1
|
MacGregor H, Fukai I, Ash K, Arkin AP, Hazen TC. Potential applications of microbial genomics in nuclear non-proliferation. Front Microbiol 2024; 15:1410820. [PMID: 39360321 PMCID: PMC11445143 DOI: 10.3389/fmicb.2024.1410820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
As nuclear technology evolves in response to increased demand for diversification and decarbonization of the energy sector, new and innovative approaches are needed to effectively identify and deter the proliferation of nuclear arms, while ensuring safe development of global nuclear energy resources. Preventing the use of nuclear material and technology for unsanctioned development of nuclear weapons has been a long-standing challenge for the International Atomic Energy Agency and signatories of the Treaty on the Non-Proliferation of Nuclear Weapons. Environmental swipe sampling has proven to be an effective technique for characterizing clandestine proliferation activities within and around known locations of nuclear facilities and sites. However, limited tools and techniques exist for detecting nuclear proliferation in unknown locations beyond the boundaries of declared nuclear fuel cycle facilities, representing a critical gap in non-proliferation safeguards. Microbiomes, defined as "characteristic communities of microorganisms" found in specific habitats with distinct physical and chemical properties, can provide valuable information about the conditions and activities occurring in the surrounding environment. Microorganisms are known to inhabit radionuclide-contaminated sites, spent nuclear fuel storage pools, and cooling systems of water-cooled nuclear reactors, where they can cause radionuclide migration and corrosion of critical structures. Microbial transformation of radionuclides is a well-established process that has been documented in numerous field and laboratory studies. These studies helped to identify key bacterial taxa and microbially-mediated processes that directly and indirectly control the transformation, mobility, and fate of radionuclides in the environment. Expanding on this work, other studies have used microbial genomics integrated with machine learning models to successfully monitor and predict the occurrence of heavy metals, radionuclides, and other process wastes in the environment, indicating the potential role of nuclear activities in shaping microbial community structure and function. Results of this previous body of work suggest fundamental geochemical-microbial interactions occurring at nuclear fuel cycle facilities could give rise to microbiomes that are characteristic of nuclear activities. These microbiomes could provide valuable information for monitoring nuclear fuel cycle facilities, planning environmental sampling campaigns, and developing biosensor technology for the detection of undisclosed fuel cycle activities and proliferation concerns.
Collapse
Affiliation(s)
| | - Isis Fukai
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - Adam Paul Arkin
- University of California, Berkeley, Berkeley, CA, United States
| | - Terry C. Hazen
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
2
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
3
|
Sanyal SK, Etschmann B, Hore SB, Shuster J, Brugger J. Microbial adaptations and biogeochemical cycling of uranium in polymetallic tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133334. [PMID: 38154188 DOI: 10.1016/j.jhazmat.2023.133334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Microorganisms inhabiting uranium (U)-rich environments have specific physiological and biochemical coping mechanisms to deal with U toxicity, and thereby play a crucial role in the U biogeochemical cycling as well as associated heavy metals. We investigated the diversity and functional capabilities of indigenous bacterial communities inhabiting historic U- and Rare-Earth-Elements-rich polymetallic tailings from the Mount Painter Inlier, Northern Flinders Ranges, South Australia. Bacterial diversity profiling identified Actinobacteria as the predominant phylum in all samples. GeoChip analyses revealed the presence of diverse functional genes associated with biogenic element cycling, metal homeostasis/resistance, stress response, and secondary metabolism. The high abundance of metal-resistance and stress-tolerance genes indicates the adaptation of bacterial communities to the "harsh" environmental (metal-rich and semi-arid) conditions of the Northern Flinders Ranges. Additionally, a viable bacterial consortium was enriched from polymetallic tailings. Laboratory experiments demonstrated that the consortium scrubbed uranyl from solution by precipitating a uranyl phosphate biomineral (chernikovite), thus contributing to U biogeochemical cycling. These specialised microbial communities reflect the high specificity of the mineralogy/geochemistry, and biogeography of these U-rich settings. This study provides the fundamental knowledge to develop future applications in securing long-term stability of polymetallic mine waste, and for reprocessing this "waste" to further extract critical minerals.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia
| | - Stephen B Hore
- Geological Survey of South Australia, Adelaide, South Australia 5001, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800 Australia.
| |
Collapse
|
4
|
Chakraborty S, Ghosh S, Banerjee S, Kumar S, Bhattacharyya P. Elucidating the synergistic effect of acidity and metalloid poisoning on the microbiome through metagenomics and machine learning approaches. ENVIRONMENTAL RESEARCH 2024; 243:117885. [PMID: 38072100 DOI: 10.1016/j.envres.2023.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
The abundance and diversity of the microflora in a complex environment such as soil is everchanging. Mica mining has led to metalloid poisoning and changes in soil biogeochemistry affecting the overall produce and leading to toxic dietary exposure. The study focuses on two prominent stressors acidity and arsenic, in mining-contaminated agricultural locations. Soil samples were collected from agricultural fields at a distance of 50 m (zone 1) and 500 m (zone 2) from active mines. Mean arsenic concentration was higher in zone 1 and pH was lower. Geostatistical and self-organizing maps were employed to report that the pattern of localization of soil acidity and arsenic content is similar indicating a causal relationship. Cluster and principal component analysis were further used to materialize a negative effect of soil acidity fractions and arsenic labile pool on soil enzymatic activity (fluorescein diacetate, dehydrogenase, β-1,4-glucosidase, phosphatase, and urease), respiration and Microbial biomass carbon. Soil metagenomic analysis revealed significant differences in the abundance of microbial populations with zone 1 (contaminated zone) having lower alpha and beta diversity. Finally, the efficacy of several machine-learning tools was tested using Taylor diagrams and an effort was made to select a potent algorithm to predict the causal stressors responsible for depreciating soil microbial health. Random Forrest had superior predictive power based on numerical evidence and was therefore chosen as the best-fitted model. The aforementioned insights into soil microbial health and sustenance in stressed conditions can be beneficial for predicting remedial strategies and practicing sustainable agriculture.
