1
|
Pérez-Ferrer PA, Ashraf M, Rodrigues M, Troncoso J, Nishiguchi MK. Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías. Mol Ecol 2025; 34:e17596. [PMID: 39625066 DOI: 10.1111/mec.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 12/24/2024]
Abstract
Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.
Collapse
Affiliation(s)
- P A Pérez-Ferrer
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
| | - M Ashraf
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - M Rodrigues
- Brookes Bell LLP, Liverpool, UK
- Universidad de Vigo, Vigo, Spain
| | | | - M K Nishiguchi
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
2
|
Tsoukalas D, Hoel S, Lerfall J, Valdramidis VP, May L, Jakobsen AN. Insight to the diversity of Photobacterium spp. isolated from European plaice (Pleuronectes platessa) based on phylogenetic analysis, phenotypic characterisation and spoilage potential. Int J Food Microbiol 2024; 410:110485. [PMID: 37984214 DOI: 10.1016/j.ijfoodmicro.2023.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to explore the diversity of fifty-four Photobacterium strains isolated from muscle tissue of European plaice (Pleuronectes platessa) caught at different fishing seasons and stored 14-days under various conditions. Single phylogenetic markers (16S rRNA, gapA, gyrB and recA) and multilocus sequence analysis (MLSA) were employed to classify isolates at species level. Furthermore, intra- and interspecies variability in the phenotypic traits, maximum specific growth rate (μmax) and spoilage potential of the Photobacterium isolates were investigated. The isolates were classified into the P. iliopiscarium (53.7 %), P. phosphoreum (40.7 %) and P. piscicola (5.6 %) clades using MLSA. Two housekeeping genes, gyrB and recA, exhibited a consistent phylogenetic relationship with MLSA, suggesting that they might be used as individual phylogenetic markers for the Photobacterium genus. Intra- and interspecies variability in the expression of phenotypic characteristics and the production of trimethylamine (TMA), inosine (HxR), and hypoxanthine (Hx) were observed. A growth optimum temperature for P. iliopiscarium was approximately 20 °C, while those for P. phosphoreum and P. piscicola were closer to 15 °C. All isolates exhibited the highest growth density at 1.5 % NaCl, followed by 0.5 %, 3 %, and 6 % NaCl. However, P. phosphoreum demonstrated a higher NaCl tolerance than the other two species. Although, the high CO2 atmosphere significantly inhibited the growth of all strains at 4 °C, P. phosphoreum and P. piscicola showed higher growth density at 15 °C than P. iliopiscarium. Notably, all strains demonstrated H2S production. The μmax varied considerably within each species, highlighting the significance of strain-level variability. This study demonstrates that P. iliopiscarium and P. piscicola, alongside P. phosphoreum, are efficient TMA-, HxR-, Hx-, and H2S-producers, suggesting their potential contribution to synergistic off-odour generation and spoilage. Moreover, the Photobacterium isolates seem to exhibit diverse adaptations to their environments, resulting in fluctuated growth and spoilage potential. Understanding intra- and interspecies variability will facilitate modelling seafood spoilage in microbial risk assessments and developing targeted hurdles to prolong products' shelf-life.
Collapse
Affiliation(s)
- Dionysios Tsoukalas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Vasilis P Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15171 Athens, Greece
| | - Lea May
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Marcińczyk M, Krasucka P, Duan W, Pan B, Oleszczuk P. Effect of zinc-biochar composite aging on its physicochemical and ecotoxicological properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122856. [PMID: 37923050 DOI: 10.1016/j.envpol.2023.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The stability of Zn-biochar composites is determined by environmental factors, including the aging processes. This paper focused on the ecotoxicological evaluation of Zn-biochar (Zn-BC) composites subjected to chemical aging. Pristine biochars and composites produced at 500 or 700 °C were incubated at 60 and 90 °C for six months. All biochars were characterized in terms of their physicochemical (elemental composition, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and porous structure), ecotoxicological properties (tested with Folsomia candida and Aliivibrio fischeri) and contaminant content (polycyclic aromatic hydrocarbons (PAH), heavy metals (HM) and environmentally persistent free radicals (EPFR)). An increase in the number of surface oxygen functional groups and increased hydrophilicity and polarity of all Zn-BC composites were observed due to oxidation during aging. It was also found that Zn-BC aging at 90 °C resulted in a 28-30% decrease in solvent-extractable PAHs (Ʃ16 Ctot PAHs) compared to nonaged composites. The aging process at both temperatures also caused a 104 fold reduction in EPFRs in Zn-BC composites produced at 500 °C. The changes in the physicochemical properties of Zn-BC composites after chemical aging at 90 °C (such as pH and HM content) caused an increase in the toxicity of the composites to Folsomia candida (reproduction inhibition from 19 to 24%) and Aliivibrio fischeri (luminescence inhibition from 96 to 99%). The aging of composites for a long time may increase the adverse environmental impact of BC-Zn composites due to changes in physicochemical properties (itself and its interactions with pollutants) and the release of Zn from the composite.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| |
Collapse
|
4
|
Baden T, Briseño J, Coffing G, Cohen-Bodénès S, Courtney A, Dickerson D, Dölen G, Fiorito G, Gestal C, Gustafson T, Heath-Heckman E, Hua Q, Imperadore P, Kimbara R, Król M, Lajbner Z, Lichilín N, Macchi F, McCoy MJ, Nishiguchi MK, Nyholm SV, Otjacques E, Pérez-Ferrer PA, Ponte G, Pungor JR, Rogers TF, Rosenthal JJC, Rouressol L, Rubas N, Sanchez G, Santos CP, Schultz DT, Seuntjens E, Songco-Casey JO, Stewart IE, Styfhals R, Tuanapaya S, Vijayan N, Weissenbacher A, Zifcakova L, Schulz G, Weertman W, Simakov O, Albertin CB. Cephalopod-omics: Emerging Fields and Technologies in Cephalopod Biology. Integr Comp Biol 2023; 63:1226-1239. [PMID: 37370232 PMCID: PMC10755191 DOI: 10.1093/icb/icad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - John Briseño
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabrielle Coffing
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Sophie Cohen-Bodénès
- Laboratoire des Systèmes Perceptifs, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dominick Dickerson
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Gül Dölen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Camino Gestal
- Laboratory of Marine Molecular Pathobiology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo 36208, Spain
| | | | - Elizabeth Heath-Heckman
- Departments of Integrative Biology and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaz Hua
- Department of Ecology and Evolution, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Mirela Król
- Adam Mickiewicz University in Poznań, Poznań 61-712, Poland
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicolás Lichilín
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Matthew J McCoy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Michele K Nishiguchi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Pedro Antonio Pérez-Ferrer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Judit R Pungor
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Thea F Rogers
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Joshua J C Rosenthal
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| | - Lisa Rouressol
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Noelle Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Catarina Pereira Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Jeremea O Songco-Casey
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Ian Erik Stewart
- Neural Circuits and Behaviour Lab, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Surangkana Tuanapaya
- Laboratory of genetics and applied breeding of molluscs, Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Nidhi Vijayan
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | | | - Lucia Zifcakova
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | | | - Willem Weertman
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Caroline B Albertin
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| |
Collapse
|
5
|
Essock-Burns T, Lawhorn S, Wu L, McClosky S, Moriano-Gutierrez S, Ruby EG, McFall-Ngai MJ. Maturation state of colonization sites promotes symbiotic resiliency in the Euprymna scolopes-Vibrio fischeri partnership. MICROBIOME 2023; 11:68. [PMID: 37004104 PMCID: PMC10064550 DOI: 10.1186/s40168-023-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.
