-3435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/15/2010] [Indexed: 10/19/2022]
Abstract
Oxidative modification of low-density lipoprotein (LDL) has been reported in thalassemia, which is a consequence of oxidative stress. However, the levels of oxidized high-density lipoprotein (HDL) in thalassemia have not been evaluated and it is unclear whether HDL oxidation may be linked to LDL oxidation. In this study, the levels of total cholesterol, iron, protein, conjugated diene (CD), lipid hydroperoxide (LOOH), and thiobarbituric acid reactive substances (TBARs) were determined in HDL from healthy volunteers and patients with beta-thalassemia intermedia with hemoglobin E (beta-thal/Hb E). The protective activity of thalassemic HDL on LDL oxidation was also investigated. The iron content of HDL(2) and HDL(3) from beta-thal/HbE patients was higher while the cholesterol content was lower than those in healthy volunteers. Thalassemic HDL(2) and HDL(3) had increased levels of lipid peroxidation markers i.e., conjugated diene, LOOH, and TBARs. Thalassemic HDL had lower peroxidase activity than control HDL and was unable to protect LDL from oxidation induced by CuSO(4). Our findings highlight the oxidative modification and poor protective activity of thalassemic HDL on LDL oxidation which may contribute to cardiovascular complications in thalassemia.
Collapse
Affiliation(s)
- Supeenun Unchern
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama 6 Rd, Bangkok, 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
41
|
Kalpravidh RW, Siritanaratkul N, Insain P, Charoensakdi R, Panichkul N, Hatairaktham S, Srichairatanakool S, Phisalaphong C, Rachmilewitz E, Fucharoen S. Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem 2010; 43:424-9. [DOI: 10.1016/j.clinbiochem.2009.10.057] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
|
42
|
Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol 2009; 616:192-199. [PMID: 19540224 DOI: 10.1016/j.ejphar.2009.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in various pathological conditions, including septic shock, and other diseases associated with local or systemic inflammation. Curcumin, a major component from turmeric (Curcuma longa), possesses diverse anti-inflammatory, anti-tumour and antioxidant properties. The aim of this study was to investigate the effect of curcumin on modulation of vascular dysfunction and oxidative stress induced by lipopolysaccharide (LPS) in mice. Male ICR mice were treated with curcumin (50 or 100 mg/kg), administered intragastrically, either before or after intraperitoneal injection of LPS (10 mg/kg). Fifteen hours after LPS administration, arterial blood pressure was measured and vascular response to vasoactive agents were assessed. Aortic tissues and blood samples were taken for assays of antioxidant and oxidative stress markers. LPS caused marked hypotension, tachycardia and vascular hyporeactivity. The mean arterial pressures in responses to phenylephrine, acetylcholine, and sodium nitroprusside of LPS-treated mice were significantly decreased when compared with the untreated controls. Curcumin modulated heart rate and restored arterial blood pressure in a dose-dependent manner in both protectively- and therapeutically-treated regimens. Furthermore, the vascular responsiveness of LPS-treated mice was improved by curcumin. Interestingly, the improvements of haemodynamics and vascular response during endotoxaemia were related to alleviation of oxidative stress by reducing aortic-derived superoxide production, suppression of lipid peroxidation and protein oxidation, and decrease in urinary nitric oxide metabolites with preservation of the ratio of glutathione/glutathione disulfide. This study provides the first evidence for the potential role of curcumin in prevention and treatment of vascular dysfunction in mice with endotoxaemia elicited by LPS.
Collapse
Affiliation(s)
- Kwanjit Sompamit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|