Collapse
Affiliation(s)
- Shreya Chakraborty
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Sonali Banerjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Sumit Kumar
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
| |
Collapse
|
5
|
Newman-Portela AM, Krawczyk-Bärsch E, Lopez-Fernandez M, Bok F, Kassahun A, Drobot B, Steudtner R, Stumpf T, Raff J, Merroun ML. Biostimulation of indigenous microbes for uranium bioremediation in former U mine water: multidisciplinary approach assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7227-7245. [PMID: 38157180 PMCID: PMC10821841 DOI: 10.1007/s11356-023-31530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO42-) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO42-: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.01 mg/L; SO42-: 0.5 mg/L). U and SO42- seemed to influence the microbial diversity of the two water samples. Microbial diversity analysis identified U(VI)-reducing bacteria (e.g. Desulfurivibrio) and wood-degrading fungi (e.g. Cadophora) providing as electron donors for the growth of U-reducers. U-bioreduction experiments were performed to screen electron donors (glycerol, vanillic acid, and gluconic acid) for Schlema-Alberoda U-mine water bioremediation purpose. Thermodynamic speciation calculations show that under experimental conditions, U(VI) is not coordinated to the amended electron donors. Glycerol was the best-studied electron donor as it effectively removed 99% of soluble U, 95% of Fe, and 58% of SO42- from the mine water, probably by biostimulation of indigenous microbes. Vanillic acid removed 90% of U, and no U removal occurred using gluconic acid.
Collapse
Affiliation(s)
- Antonio M Newman-Portela
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Evelyn Krawczyk-Bärsch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Margarita Lopez-Fernandez
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Kassahun
- WISMUT GmbH, Jagdschänkenstraße 29, 09117, Chemnitz, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| |
Collapse
|
6
|
Pavić D, Grbin D, Blagajac A, Ćurko J, Fiket Ž, Bielen A. Impact of nutrients and trace elements on freshwater microbial communities in Croatia: identifying bacterial bioindicator taxa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82601-82612. [PMID: 37328727 DOI: 10.1007/s11356-023-28179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Since aquatic microbial communities promptly respond to environmental changes, it is now evident that they can complement traditional taxa such as fish, macroinvertebrates and algae as bioindicators of water quality. The aim of this study was to correlate the physico-chemical parameters of water with the microbial community structure and the occurrence of putative bioindicator taxa. Thirty-five water samples were collected throughout Croatia and their physico-chemical parameters, including the concentration of trace elements using the high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and the composition of the microbial communities by high-throughput sequencing of the 16S rRNA marker gene, were analysed in parallel. Partial least squares regression (PLS-R) modelling revealed that a number of microbial taxa were positively correlated with some of the water parameters. For example, some taxa from the phylum Proteobacteria were positively correlated with the ion content of the water (e.g. Erythrobacter, Rhodobacteraceae, Alteromonadaceae), while some Firmicutes taxa, such as the well-known faecal indicators Enterococcus and Clostridium, were correlated with nutrient content (ammonium and total phosphorus). Among the trace elements, uranium was positively correlated with a highest number of microbial taxa. The results obtained will aid in development of protocols for eDNA-based biological assessment of water quality.
Collapse
Affiliation(s)
- Dora Pavić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dorotea Grbin
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Amalija Blagajac
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Josip Ćurko
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Željka Fiket
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
7
|
Meng H, Wang S, Zhang J, Wang X, Qiu C, Hong J. Effects of coal-derived compound fertilizers on soil bacterial community structure in coal mining subsidence areas. Front Microbiol 2023; 14:1187572. [PMID: 37275171 PMCID: PMC10233127 DOI: 10.3389/fmicb.2023.1187572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
The land damaged by coal mining can be recovered to healthy condition through various reclamation methods. Fertilization is one of the effective methods to improve soil fertility and microbial activity. However, the effects of coal-derived compound fertilizers (SH) on bacterial communities in coal mining subsidence areas still remain unclear. Here, we studied the effects on the nutrient characteristics and bacterial communities in fertilizer-reclaimed soil (CK, without fertilizer; CF, common compound fertilizers; SH, coal-derived compound fertilizers) in coal mining subsidence areas and we applied SH with four different nitrogen application rates (90, 135, 180, and 225 kg/hm2). The results showed that the application of SH significantly increased the contents of available nitrogen (AN), available phosphorus (AP), available potassium (AK), total phosphorus (TP) and soil organic matter (SOM) compared with CK, as well as the bacterial richness (Chao1) and diversity (Shannon) in reclaimed soil that increased first and then decreased with the increase of nitrogen application. Under the same nitrogen application rate (135 kg/hm2), the nutrient content, Chao1 and Shannon of SH2 treatments were higher than those of CF treatment. Meanwhile, SH increased the relative abundance of Proteobacteria, Actinobacteria and Gemmatimonadetes. LEfSe analysis indicated that the taxa of Acidobacteria and Actinobacteria were significantly improved under SH treatments. Canonical correspondence analysis (CCA) and Variance partitioning analysis (VPA) showed that SOM was the most important factor affecting the change of bacterial community structure in reclaimed soil. In conclusion, application of SH can not only increase nutrient content and bacterial diversity of reclaimed soil, but also improve bacterial community structure by increasing bacterial abundance.