Collapse
Affiliation(s)
- Tara Essock-Burns
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Leo Wu
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Sawyer McClosky
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Silvia Moriano-Gutierrez
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Department of Fundamental Biology, University of Lausanne, Lausanne, Switzerland
| | - Edward G Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Margaret J McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA.
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA.
| |
Collapse
|
6
|
Wright JR, Ly TT, Cromwell KB, Brislawn CJ, Chen See JR, Anderson SLC, Pellegrino J, Peachey L, Walls CY, Lloyd CM, Jones OY, Lawrence MW, Bess JA, Wall AC, Shope AJ, Lamendella R. Assessment of a novel continuous cleaning device using metatranscriptomics in diverse hospital environments. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1015507. [PMID: 36935775 PMCID: PMC10020724 DOI: 10.3389/fmedt.2023.1015507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Despite routine implementation of cleaning and disinfection practices in clinical healthcare settings, high-touch environmental surfaces and contaminated equipment often serve as reservoirs for the transmission of pathogens associated with healthcare-associated infections (HAIs). Methods The current study involved the analysis of high-touch surface swabs using a metatranscriptomic sequencing workflow (CSI-Dx™) to assess the efficacy of cleanSURFACES® technology in decreasing microbial burden by limiting re-contamination. This is a non-human single center study conducted in the Emergency Department (ED) and on an inpatient Oncology Ward of Walter Reed National Military Medical Center that have followed hygienic practices during the COVID-19 pandemic environment. Results Although there was no difference in observed microbial richness (two-tailed Wilcoxon test with Holm correction, P > 0.05), beta diversity findings identified shifts in microbial community structure between surfaces from baseline and post-intervention timepoints (Day 1, Day 7, Day 14, and Day 28). Biomarker and regression analyses identified significant reductions in annotated transcripts for various clinically relevant microorganisms' post-intervention, coagulase-negative staphylococci and Malassezia restricta, at ED and Oncology ward, respectively. Additionally, post-intervention samples predominantly consisted of Proteobacteria and to a lesser extent skin commensals and endogenous environmental microorganisms in both departments. Discussion Findings support the value of cleanSURFACES®, when coupled with routine disinfection practices, to effectively impact on the composition of active microbial communities found on high-touch surfaces in two different patient care areas of the hospital (one outpatient and one inpatient) with unique demands and patient-centered practices.
Collapse
Affiliation(s)
- Justin R Wright
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Truc T Ly
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Karen B Cromwell
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Colin J Brislawn
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Jeremy R Chen See
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | | | - Jordan Pellegrino
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Logan Peachey
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Christine Y Walls
- Contamination Source Identification, LLC., Huntingdon, PA, United States
| | - Charise M Lloyd
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Olcay Y Jones
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Matthew W Lawrence
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | | | | | - Alexander J Shope
- Contamination Source Identification, LLC., Huntingdon, PA, United States
- AIONX, Hershey, PA, United States
| | - Regina Lamendella
- Contamination Source Identification, LLC., Huntingdon, PA, United States
- Correspondence: Regina Lamendella
| |
Collapse
|
7
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
8
|
Prochlorococcus Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen. mBio 2022; 13:e0257121. [PMID: 35012332 PMCID: PMC8749424 DOI: 10.1128/mbio.02571-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus, was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph's ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.
Collapse
|
9
|
Soto W, Nishiguchi MK. Environmental Stress Selects for Innovations That Drive Vibrio Symbiont Diversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.616973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic bacteria in the Vibrionaceae are a dynamic group of γ-Proteobacteria that are commonly found throughout the world. Although they primarily are free-living in the environment, they can be commonly found associated with various Eukarya, either as beneficial or pathogenic symbionts. Interestingly, this dual lifestyle (free-living or in symbiosis) enables the bacteria to have enormous ecological breadth, where they can accommodate a variety of stresses in both stages. Here, we discuss some of the most common stressors that Vibrio bacteria encounter when in their free-living state or associated with an animal host, and how some of the mechanisms that are used to cope with these stressors can be used as an evolutionary advantage that increases their diversity both in the environment and within their specific hosts.
Collapse
|
10
|
Restrepo L, Domínguez-Borbor C, Bajaña L, Betancourt I, Rodríguez J, Bayot B, Reyes A. Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus). MICROBIOME 2021; 9:88. [PMID: 33845910 PMCID: PMC8042889 DOI: 10.1186/s40168-021-01043-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/05/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp bacterial disease caused by some Vibrio species. The severity of the impact of this disease on aquaculture worldwide has made it necessary to develop alternatives to prophylactic antibiotics use, such as the application of probiotics. To assess the potential to use probiotics in order to limit the detrimental effects of AHNPD, we evaluated the effect of the ILI strain, a Vibrio sp. bacterium and efficient shrimp probiotic, using metabarcoding (16S rRNA gene) on the gastrointestinal microbiota of shrimp after being challenged with AHPND-causing V. parahaemolyticus. RESULTS We showed how the gastrointestinal microbiome of shrimp varied between healthy and infected organisms. Nevertheless, a challenge of working with AHPND-causing Vibrio pathogens and Vibrio-related bacteria as probiotics is the potential risk of the probiotic strain becoming pathogenic. Consequently, we evaluated whether ILI strain can acquire the plasmid pV-AHPND via horizontal transfer and further cause the disease in shrimp. Conjugation assays were performed resulting in a high frequency (70%) of colonies harboring the pv-AHPND. However, no shrimp mortality was observed when transconjugant colonies of the ILI strain were used in a challenge test using healthy shrimp. We sequenced the genome of the ILI strain and performed comparative genomics analyses using AHPND and non-AHPND Vibrio isolates. Using available phylogenetic and phylogenomics analyses, we reclassified the ILI strain as Vibrio diabolicus. In summary, this work represents an effort to study the role that probiotics play in the normal gastrointestinal shrimp microbiome and in AHPND-infected shrimp, showing that the ILI probiotic was able to control pathogenic bacterial populations in the host's gastrointestinal tract and stimulate the shrimp's survival. The identification of probiotic bacterial species that are effective in the host's colonization is important to promote animal health and prevent disease. CONCLUSIONS This study describes probiotic bacteria capable of controlling pathogenic populations of bacteria in the shrimp gastrointestinal tract. Our work provides new insights into the complex dynamics between shrimp and the changes in the microbiota. It also addresses the practical application of probiotics to solve problems with pathogens that cause high mortality-rate in shrimp farming around the world. Video Abstract.