Collapse
Affiliation(s)
- Huisheng Meng
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuaibing Wang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiangying Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chen Qiu
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianping Hong
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
8
|
Feng G, Yong J, Liu Q, Chen H, Mao P. Response of soil microbial communities to natural radionuclides along specific-activity gradients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114156. [PMID: 36209527 DOI: 10.1016/j.ecoenv.2022.114156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Understanding the response of soil microbial community to abnormal natural radionuclides is important to maintain soil ecological function, but the underlying mechanism of tolerance and survival of microbes is poorly studied. The effects of natural radionuclides on the topsoil microbial communities in anomalous natural radiation area were investigated in this work, and it was found that microbial community composition was significantly influenced by the specific-activities of natural radionuclides. The results revealed that relative abundances of 10 major microbial phyla and genera displayed different patterns along specific-activity gradients, including decreasing, increasing, hump-shaped, U-shaped, and similar sinusoidal or cosine wave trends, which indicated that the natural radionuclides were the predominant driver for change of microbial community structure. At the phylum and genus level, microbial communities were divided into two special groups according to the tolerance to natural radionuclides, such as 238U and 232Th, including tolerant and sensitive groups. Taken together, our findings suggest that the high specific-activities of natural radionuclides can obviously drive changes in microbial communities, providing a possibility for future studies on the microbial tolerance genes and bioremediation strains.
Collapse
Affiliation(s)
- Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| | - Jinlong Yong
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| | - Qian Liu
- School of Statistics and Data Science, Xinjiang University of Finance & Economics, Urumqi, Xinjiang 830012, PR China.
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| |
Collapse
|
9
|
Zhu Y, Sheng Y, Liu Y, Chen J, He X, Wang W, Hu B. Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118591. [PMID: 34863888 DOI: 10.1016/j.envpol.2021.118591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO2. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe-U bacteria, can co-precipitate U and Fe to form stable Fe-U solids. Column experiments running for 4 months demonstrated the production of U(IV)-O-Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe-U bacteria. The reoxidation experiments revealed the U(IV)-O-Fe(II) precipitates were more stable than UO2. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO4 chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Collapse
Affiliation(s)
- Yuling Zhu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Yating Sheng
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Yuxin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Jiemin Chen
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Xiaoyun He
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Wenzhong Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| |
Collapse
|
10
|
Kavehei A, Gore DB, Chariton AA, Hose GC. Characterizing the spatial distributions of soil biota at a legacy base metal mine using environmental DNA. CHEMOSPHERE 2022; 286:131899. [PMID: 34426292 DOI: 10.1016/j.chemosphere.2021.131899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 05/20/2023]
Abstract
Characterizing the distribution of biota in response to contaminants is a critical element of site risk assessments. In this study we investigated the spatial distributions of biota and soil chemistry data in surface soil from Sunny Corner, a legacy base metal sulfide mine, Australia. Our results showed that copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) in the surface soil exceeded Australian national soil quality guidelines and posed risks to the environment. Environmental (e)DNA metabarcoding of prokaryote and eukaryote composition confirmed the suggestion of environmental risk posed by these elements collectively explaining 72.9 % and 60.5 % of the total variation in the composition of soil prokaryotes and eukaryotes, respectively. Prokaryotic taxa from the phyla Gemmatimonadetes, Verrucomicrobia and Deinococcus-Thermus showed similar spatial patterns to As and Pb, and were positively correlated. Eukaryotic taxa from the phylum Chlorophyta had similar positive correlations with As and Pb in the soil. In contrast, Amoebozoa and Cercozoa, were sensitive to metals and metalloids, having higher relative abundances in soils with lower concentrations of contaminants. Our study shows that metabarcoding is a promising ecological approach for rapid, large scale assessment of contaminated and potentially impacted sites.
Collapse
Affiliation(s)
- Armin Kavehei
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, 2109, Australia.
| | - Damian B Gore
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, 2109, Australia
| | - Anthony A Chariton
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
11
|
Lu Z, Su H. Employing gene chip technology for monitoring and assessing soil heavy metal pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:2. [PMID: 34862584 DOI: 10.1007/s10661-021-09650-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Soil heavy metals pollution can cause many serious environment problems because of involving a very complex pollution process for soil health. Therefore, it is very important to explore methods that can effectively evaluate heavy metal pollution. Researchers were actively looking for new ideas and new methods for evaluating and predicting levels of soil heavy metal pollution. The study on microbial communities is one of the effective methods using gene chip technology. Gene chip technology, as a high-throughput metagenomics analysis technique, has been widely used for studying the structure and function of complex microbial communities in different polluted environments from different pollutants, including the soil polluted by heavy metals. However, there is still a lack of a systematic summarization for the polluted soil by heavy metals. This paper systematically analyzed soil heavy metals pollution via reviewing previous studies on applying gene chip technology, including single species, tolerance mechanisms, enrichment mechanisms, anticipation and evaluation of soil remediation, and multi-directional analysis. The latest gene chip technologies and corresponding application cases for discovering critical species and functional genes via analyzing microbial communities and evaluating heavy metal pollution of soil were also introduced in this paper. This article can provide scientific guidance for researchers actively investigating the soil polluted by heavy metals.