Collapse
Affiliation(s)
- Leda Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Cristóbal Domínguez-Borbor
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Leandro Bajaña
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Irma Betancourt
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jenny Rodríguez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Bonny Bayot
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Alejandro Reyes
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
- Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia.
- Center for Genome Sciences and Systems Biology, Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Bergua JF, Álvarez-Diduk R, Hu L, Hassan AHA, Merkoçi A. Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124434. [PMID: 33307446 DOI: 10.1016/j.jhazmat.2020.124434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Recently, many bioluminescence-based applications have arisen in several fields, such as biosensing, bioimaging, molecular biology, and human health diagnosis. Among all bioluminescent organisms, Aliivibrio fischeri (A. fischeri) is a bioluminescent bacterium used to carry out water toxicity assays since the late 1970s. Since then, several commercial A. fischeri-based products have been launched to the market, as these bacteria are considered as a gold standard for water toxicity assessment worldwide. However, the aforementioned commercial products rely on expensive equipment, requiring several reagents and working steps, as well as high-trained personnel to perform the assays and analyze the output data. For these reasons, in this work, we have developed for the first time a mobile-phone-based sensing platform for water toxicity assessment in just 5 min using two widespread pesticides as model analytes. To accomplish this, we have established new methodologies to enhance the bioluminescent signal of A. fischeri based on the bacterial culture in a solid media and/or using graphene oxide. Finally, we have addressed the biocompatibility of graphene oxide to A. fischeri, boosting the sensitivity of the toxicity assays and the bacterial growth of the lyophilized bacterial cultures for more user-friendly storage.
Collapse
Affiliation(s)
- José Francisco Bergua
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Liming Hu
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Abdelrahim H A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Nourabadi N, Nishiguchi MK. pH Adaptation Drives Diverse Phenotypes in a Beneficial Bacterium-Host Mutualism. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.611411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abiotic variation can influence the evolution of specific phenotypes that contribute to the diversity of bacterial strains observed in the natural environment. Environmentally transmitted symbiotic bacteria are particularly vulnerable to abiotic fluctuations, given that they must accommodate the transition between the free-living state and the host's internal environment. This type of life history strategy can strongly influence the success of a symbiont, and whether adapting to changes outside the host will allow a greater capacity to survive in symbiosis with the host partner. One example of how environmental breadth is advantageous to the symbiosis is the beneficial association between Vibrio fischeri and sepiolid squids (Cephalopoda: Sepiolidae). Since Vibrio bacteria are environmentally transmitted, they are subject to a wide variety of abiotic variables prior to infecting juvenile squids and must be poised to survive in the host light organ. In order to better understand how a changing abiotic factor (e.g., pH) influences the diversification of symbionts and their eventual symbiotic competence, we used an experimental evolution approach to ascertain how pH adaptation affects symbiont fitness. Results show that low pH adapted Vibrio strains have more efficient colonization rates compared to their ancestral strains. In addition, growth rates had significant differences compared to ancestral strains (pH 6.5–6.8, and 7.2). Bioluminescence production (a marker for symbiont competence) of pH evolved strains also improved at pH 6.5–7.2. Results imply that the evolution and diversification of Vibrio strains adapted to low pH outside the squid improves fitness inside the squid by allowing a higher success rate for host colonization and symbiotic competence.
Collapse
|
13
|
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri. J Bacteriol 2021; 203:JB.00259-20. [PMID: 33199286 PMCID: PMC7811199 DOI: 10.1128/jb.00259-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.
Collapse
|
14
|
Chen X, Du H, Chen S, Li X, Zhao H, Xu Q, Tang J, Jiang G, Zou S, Dong K, Adams JM, Li N, Jiang C. Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China. J Microbiol 2020; 58:998-1009. [PMID: 33095386 DOI: 10.1007/s12275-020-0293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.
Collapse
Affiliation(s)
- Xing Chen
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Hong Du
- Shantou University, Guangdong, 515063, P. R. China
| | - Si Chen
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Xiaoli Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jonathan M Adams
- School of Geographical and Oceanographic Sciences, Nanjing University, Nanjing, P. R. China
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, Guangxi, 530001, P. R. China.
| | - Chengjian Jiang
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
| |
Collapse
|
15
|
Adnan NA, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Shukor MYA. Statistical Modeling for the Optimization of Bioluminescence Production by Newly Isolated Photobacterium sp. NAA-MIE. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2020; 90:797-810. [DOI: 10.1007/s40011-019-01154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 09/02/2023]
|
16
|
Liu C, Li G, Mo L, Hou M, Zhang J. Alteration in concentration-response curves of four N-alkylpyridinium chloride by exposure concentration, time and in their mixtures by uniform design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136493. [PMID: 31935547 DOI: 10.1016/j.scitotenv.2020.136493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The concentration-response curves (CRCs) of chemicals are important in extrapolating their effects from laboratory studies to their risk assessment in the field. Yet, the CRCs can be altered by exposure concentration and mixture conditions, and also by exposure time in recent reports. Presently, ionic liquids (N-alkylpyridinium chloride, [apyr]Cl) were used for CRC-alteration studies. In individual effects on Vibrio qinghaiensis sp. Q67 (Q67) from 0.25 to 24 h, the CRCs of [epyr]Cl and [bpyr]Cl changed from S- to J-shaped with decreases in inhibition and increases in stimulation, while the CRCs of [hpyr]Cl changed from S- to flat-shape with decreases in inhibition but without stimulation. In mixture effects on Q67, the CRCs all changed from S- to J-shaped from 0.25 to 24 h. By means of the variable selection and modeling method based on the prediction (VSMP), the CRC-alterations of mixtures were positively contributed by [epyr]Cl but negatively contributed by [bpyr]Cl. Furthermore, a parameter was developed by the area of a triangular that combined acute inhibition (EC50,0.25h) and chronic stimulation (Zero-effect Point, i.e., ZEP24h and the minimum inhibition effect, i.e., Emin,24h). This parameter successfully evaluated the CRC-alterations in both individual and mixture effects over time, and indicated potential interactions in CRC-alteration in mixtures.
Collapse
Affiliation(s)
- Chaonan Liu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Gaotian Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Lingyun Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin 541004, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
17
|
Cohen ML, Mashanova EV, Jagannathan SV, Soto W. Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid ( Euprymna scolopes). MICROBIOLOGY-SGM 2020; 166:262-277. [PMID: 31967537 PMCID: PMC7376262 DOI: 10.1099/mic.0.000884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many microorganisms engaged in host-microbe interactions pendulate between a free-living phase and a host-affiliated stage. How adaptation to stress during the free-living phase affects host-microbe associations is unclear and understudied. To explore this topic, the symbiosis between Hawaiian bobtail squid (Euprymna scolopes) and the luminous bacterium Vibrio fischeri was leveraged for a microbial experimental evolution study. V. fischeri experienced adaptation to extreme pH while apart from the squid host. V. fischeri was serially passaged for 2000 generations to the lower and upper pH growth limits for this microorganism, which were pH 6.0 and 10.0, respectively. V. fischeri was also serially passaged for 2000 generations to vacillating pH 6.0 and 10.0. Evolution to pH stress both facilitated and impaired symbiosis. Microbial evolution to acid stress promoted squid colonization and increased bioluminescence for V. fischeri, while symbiont adaptation to alkaline stress diminished these two traits. Oscillatory selection to acid and alkaline stress also improved symbiosis for V. fischeri, but the facilitating effects were less than that provided by microbial adaptation to acid stress. In summary, microbial adaptation to harsh environments amid the free-living phase may impact the evolution of host-microbe interactions in ways that were not formerly considered.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Ekaterina Vadimovna Mashanova
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Sveta Vivian Jagannathan
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - William Soto
- College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
18
|
Castillo‐Gómez O, Ramírez‐Rivera VM, Canto‐Canché BB, Valdez‐Ojeda RA. Experimental design of a simple medium for the bioluminescence of Aliivibrio fischeriand mathematical modelling for growth estimation. LUMINESCENCE 2019; 34:859-869. [DOI: 10.1002/bio.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Odette Castillo‐Gómez
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán Mérida Mexico
| | | | | | - Ruby A. Valdez‐Ojeda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán Mérida Mexico
| |
Collapse
|
19
|
Sauers LA, Sadd BM. An interaction between host and microbe genotypes determines colonization success of a key bumble bee gut microbiota member. Evolution 2019; 73:2333-2342. [PMID: 31584186 DOI: 10.1111/evo.13853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
There has been a proliferation of studies demonstrating an organism's health is influenced by its microbiota. However, factors influencing beneficial microbe colonization and the evolution of these relationships remain understudied relative to host-pathogen interactions. Vertically transmitted beneficial microbes are predicted to show high levels of specificity in colonization, including genotype matching, which may transpire through coevolution. We investigate how host and bacterial genotypes influence colonization of a core coevolved microbiota member in bumble bees. The hindgut colonizing Snodgrassella alvi confers direct benefits, but, as an early colonizer, also facilitates the further development of a healthy microbiota. Due to predominantly vertical transmission promoting tight evolution between colonization factors of bacteria and host lineages, we predict that genotype-by-genotype interactions will determine successful colonization. Germ-free adult bees from seven bumble bee colonies (host genotypic units) were inoculated with one of six genetically distinct strains of S. alvi. Subsequent colonization within host and microbe genotypes combinations ranged from 0 to 100%, and an interaction between host and microbe genotypes determined colonization success. This novel finding of a genotype-by-genotype interaction determining colonization in an animal host-beneficial microbe system has implications for the ecological and evolutionary dynamics of host and microbe, including associated host-fitness benefits.
Collapse
Affiliation(s)
- Logan A Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61761
| |
Collapse
|
20
|
Cohen ML, Mashanova EV, Rosen NM, Soto W. Adaptation to temperature stress by Vibrio fischeri facilitates this microbe's symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Evolution 2019; 73:1885-1897. [PMID: 31397886 DOI: 10.1111/evo.13819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
For microorganisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free-living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri's ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free-living stage can promote coevolution between hosts and microorganisms.
Collapse
Affiliation(s)
- Meagan Leah Cohen
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, Virginia, 23185
| |
Collapse
|
21
|
Bouhlel Z, Arnold AA, Warschawski DE, Lemarchand K, Tremblay R, Marcotte I. Labelling strategy and membrane characterization of marine bacteria Vibrio splendidus by in vivo 2H NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:871-878. [DOI: 10.1016/j.bbamem.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 01/15/2023]
|
22
|
Girard L, Blanchet E, Stien D, Baudart J, Suzuki M, Lami R. Evidence of a Large Diversity of N-acyl-Homoserine Lactones in Symbiotic Vibrio fischeri Strains Associated with the Squid Euprymna scolopes. Microbes Environ 2019; 34:99-103. [PMID: 30760664 PMCID: PMC6440727 DOI: 10.1264/jsme2.me18145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio fischeri possesses a complex AHL-mediated Quorum-sensing (QS) system including two pathways, LuxI/R (3-oxo-C6-HSL and C6-HSL) and AinS/R (C8-HSL), which are important for the regulation of physiological traits. Diverse QS-dependent functional phenotypes have been described in V. fischeri; however, AHL diversity is still underestimated. In the present study, we investigated AHL diversity in five symbiotic V. fischeri strains with distinct phenotypic properties using UHPLC-HRMS/MS. The results obtained (1) revealed an unexpectedly high diversity of signaling molecules, (2) emphasized the complexity of QS in V. fischeri, and (3) highlight the importance of understanding the specificity of AHL-mediated QS.
Collapse
Affiliation(s)
- Léa Girard
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Elodie Blanchet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Didier Stien
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Julia Baudart
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Marcelino Suzuki
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| | - Raphaël Lami
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique
| |
Collapse
|
23
|
Soto W, Travisano M, Tolleson AR, Nishiguchi MK. Symbiont evolution during the free-living phase can improve host colonization. MICROBIOLOGY-SGM 2019; 165:174-187. [PMID: 30648935 PMCID: PMC7003651 DOI: 10.1099/mic.0.000756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain’s genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.