Collapse
Affiliation(s)
- ZiChun Lu
- College of Hehai, Chongqing University of Technology, Chongqing, 400717, China
| | - HaiFeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Xi'an, Shanxi, 710075, China.
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| |
Collapse
|
12
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
13
|
Effects of Seven-Year Fertilization Reclamation on Bacterial Community in a Coal Mining Subsidence Area in Shanxi, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312504. [PMID: 34886231 PMCID: PMC8656652 DOI: 10.3390/ijerph182312504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
The restoration of soil fertility and microbial communities is the key to the soil reclamation and ecological reconstruction in coal mine subsidence areas. However, the response of soil bacterial communities to reclamation is still not well understood. Here, we studied the bacterial communities in fertilizer-reclaimed soil (CK, without fertilizer; CF, chemical fertilizer; M, manure) in the Lu’an reclamation mining region and compared them with those in adjacent subsidence soil (SU) and farmland soil (FA). We found that the compositions of dominant phyla in the reclaimed soil differed greatly from those in the subsidence soil and farmland soil (p < 0.05). The related sequences of Acidobacteria, Chloroflexi, and Nitrospirae were mainly from the subsided soil, whereas those of Alphaproteobacteria, Planctomycetes, and Deltaproteobacteria were mainly derived from the farmland soil. Fertilization affected the bacterial community composition in the reclaimed soil, and bacteria richness and diversity increased significantly with the accumulation of soil nutrients after 7 years of reclamation (p < 0.05). Moreover, soil properties, especially SOM and pH, were found to play a key role in the restoration of the bacterial community in the reclaimed soil. The results are helpful to the study of soil fertility improvement and ecological restoration in mining areas.
Collapse
|
14
|
Shar S, Reith F, Ball AS, Shahsavari E. Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. MICROBIAL ECOLOGY 2021; 81:977-989. [PMID: 33404821 DOI: 10.1007/s00248-020-01663-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The effects of platinum (Pt) and gold (Au) and on the soil bacterial community was evaluated in four different Australian soil types (acidic Burn Grounds (BGR), organic matter-rich Fox Lane, high silt/metal Pinpinio (PPN), and alkali Minnipa (MNP) spiked with either Pt or Au at 1, 25, and 100 mg kg-1 using a next-generation sequencing approach (amplicon-based, MiSeq). Soil type and metal concentrations were observed to be key drivers of Pt and Au effects on soil microbial community structure. Different trends were therefore observed in the response of the bacterial community to Pt and Au amendments; however in each soil type, Pt and Au amendment caused a detectable shift in community structure that in most samples was positively correlated with increasing metal concentrations. New dominant groups were only observed in BGR and PPN soils at 100 mg kg-1 (Kazan-3B-28 and Verrucomicrobia groups (BGR, Pt) and Firmicutes and Caldithrix groups (PPN, Pt) and WS2 (BGR, Au). The effects of Pt on soil microbial diversity were largely adverse at 100 mg kg-1 and were pronounced in acidic, basic, and metal/silt-rich soils. However, this effect was concentration-related; Au appeared to be more toxic to soil bacterial communities than Pt at 25 mg kg-1 but Pt was more toxic at 100 mg kg-1. More bacterial groups such as those belonging to Burkholderiales/Burkholderiaceae, Alicyclobacillaceae, Rubrobacteraceae, Cytophagaceae, Oxalobacteraceae were selectively enriched by Pt compared to Au (Sphingomonadaceae and Rhodospirillaceae) amendments irrespective of soil type. The research outcomes have important implications in the management (remediation) of Pt- and Au-contaminated environments.
Collapse
Affiliation(s)
- Sahar Shar
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia
- Deanship of Scientific Research King Saud University, Riyadh, 11451, Saudi Arabia
| | - Frank Reith
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia, 5064, Australia
| | - Andrew S Ball
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Esmaeil Shahsavari
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
15
|
Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, Merroun ML. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol 2021; 14:810-828. [PMID: 33615734 PMCID: PMC8085914 DOI: 10.1111/1751-7915.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.