Collapse
Affiliation(s)
- William Soto
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | - Michael Travisano
- 2Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.,3BioTechnology Institute, University of Minnesota-Twin Cities, 140 Gortner Labs, 1479 Gortner Avenue, St Paul, MN 55108, USA
| | - Alexandra Rose Tolleson
- 1College of William & Mary, Department of Biology, Integrated Science Center Rm 3035, 540 Landrum Dr Williamsburg, VA 23185, USA
| | | |
Collapse
|
24
|
Deeb R, Tufford D, Scott GI, Moore JG, Dow K. Impact of Climate Change on Vibrio vulnificus Abundance and Exposure Risk. ESTUARIES AND COASTS : JOURNAL OF THE ESTUARINE RESEARCH FEDERATION 2018; 41:2289-2303. [PMID: 31263385 PMCID: PMC6602088 DOI: 10.1007/s12237-018-0424-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 05/09/2023]
Abstract
Vibrio species are marine bacteria that occur in estuaries worldwide; many are virulent human pathogens with high levels of antibiotic resistance. The average annual incidence of all Vibrio infections has increased by 41% between 1996 and 2005. V. vulnificus (Vv), a species associated with shellfish and occurring in the US Southeast, has ranges of temperature (16-33 °C) and salinity (5-20 ppt) dependencies for optimal growth. Increased water temperatures caused by atmospheric warming and increased salinity gradients caused by sea level rise raise concerns for the effect of climate change on the geographic range of Vv and the potential for increased exposure risk. This research combined monthly field sampling, laboratory analysis, and modeling to identify the current occurrence of Vv in the Winyah Bay estuary (South Carolina, USA) and assess the possible effects of climate change on future geographic range and exposure risk in the estuary. Vv concentrations ranged from 0 to 58 colony forming units (CFU)/mL, salinities ranged from 0 to 28 ppt, and temperature from 18 to 31 °C. A significant empirical relationship was found between Vv concentration and salinity and temperature that fit well with published optimal ranges for growth for these environmental parameters. These results, when coupled with an existing model of future specific conductance, indicated that sea level rise has a greater impact on exposure risk than temperature increases in the estuary. Risk increased by as much as four times compared to current conditions with the largest temporally widespread increase at the most upriver site where currently there is minimal risk.
Collapse
Affiliation(s)
- Reem Deeb
- School of Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Daniel Tufford
- Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Geoffrey I. Scott
- Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Janet Gooch Moore
- National Oceanic and Atmospheric Administration, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA
| | - Kirstin Dow
- Department of Geography, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
25
|
Genetic diversity and phenotypic plasticity of AHL-mediated Quorum sensing in environmental strains of Vibrio mediterranei. ISME JOURNAL 2018; 13:159-169. [PMID: 30116040 DOI: 10.1038/s41396-018-0260-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023]
Abstract
N-Acyl homoserine lactone (AHL)-mediated Quorum sensing (QS) is one of the most studied social behavior among Proteobacteria. However, despite the current knowledge on QS-associated phenotypes such as bioluminescence, biofilm formation, or pathogenesis, the characterization of environmental factors driving QS in realistic ecological settings remains scarce. We investigated the dynamics of AHL and AHL-producing Vibrio among 840 isolates collected fortnightly from the Salses-Leucate Mediterranean lagoon in spring and summer 2015 and 2016. Vibrio isolates were characterized by gyrB gene sequencing, Enterobacterial repetitive intergenic consensus polymerase chain reaction, and genome sequencing, and AHL production was investigated by a biosensors-based UHPLC-HRMS/MS approach. Our results revealed, for the first time, a succession of V. mediterranei isolates with different AHL production phenotypes over time and this dynamics was observed in a single genotype (average genomic nucleotide identity >99.9). A multivariate DistLM analysis revealed that 83.4% of the temporal variation of V. mediterranei QS phenotypes was explained by environmental variables. Overall, our results suggest that isolates of a single genotype are able to change their QS phenotypes in response to environmental conditions, highlighting the phenotypic plasticity of bacterial communication in the environment.
Collapse
|
26
|
Coryell RL, Turnham KE, de Jesus Ayson EG, Lavilla‐Pltogo C, Alcala AC, Sotto F, Gonzales B, Nishiguchi MK. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid -Vibrio mutualism. Ecol Evol 2018; 8:7421-7435. [PMID: 30151160 PMCID: PMC6106162 DOI: 10.1002/ece3.4266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/05/2022] Open
Abstract
Marine microbes encounter a myriad of biotic and abiotic factors that can impact fitness by limiting their range and capacity to move between habitats. This is especially true for environmentally transmitted bacteria that cycle between their hosts and the surrounding habitat. As geologic history, biogeography, and other factors such as water temperature, salinity, and physical barriers can inhibit bacterial movement to novel environments, we chose to examine the genetic architecture of Euprymna albatrossae (Mollusca: Cephalopoda) and their Vibrio fischeri symbionts in the Philippine archipelago using a combined phylogeographic approach. Eleven separate sites in the Philippine islands were examined using haplotype estimates that were examined via nested clade analysis to determine the relationship between E. albatrossae and V. fischeri populations and their geographic location. Identical analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for host and symbiont genetic data. Host animals demonstrated a significant amount of variation within island groups, while symbiont variation was found within individual populations. Nested clade phylogenetic analysis revealed that hosts and symbionts may have colonized this area at different times, with a sudden change in habitat. Additionally, host data indicate restricted gene flow, whereas symbionts show range expansion, followed by periodic restriction to genetic flow. These differences between host and symbiont networks indicate that factors "outside the squid" influence distribution of Philippine V. fischeri. Our results shed light on how geography and changing environmental factors can impact marine symbiotic associations at both local and global scales.
Collapse
Affiliation(s)
- Randy L. Coryell
- Department of BiologyNew Mexico State UniversityLas CrucesNew Mexico
| | - Kira E. Turnham
- Department of BiologyNew Mexico State UniversityLas CrucesNew Mexico
| | | | | | | | | | | | | |
Collapse
|
27
|
Yu Z, Zhang J, Hou M. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri. CHEMOSPHERE 2018; 199:122-129. [PMID: 29433025 DOI: 10.1016/j.chemosphere.2018.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F-, Cl-, Br- and I-) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K+, Mg2+ and Ca2+, whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl2 and CaCl2, and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl2 > MgCl2 > KCl. The changes of NADH/NADPH ratios over time in CaCl2, MgCl2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments.
Collapse
Affiliation(s)
- Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051 PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541004, PR China.