Collapse
Affiliation(s)
- Margarita Lopez‐Fernandez
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Institute of Resource EcologyHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| | - Miguel A. Ruiz‐Fresneda
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Departamento de Cristalografía y Biología EstructuralCentro Superior de Investigaciones Científicas (CSIC)Instituto de Química‐Física Rocasolano (IQFR)Calle Serrano 119Madrid28006Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| |
Collapse
|
16
|
Wu S, You F, Hall M, Huang L. Native plant Maireana brevifolia drives prokaryotic microbial community development in alkaline Fe ore tailings under semi-arid climatic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144019. [PMID: 33341617 DOI: 10.1016/j.scitotenv.2020.144019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Native pioneer plants of high environmental tolerance may be exploited as early colonisers in alkaline Fe-ore tailings to drive the development of functional prokaryotic microbial communities, which is one of the critical pedogenic processes leading to in situ soil formation in the tailings. The present study deployed high throughput Illumina Miseq sequencing, to characterise the diversity and potential functionality of prokaryotic microbial communities in the aged Fe-ore tailings and topsoils colonised by native plant species Maireana brevifolia at an Fe ore mine in Western Australia, in comparison with those in the tailings/topsoils without plants. The composition of prokaryotic microbial communities differed between the aged tailings (AT) and topsoil sites (TS). Aged tailings (AT1-AT3) contained more bacteria tolerant of alkaline/saline conditions (e.g., Alkalilimnicola sp.) and those related to Fe biogeochemical cycling (e.g., Acidiferrobacter sp., Aciditerrimonas sp.). In comparison, the prokaryotic microbial communities in the topsoil (TS) contained abundant bacteria related to N cycling (e.g., Rhizobium sp., Frankia sp.). The presence of M. brevifolia plants significantly increased the diversity of prokaryotic microbial communities in tailings and topsoil, particularly favouring the development of bacteria related to N cycling and OM degradations (e.g., Mesorhizobium sp. Paracoccus sp., Oxalicibacterium horti, and Microbacterium sp.). The variation of microbial community were mainly explained by pH, amorphous Fe, and total N, which were regulated by M. brevifolia colonisation. The beneficial roles of pioneer plants M. brevifolia in the development of prokaryotic microbial community in the alkaline Fe ore tailings may be integrated as a key factor when designing and scaling up the process of eco-engineering Fe-ore tailings into soil under semi-arid climatic conditions.
Collapse
Affiliation(s)
- Songlin Wu
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Merinda Hall
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
17
|
Kang X, Cui Y, Shen T, Yan M, Tu W, Shoaib M, Xiang Q, Zhao K, Gu Y, Chen Q, Li S, Liang Y, Ma M, Zou L, Yu X. Changes of root microbial populations of natively grown plants during natural attenuation of V-Ti magnetite tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110816. [PMID: 32521370 DOI: 10.1016/j.ecoenv.2020.110816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 05/28/2023]
Abstract
Mine tailings contain dangerously high levels of toxic metals which pose a constant threat to local ecosystems. Few naturally grown native plants can colonize tailings site and the existence of their root-associated microbial populations is poorly understood. The objective of this study was to give further insights into the interactions between native plants and their microbiota during natural attenuation of abandoned V-Ti magnetite mine tailings. In the present work, we first examined the native plants' potential for phytoremediation using plant/soil analytical methods and then investigated the root microbial communities and their inferred functions using 16 S rRNA-based metagenomics. It was found that in V-Ti magnetite mine tailings the two dominant plants Bothriochloa ischaemum and Typha angustifolia were able to increase available nitrogen in the rhizosphere soil by 23.3% and 53.7% respectively. The translocation factors (TF) for both plants indicated that B. ischaemum was able to accumulate Pb (TF = 1.212), while T. angustifolia was an accumulator of Mn (TF = 2.502). The microbial community structure was more complex in the soil associated with T. angustifolia than with B. ischaemum. The presence of both plants significantly reduced the population of Acinetobacter. Specifically, B. ischaemum enriched Massilia, Opitutus and Hydrogenophaga species while T. angustifolia significantly increased rhizobia species. Multivariate analyses revealed that among all tested soil variables Fe and total organic carbon (TOC) could be the key factors in shaping the microbial structure. The putative functional analysis indicated that soil sample of B. ischaemum was abundant with nitrate/nitrite reduction-related functions while that of T. angustifolia was rich in nitrogen fixing functions. The results indicate that these native plants host a diverse range of soil microbes, whose community structure can be shaped by plant types and soil variables. It is also possible that these plants can be used to improve soil nitrogen content and serve as bioaccumulators for Pb or Mn for phytoremediation purposes.
Collapse
Affiliation(s)
- Xia Kang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, 610015, China
| | - Tian Shen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiguo Tu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Shoaib
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Cao Y, Zhou B, Wang X, Meng H, Zhang J, Li L, Hong J. Different fertilization treatments in coal mining-affected soils change bacterial populations and enable soil reclamation. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01589-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Coal mining activities result in large-scale soil degradation and ecosystem imbalances in many countries. Fertilization is an effective way to improve soil fertility and microbial activity. However, the effect of different fertilizers and remediation time on the subsided soil is not clear. The aim of this study is to explore the effects on soil fertility and the bacterial community.
Methods
In this study, we compared three fertilization regimes (inorganic, organic, and combined) applied over a 5-year period for the purpose of rehabilitating subsoil through measurement of soil’s chemical properties and microbial biomass. Bacterial diversity was evaluated in different reclaimed soils via high-throughput 16S rDNA sequencing; 1,938,561 total sequences were obtained.