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|
28
|
Yu Z, Zhang J, Hou M. The time-dependent stimulation of sodium halide salts on redox reactants, energy supply and luminescence in Vibrio fischeri. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:429-435. [PMID: 28858708 DOI: 10.1016/j.jhazmat.2017.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The excess of halide ions (F-, Cl-, Br-, I-) can cause adverse effects. Earlier studies demonstrated time-dependent stimulations of organic salts with halide ions on photobacteria. Therefore, inorganic ones with halide ions (e.g., NaX, X=F-, Cl-, Br-, I-) were assumed to cause similar effects. In the present study, Vibrio fischeri was exposed to NaX. Results showed that the contents of favin mono-nucleotide (FMN), nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) were stimulated by NaX with a time-dependent fashion. The maximum stimulations on FMN at 24h were 172%, 168%, 211% and 298% of the control (p<0.05) in NaF, NaCl, NaBr and NaI, respectively, with an order of NaF≈NaCl<NaBr<NaI. The maximum stimulations on NAD(P)H at 24h followed similar orders. Similar time-dependent stimulatory effects were observed in the FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk. The luminescent stimulations were significantly higher than the biochemical ones despite of similar time-dependence and stimulation order among NaX. The overall results showed a common hormetic pattern in sodium halide salts.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Meifang Hou
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
29
|
Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. SENSORS 2017; 17:s17040906. [PMID: 28425948 PMCID: PMC5426830 DOI: 10.3390/s17040906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
Collapse
|
30
|
Enrofloxacin stimulates cell death in several tissues of vannamei shrimp (Litopenaeus vannamei). ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2384-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Zarkasi KZ, Taylor RS, Abell GCJ, Tamplin ML, Glencross BD, Bowman JP. Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet. MICROBIAL ECOLOGY 2016; 71:589-603. [PMID: 26780099 DOI: 10.1007/s00248-015-0728-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/29/2015] [Indexed: 05/11/2023]
Abstract
To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
Collapse
Affiliation(s)
- Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
- Tasmanian Institute of Agriculture, Food Safety Centre, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | - Mark L Tamplin
- Tasmanian Institute of Agriculture, Food Safety Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Brett D Glencross
- University of Stirling, Institute of Aquaculture, Stirling, Scotland, UK
| | - John P Bowman
- Tasmanian Institute of Agriculture, Food Safety Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
32
|
You KG, Bong CW, Lee CW. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:171. [PMID: 26884358 DOI: 10.1007/s10661-016-5163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.
Collapse
Affiliation(s)
- K G You
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - C W Bong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - C W Lee
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Diversity of Vibrio spp in Karstic Coastal Marshes in the Yucatan Peninsula. PLoS One 2015; 10:e0134953. [PMID: 26252792 PMCID: PMC4529161 DOI: 10.1371/journal.pone.0134953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Coastal bodies of water formed by the combination of seawater, underground rivers and rainwater comprise the systems with the greatest solar energy flow and biomass production on the planet. These characteristics make them reservoirs for a large number species, mainly microorganisms. Bacteria of the genus Vibrio are natural inhabitants of these environments and their presence is determined by variations in the nutrient, temperature and salinity cycles generated by the seasonal hydrologic behavior of these lagoon systems. This study determined the diversity of the genus Vibrio in 4 coastal bodies of water on the Yucatan Peninsula (Celestun Lagoon, Chelem Lagoon, Rosada Lagoon and Sabancuy Estuary). Using the molecular technique of 454 pyrosequencing, DNA extracted from water samples was analyzed and 32,807 reads were obtained belonging to over 20 culturable species of the genus Vibrio and related genera. OTU (operational taxonomic unit) richness and Chao2 and Shannon Weaver diversity indices were obtained with the database from this technique. Physicochemical and environmental parameters were determined and correlated with Vibrio diversity measured in OTUs.
Collapse
|
34
|
Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593. [PMID: 25538686 PMCID: PMC4260504 DOI: 10.3389/fmicb.2014.00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.
Collapse
Affiliation(s)
- William Soto
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast Lansing, MI, USA
| | | |
Collapse
|
35
|
Halmi MIE, Jirangon H, Johari WLW, Abdul Rachman AR, Shukor MY, Syed MA. Comparison of Microtox and Xenoassay light as a near real time river monitoring assay for heavy metals. ScientificWorldJournal 2014; 2014:834202. [PMID: 24977231 PMCID: PMC3995304 DOI: 10.1155/2014/834202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Luminescence-based assays for toxicants such as Microtox, ToxAlert, and Biotox have been used extensively worldwide. However, the use of these assays in near real time conditions is limited due to nonoptimal assay temperature for the tropical climate. An isolate that exhibits a high luminescence activity in a broad range of temperatures was successfully isolated from the mackerel, Rastrelliger kanagurta. This isolate was tentatively identified as Photobacterium sp. strain MIE, based on partial 16S rDNA molecular phylogeny. Optimum conditions that support high bioluminescence activity occurred between 24 and 30°C, with pH 5.5 to 7.5, 10 to 20 g/L of sodium chloride, 30 to 50 g/L of tryptone, and 4 g/L of glycerol as the carbon source. Assessment of near real time capability of this bacterial system, Xenoassay light to monitor heavy metals from a contaminated river running through the Juru River Basin shows near real time capability with assaying time of less than 30 minutes per samples. Samples returned to the lab were tested with a standard Microtox assay using Vibrio fishceri. Similar results were obtained to Xenoassay light that show temporal variation of copper concentration. Thus, this strain is suitable for near real time river monitoring of toxicants especially in the tropics.
Collapse
Affiliation(s)
- M. I. E. Halmi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - Hussain Jirangon
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - W. L. W. Johari
- Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
- Centre of Excellence for Environmental Forensics, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - A. R. Abdul Rachman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - M. Y. Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - M. A. Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| |
Collapse
|
36
|
Soto W, Rivera FM, Nishiguchi MK. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. MICROBIAL ECOLOGY 2014; 67:700-721. [PMID: 24402368 PMCID: PMC3965629 DOI: 10.1007/s00248-013-0356-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Vibrio fischeri isolated from Euprymna scolopes (Cephalopoda: Sepiolidae) was used to create 24 lines that were serially passaged through the non-native host Euprymna tasmanica for 500 generations. These derived lines were characterized for biofilm formation, swarming motility, carbon source utilization, and in vitro bioluminescence. Phenotypic assays were compared between "ES" (E. scolopes) and "ET" (E. tasmanica) V. fischeri wild isolates to determine if convergent evolution was apparent between E. tasmanica evolved lines and ET V. fischeri. Ecological diversification was observed in utilization of most carbon sources examined. Convergent evolution was evident in motility, biofilm formation, and select carbon sources displaying hyperpolymorphic usage in V. fischeri. Convergence in bioluminescence (a 2.5-fold increase in brightness) was collectively evident in the derived lines relative to the ancestor. However, dramatic changes in other properties--time points and cell densities of first light emission and maximal light output and emergence of a lag phase in growth curves of derived lines--suggest that increased light intensity per se was not the only important factor. Convergent evolution implies that gnotobiotic squid light organs subject colonizing V. fischeri to similar selection pressures. Adaptation to novel hosts appears to involve flexible microbial metabolism, establishment of biofilm and swarmer V. fischeri ecotypes, and complex changes in bioluminescence. Our data demonstrate that numerous alternate fitness optima or peaks are available to V. fischeri in host adaptive landscapes, where novel host squids serve as habitat islands. Thus, V. fischeri founder flushes occur during the initiation of light organ colonization that ultimately trigger founder effect diversification.
Collapse
Affiliation(s)
- William Soto
- University of Minnesota-Twin Cities, Department of Ecology, Evolution, & Behavior, 100 Ecology Building, 1987 Upper Buford Circle, Saint Paul, MN 55108, (612) 626-6200
| | - Ferdinand M. Rivera
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| | - Michele K. Nishiguchi
- New Mexico State University, Department of Biology, Box 30001, MSC 3AF, Las Cruces, NM 88003, (575) 646-3721 FAX (575) 646-5665
| |
Collapse
|
37
|
Materna AC, Friedman J, Bauer C, David C, Chen S, Huang IB, Gillens A, Clarke SA, Polz MF, Alm EJ. Shape and evolution of the fundamental niche in marine Vibrio. THE ISME JOURNAL 2012; 6:2168-77. [PMID: 22832347 PMCID: PMC3504960 DOI: 10.1038/ismej.2012.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 11/08/2022]
Abstract
Hutchinson's fundamental niche, defined by the physical and biological environments in which an organism can thrive in the absence of inter-species interactions, is an important theoretical concept in ecology. However, little is known about the overlap between the fundamental niche and the set of conditions species inhabit in nature, and about natural variation in fundamental niche shape and its change as species adapt to their environment. Here, we develop a custom-made dual gradient apparatus to map a cross-section of the fundamental niche for several marine bacterial species within the genus Vibrio based on their temperature and salinity tolerance, and compare tolerance limits to the environment where these species commonly occur. We interpret these niche shapes in light of a conceptual model comprising five basic niche shapes. We find that the fundamental niche encompasses a much wider set of conditions than those strains typically inhabit, especially for salinity. Moreover, though the conditions that strains typically inhabit agree well with the strains' temperature tolerance, they are negatively correlated with the strains' salinity tolerance. Such relationships can arise when the physiological response to different stressors is coupled, and we present evidence for such a coupling between temperature and salinity tolerance. Finally, comparison with well-documented ecological range in V. vulnificus suggests that biotic interactions limit the occurrence of this species at low-temperature-high-salinity conditions. Our findings highlight the complex interplay between the ecological, physiological and evolutionary determinants of niche morphology, and caution against making inferences based on a single ecological factor.
Collapse
Affiliation(s)
- Arne C Materna
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Friedman
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia Bauer
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Sara Chen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ivy B Huang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - April Gillens
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sean A Clarke
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric J Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
38
|
Predation response of Vibrio fischeri biofilms to bacterivorus protists. Appl Environ Microbiol 2012; 79:553-8. [PMID: 23144127 DOI: 10.1128/aem.02710-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment.
Collapse
|
39
|
Landis SH, Sundin J, Rosenqvist G, Roth O. Behavioral adjustments of a pipefish to bacterial Vibrio challenge. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1395-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 2012; 78:7249-57. [PMID: 22865080 DOI: 10.1128/aem.01296-12] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST.
Collapse
|
41
|
Flores-Miranda BM, Espinosa-Plascencia A, Gómez-Jiménez S, López-Zavala AA, González-Carrillo HH, Bermúdez-Almada MDC. Accumulation and Elimination of Enrofloxacin and Ciprofloxacin in Tissues of Shrimp Litopenaeus vannamei under Laboratory and Farm Conditions. ISRN PHARMACEUTICS 2012; 2012:374212. [PMID: 22779008 PMCID: PMC3384884 DOI: 10.5402/2012/374212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/19/2012] [Indexed: 11/23/2022]
Abstract
This study aimed to quantify the accumulation and elimination of Enrofloxacin (ENRO) and Ciprofloxacin (CIPRO) in cultivated Litopenaeus vannamei under controlled laboratory and farm conditions. Laboratory- and farm-raised shrimp were given feed supplemented with 200 mg/kg ENRO for 14 days, followed by a 16-day diet without antibiotics. The levels of ENRO and CIPRO were analyzed by High Performance Liquid Chromatography (HPLC). In the laboratory, ENRO concentrations in the muscle and hepatopancreas reached a maximum (Cmax) of 0.54 ± 0.26 μg/g and 3.52 ± 1.9 μg/g, respectively; Cmax values for CIPRO in the laboratory were 0.18 ± 0.13 μg/g (muscle) and 1.05 ± 0.20 μg/g (hepatopancreas). In farmed shrimp, Cmax values for ENRO were 0.36 ± 0.17 μg/g muscle and 1.60 ± 0.82 μg/g in the hepatopancreas; CIPRO Cmax values were 0.03 ± 0.02 μg/g (muscle) and 0.36 ± 0.08 μg/g (hepatopancreas). Two to fourteen days were necessary to eliminate both antibiotics from muscular tissue and four to more fourteen days for complete elimination of the antibiotics from the hepatopancreas. These results should be considered in terms of minimum concentrations necessary to inhibit Vibrio bacteria to determine whether the current use of this antibiotic is effective in controlling disease.
Collapse
Affiliation(s)
- Brisa Marisol Flores-Miranda
- Research Center for Food and Development AC, Coordination of Food Science, Carretera a la Victoria Km. 0.6, 83000 Hermosillo, SON, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 2012; 81:562-73. [PMID: 22486781 DOI: 10.1111/j.1574-6941.2012.01386.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | | | | | | | | |
Collapse
|
43
|
Soto W, Punke EB, Nishiguchi MK. Evolutionary perspectives in a mutualism of sepiolid squid and bioluminescent bacteria: combined usage of microbial experimental evolution and temporal population genetics. Evolution 2012; 66:1308-21. [PMID: 22519773 PMCID: PMC3561466 DOI: 10.1111/j.1558-5646.2011.01547.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.