Results
The results showed that fertilization improved various soil properties, including the concentrations of available phosphorus, available potassium, and alkali-hydrolysable nitrogen, therefore, increasing microbial biomass. A significant increase in soil microbial diversity was observed in fertilized soils compared to the initial conditions. A positive correlation between microbial diversity and soil properties was observed. Regarding an improvement in soil properties and crop yields, the organic fertilizer demonstrated significantly more effectiveness compared to the inorganic fertilizer. Meanwhile, the relative abundance of Proteobacteria, Bacteroidetes, and Verrucomicrobia increased, but the relative abundance of Chloroflexi and Nitrospirae decreased. More specifically, we found that several Proteobacteria subgroups, such as Rhizobiales, Myxococcales, Sphingomonadales, Rhodospirillales, Xanthomonadales, and Burkholderiales, increased after the restoration. Additionally, the composition of the bacterial community in the 5-year groups (M5, O5, and MO5) was similar to the composition of the FS group, and the yield of the maize test crop following the 5-year restoration period was close to the average in China.
Conclusion
This result indicates that soil reclamation via fertilization can contribute to soil recovery over time. Therefore, we concluded that fertilization is an effective strategy for the restoration of soil properties and bacterial communities in mining soil.
Collapse
|
19
|
Sharma PK, Sharma V, Sharma S, Bhatia G, Singh K, Sharma R. Comparative metatranscriptome analysis revealed broad response of microbial communities in two soil types, agriculture versus organic soil. J Genet Eng Biotechnol 2019; 17:6. [PMID: 31659568 PMCID: PMC6821142 DOI: 10.1186/s43141-019-0006-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Studying expression of genes by direct sequencing and analysis of metatranscriptomes at a particular time and space can disclose structural and functional insights about microbial communities. The present study reports comparative analysis of metatranscriptome from two distinct soil ecosystems referred as M1 (agriculture soil) and O1 (organic soil). RESULTS Analysis of sequencing reads revealed Proteobacteria as major dominant phyla in both soil types. The order of the top 3 abundant phyla in M1 sample was Proteobacteria > Ascomycota > Firmicutes, whereas in sample O1, the order was Proteobacteria > Cyanobacteria > Actinobacteria. Analysis of differentially expressed genes demonstrated high expression of transcripts related to copper-binding proteins, proteins involved in electron carrier activity, DNA integration, endonuclease activity, MFS transportation, and other uncharacterized proteins in M1 compared to O1. Of the particular interests, several transcripts related to nitrification, ammonification, stress response, and alternate carbon fixation pathways were highly expressed in M1. In-depth analysis of the sequencing data revealed that transcripts of archaeal origin had high expression in M1 compared to O1 indicating the active role of Archaea in metal- and pesticide-contaminated environment. In addition, transcripts encoding 4-hydroxyphenylpyruvate dioxygenase, glyoxalase/bleomycin resistance protein/dioxygenase, metapyrocatechase, and ring hydroxylating dioxygenases of aromatic hydrocarbon degradation pathways had high expression in M1. Altogether, this study provided important insights about the transcripts and pathways upregulating in the presence of pesticides and herbicides. CONCLUSION Altogether, this study claims a high expression of microbial transcripts in two ecosystems with a wide range of functions. It further provided clue about several molecular markers which could be a strong indicator of metal and pesticide contamination in soils. Interestingly, our study revealed that Archaea are playing a significant role in nitrification process as compared to bacteria in metal- and pesticide-contaminated soil. In particular, high expression of transcripts related to aromatic hydrocarbon degradation in M1 soil indicates their important role in biodegradation of pollutants, and therefore, further investigation is needed.
Collapse
Affiliation(s)
| | - Vinay Sharma
- Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407 India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Miyapur, Hyderabad, Telangana 500 049 India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Rohit Sharma
- Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407 India
| |
Collapse
|
20
|
Xiao S, Zhang Q, Chen X, Dong F, Chen H, Liu M, Ali I. Speciation Distribution of Heavy Metals in Uranium Mining Impacted Soils and Impact on Bacterial Community Revealed by High-Throughput Sequencing. Front Microbiol 2019; 10:1867. [PMID: 31456781 PMCID: PMC6700481 DOI: 10.3389/fmicb.2019.01867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated the influence of heavy metals on bacterial community structure in a uranium mine. Soils from three differently polluted ditches (Yangchang ditch, Zhongchang ditch, and Sulimutang ditche) were collected from Zoige County, Sichuan province, China. Soil physicochemical properties and heavy metal concentrations were measured. Differences between bacterial communities were investigated using the high-throughput sequencing of the 16S rRNA genes. The obtained results demonstrated that bacterial richness index (Chao and Ace) were similar among three ditches, while the highest bacterial diversity index was detected in the severely contaminated soils. The compositions of bacterial communities varied among three examined sites, but Proteobacteria and Acidobacteria were abundant in all samples. Redundancy analysis revealed that soil organic matter, Cr and pH were the three major factors altering the bacterial community structure. Pearson correlation analysis indicated that the most significant correlations were observed between the contents of non-residual Cr and the abundances of bacterial genera, including Thiobacillus, Nitrospira, and other 10 genera. Among them, the abundances of Sphingomonas and Pseudomonas were significant and positively correlated with the concentrations of non-residual U and As. The results highlighted the factors influencing the bacterial community in uranium mines and contributed a better understanding of the effects of heavy metals on bacterial community structure by considering the fraction of heavy metals.