Collapse
Affiliation(s)
- W. Soto
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| | - E. B. Punke
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| | - M. K. Nishiguchi
- Department of Biology, New Mexico State University, Las Cruces, NM 88003–8001
| |
Collapse
|
44
|
Chavez-Dozal A, Nishiguchi MK. Variation in biofilm formation among symbiotic and free-living strains of Vibrio fischeri. J Basic Microbiol 2011; 51:452-8. [PMID: 21656812 PMCID: PMC3815655 DOI: 10.1002/jobm.201000426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/01/2011] [Indexed: 12/24/2022]
Abstract
Persistence and survival under various environmental stresses has been attributed to the capacity of most bacteria to form biofilms. In aquatic environments, the symbiotic bacterium Vibrio fischeri survives variable abiotic conditions during its free-living stage that dictates its ability to colonize the squid host. In the present study, the influence of different abiotic factors such as salt concentration, temperature, static/dynamic conditions, and carbon source availability were tested to determine whether biofilm formation occurred in 26 symbiotic and free-living V. fischeri strains. Statistical analysis indicate that most strains examined were strong biofilm producers under salinity concentrations that ranged between 1-5%, mesophilic temperatures (25-30 °C) and static conditions. Moreover, free-living strains are generally better biofilm formers than the symbiotically competent ones. Geographical location (strain origin) also correlated with biofilm formation. These findings provide evidence that abiotic growth conditions are important for determining whether mutualistic V. fischeri have the capacity to produce complex biofilms, allowing for increased competency and specificity during symbiosis.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA
| | | |
Collapse
|
45
|
Abstract
The evolutionary history of leeches is employed as a general framework for understanding more than merely the systematics of this charismatic group of annelid worms, and serves as a basis for understanding blood-feeding related correlates ranging from the specifics of gut-associated bacterial symbionts to salivary anticoagulant peptides. A variety of medicinal leech families were examined for intraluminal crop bacterial symbionts. Species of Aeromonas and Bacteroidetes were characterized with DNA gyrase B and 16S rDNA. Bacteroidetes isolates were found to be much more phylogenetically diverse and suggested stronger evidence of phylogenetic correlation than the gammaproteobacteria. Patterns that look like co-speciation with limited taxon sampling do not in the full context of phylogeny. Bioactive compounds that are expressed as gene products, like those in leech salivary glands, have 'passed the test' of evolutionary selection. We produced and bioinformatically mined salivary gland EST libraries across medicinal leech lineages to experimentally and statistically evaluate whether evolutionary selection on peptides can identify structure-function activities of known therapeutically relevant bioactive compounds like antithrombin, hirudin and antistasin. The combined information content of a well corroborated leech phylogeny and broad taxonomic coverage of expressed proteins leads to a rich understanding of evolution and function in leech history.
Collapse
|
46
|
Zamborsky DJ, Nishiguchi MK. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: environment drives specificity among sympatric species. Appl Environ Microbiol 2011; 77:642-9. [PMID: 21075896 PMCID: PMC3020525 DOI: 10.1128/aem.02105-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022] Open
Abstract
Bobtail squid from the genera Sepiola and Rondeletiola (Cephalopoda: Sepiolidae) form mutualistic associations with luminous Gram-negative bacteria (Gammaproteobacteria: Vibrionaceae) from the genera Vibrio and Photobacterium. Symbiotic bacteria proliferate inside a bilobed light organ until they are actively expelled by the host into the surrounding environment on a diel basis. This event results in a dynamic symbiont population with the potential to establish the symbiosis with newly hatched sterile (axenic) juvenile sepiolids. In this study, we examined the genetic diversity found in populations of sympatric sepiolid squid species and their symbionts by the use of nested clade analysis with multiple gene analyses. Variation found in the distribution of different species of symbiotic bacteria suggests a strong influence of abiotic factors in the local environment, affecting bacterial distribution among sympatric populations of hosts. These abiotic factors include temperature differences incurred by a shallow thermocline, as well as a lack of strong coastal water movement accompanied by seasonal temperature changes in overlapping niches. Host populations are stable and do not appear to have a significant role in the formation of symbiont populations relative to their distribution across the Mediterranean Sea. Additionally, all squid species examined (Sepiola affinis, S. robusta, S. ligulata, S. intermedia, and Rondeletiola minor) are genetically distinct from one another regardless of location and demonstrate very little intraspecific variation within species. These findings suggest that physical boundaries and distance in relation to population size, and not host specificity, are important factors in limiting or defining gene flow within sympatric marine squids and their associated bacterial symbionts in the Mediterranean Sea.
Collapse
Affiliation(s)
- D. J. Zamborsky
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| | - M. K. Nishiguchi
- Department of Biology, MSC 3AF, New Mexico State University, P.O. Box 30001, Las Cruces, New Mexico 88003-8001
| |
Collapse
|
47
|
Guerrero-Ferreira RC, Nishiguchi MK. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:514-523. [PMID: 20680094 PMCID: PMC2911791 DOI: 10.1111/j.1758-2229.2009.00077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Luminescent bacteria (gamma-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria-squid associations.
Collapse
|
48
|
Ariyakumar DS, Nishiguchi MK. Characterization of two host-specific genes, mannose-sensitive hemagglutinin (mshA) and uridyl phosphate dehydrogenase (UDPDH) that are involved in the Vibrio fischeri-Euprymna tasmanica mutualism. FEMS Microbiol Lett 2009; 299:65-73. [PMID: 19686342 PMCID: PMC2888660 DOI: 10.1111/j.1574-6968.2009.01732.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
While much has been known about the mutualistic associations between the sepiolid squid Euprymna tasmanica and the luminescent bacterium, Vibrio fischeri, less is known about the connectivity between the microscopic and molecular basis of initial attachment and persistence in the light organ. Here, we examine the possible effects of two symbiotic genes on specificity and biofilm formation of V. fischeri in squid light organs. Uridine diphosphate glucose-6-dehydrogenase (UDPDH) and mannose-sensitive hemagglutinin (mshA) mutants were generated in V. fischeri to determine whether each gene has an effect on host colonization, specificity, and biofilm formation. Both squid light organ colonization assays and transmission electron microscopy confirmed differences in host colonization between wild-type and mutant strains, and also demonstrated the importance of both UDPDH and mshA gene expression for successful light organ colonization. This furthers our understanding of the genetic factors playing important roles in this environmentally transmitted symbiosis.
Collapse
|