Collapse
Affiliation(s)
- Shiqi Xiao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
| | - Qian Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoming Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China.,State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Faqin Dong
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Imran Ali
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
21
|
Saccà ML, Ferrero VEV, Loos R, Di Lenola M, Tavazzi S, Grenni P, Ademollo N, Patrolecco L, Huggett J, Caracciolo AB, Lettieri T. Chemical mixtures and fluorescence in situ hybridization analysis of natural microbial community in the Tiber river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:7-19. [PMID: 30981201 PMCID: PMC6509555 DOI: 10.1016/j.scitotenv.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The Water Framework Directive (WFD) regulates freshwater and coastal water quality assessment in Europe. Chemical and ecological water quality status is based on measurements of chemical pollutants in water and biota together with other indicators such as temperature, nutrients, species compositions (phytoplankton, microalgae, benthos and fish) and hydromorphological conditions. However, in the current strategy a link between the chemical and the ecological status is missing. In the present WFD, no microbiological indicators are foreseen for integrating the different anthropogenic pressures, including mixtures of chemicals, nutrients and temperature changes, to provide a holistic view of the freshwater ecosystem water quality. The main aim of this work was to evaluate if natural microbial populations can be valuable indicators of multiple stressors (e.g. chemical pollutants, temperature, nutrients etc.) to guide preventive and remediation actions by water authorities. A preliminary survey was conducted to identify four sites reflecting a contamination gradient from the source to the mouth of a river suitable to the objectives of the European Marie Curie project, MicroCoKit. The River Tiber (Italy) was selected as a pilot case study to investigate the correlation between bacteria taxa and the chemical status of the river. The main physicochemical parameters, inorganic elements, organic pollutants and natural microbial community composition were assessed at four selected sites corresponding to pristine, agricultural, industrial and urban areas for three consecutive years. The overall chemical results indicated a correspondence between different groups of contaminants and the main contamination sources at the selected sampling points. Phylogenetic analysis of the microbial community analyzed by Fluorescence In Situ Hybridization method (FISH) revealed differences among the four sampling sites which could reflect an adaptive bacterial response to the different anthropogenic pressures.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | | | - Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Martina Di Lenola
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Paola Grenni
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Nicoletta Ademollo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Luisa Patrolecco
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Jim Huggett
- Molecular and Cell Biology team, LGC, Queens Road, Teddington, Middlesex TW11 0LY, United Kingdom; School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Anna Barra Caracciolo
- National Research Council, Water Research Institute, Via Salaria km 29,300, 00015 9 Monterotondo, Rome, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
22
|
Bodhaguru M, Santhiyagu P, Lakshmanan M, Ramasamy R, Kumari AN, Ethiraj K, Arunachalam P, Grasian I. In vitro biomedicinal properties of Pyrrolidine-2,4-Dione derived from a novel actinobacterium Streptomyces rochei, a green approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: Insights for bioremediation. Genomics 2019; 112:981-989. [PMID: 31220587 DOI: 10.1016/j.ygeno.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/15/2019] [Indexed: 11/23/2022]
Abstract
Phosphogypsum (PG) is an acidic by-product from the phosphate fertilizer industry and it is characterized by a low nutrient availability and the presence of radionuclides and heavy metals which pose a serious problem in its management. Here, we have applied Illumina MiSeq sequencing technology and five bioinformatics pipelines to explore the phylogenetic communities in Tunisian PG. Taking One Codex as a reference method, we present the results of 16S-rDNA-gene-based metataxonomics abundances with four other alternative bioinformatics pipelines (MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST), mothur, MICrobial Community Analysis (MICCA) and Quantitative Insights into Microbial Ecology (QIIME)), when analyzing the Tunisian PG. Importantly, based on 16S rDNA datasets, the functional capabilities of microbial communities of PG were deciphered. They suggested the presence of PG autochthonous bacteria valorizable into (1) removal of radioactive elements and toxic heavy metals, (2) promotion of plant growth, (3) oxidation and (4) reduction of sulfate. These bacteria can be explored further for applications in the bioremediation of by-products, like PG, by different processes.
Collapse
|
24
|
Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China. SUSTAINABILITY 2019. [DOI: 10.3390/su11082295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soil microbes are the main driving forces and influencing factors of biochemical reactions in the environment. Study of ecological recovery after mining activities has prompted wider recognition of the importance of microbial diversity to ecosystem recovery; however, the response of soil bacterial communities to vegetation restoration types and soil biochemical properties remains poorly understood. The purpose of this research was to explore the soil bacterial communities and soil biochemical properties at four sampling sites (brushland (BL), forestland (FL), grassland (GL) and unreclaimed land (UL)) on the Loess Plateau, China, to evaluate the effect of vegetation restoration on the reconstructed soil in mining areas. In August 2017, samples were collected at the Heidaigou coal mine dumps. Illumina MiSeq sequencing was used to identify the structure of the soil bacterial community and evaluate its relationships with soil biochemical properties. The results showed that soil biochemical properties (soil organic matter, available phosphorus, urease, sucrase, microbial biomass carbon and microbial biomass nitrogen) were significantly increased in BL, FL and GL relative to UL, indicating that the soil quality was significantly improved by vegetation restoration. In addition, the results showed that the vegetation restoration on the reconstructed soil in the mining area could significantly improve the operational taxonomic units (OTUs), abundance (ACE and Chao1) and diversity (Shannon and Simpson) indices of bacterial community and the dominant phyla were Proteobacteria, Actinobacteria and Acidobacteria. With vegetation restoration, the relative abundance of Proteobacteria and Acidobacteria showed an increasing trend, while that of Actinobacteria showed a decreasing trend, and the dominant phyla were only significantly correlated with a few biochemical properties. Moreover, there were no changes in soil bacterial community structures across the four sampling sites and the response of the bacterial community to biochemical properties was not obvious. This implies that, although the region has experienced about 20 years of vegetation restoration, the microbial community still maintains good stability and lagging response to soil biochemical properties. Since the BL soil had better biochemical properties and higher bacterial richness and diversity, it was recommended as the optimum vegetation restoration type for soil reclamation in this area.
Collapse
|
25
|
Li Y, Zheng L, Zhang Y, Liu H, Jing H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci Rep 2019; 9:5739. [PMID: 30952929 PMCID: PMC6450915 DOI: 10.1038/s41598-019-42260-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023] Open
Abstract
Mangrove forests are widespread along the subtropical and tropical coasts. They provide a habitat for a wide variety of plants, animals and microorganisms, and act as a buffer zone between the ocean and land. Along with other coastal environments, mangrove ecosystems are under increasing pressure from human activities, such as excessive input of nutrients and toxic pollutants. Despite efforts to understand the diversity of microbes in mangrove sediments, their metabolic capability in pristine and contaminated mangrove sediments remains largely unknown. By using metagenomic approach, we investigated the metabolic capacity of microorganisms in contaminated (CMS) and pristine (PMS) mangrove sediments at subtropical and tropical coastal sites. When comparing the CMS with PMS, we found that the former had a reduced diazotroph abundance and nitrogen fixing capability, but an enhanced metabolism that is related to the generation of microbial greenhouse gases via increased methanogenesis and sulfate reduction. In addition, a high concentration of heavy metals (mainly Zn, Cd, and Pb) and abundance of metal/antibiotic resistance encoding genes were found in CMS. Together, these data provide evidence that contamination in mangrove sediment can markedly change microbial community and metabolism; however, no significant differences in gene distribution were found between the subtropical and tropical mangrove sediments. In summary, contamination in mangrove sediments might weaken the microbial metabolisms that enable the mangrove ecosystems to act as a buffer zone for terrestrial nutrients deposition, and induce bioremediation processes accompanied with an increase in greenhouse gas emission.
Collapse
Affiliation(s)
- Yingdong Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Liping Zheng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
26
|
Gao P, Sun X, Xiao E, Xu Z, Li B, Sun W. Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9585-9598. [PMID: 30726542 DOI: 10.1007/s11356-019-04336-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Acid mine discharge (AMD) has been demonstrated to have significant impacts on microbial community composition in the surrounding soil environment. However, their effect on adjacent soil has not been extensively studied. In this study, microbial community composition of 20 AMD-contaminated soil samples collected from an abandoned coal mine along an AMD creek was characterized using high-throughput sequencing. All samples were characterized as extremely low in pH (< 3) and relatively enriched in HCl-extractable Fe species. The dominant phylotypes were belonging to genera Ochrobactrum, Acidiphilium, Staphylococcus, Brevibacterium, and Corynebacterium. Canonical correspondence analysis results revealed that the HCl-extractable Fe(III) had a strong impact on the soil microbial assemblage. Co-occurrence network analysis revealed that Aquicella, Acidobacteriaceae, Ochrobactrum, Enhydrobacter, Sphingomonas, and Legionellales were actively correlated with other taxa. As expected, most of the abundant taxa have been reported as acidophilic Fe-metabolizing bacteria. Hence, a co-occurring sub-network and a phylogenetic tree related to microbial taxa responsible for Fe metabolism were constructed and described. The biotic interaction showed that Dechloromonas exhibited densely connections with Fe(III)-reducing bacteria of Comamonas, Burkholderia, Shewanella, Stenotrophomonas, Acidithiobacillus, and Pseudomonas. These results demonstrated that Fe-metabolizing bacteria could have an important role in the Fe biogeochemical cycling.
Collapse
Affiliation(s)
- Pin Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Enzong Xiao
- Innovation Center and Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhixian Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
| |
Collapse
|
27
|
Winkler D, Bidló A, Bolodár-Varga B, Erdő Á, Horváth A. Long-term ecological effects of the red mud disaster in Hungary: Regeneration of red mud flooded areas in a contaminated industrial region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1292-1303. [PMID: 30743842 DOI: 10.1016/j.scitotenv.2018.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/09/2023]
Abstract
As one of the most severe ecological disasters ever to take place in Europe, the 2010 red mud accident has left behind long-term environmental impact, prompting the need for monitoring of soil biodiversity. Red mud (wet storage solution) can be regarded as a complex mixture of contaminants due to its extreme alkalinity and the presence of potentially toxic trace elements. After-effect investigations on soil properties and soil microarthropods were carried out in three distinct habitat types (agricultural land, grassland, woodland) in the red mud affected area. Soils in the red mud affected area were moderately to strongly alkaline (pH 7.5 to 8.5). Total content of trace metals Cd, Ni, Cr exceeded threshold concentrations for soil. Acari and Collembola were by far the most abundant taxa, while important groups like Pauropoda, Protura and Symphyla were completely absent from the samples of red mud affected plots. These observations were also reflected by the low values of the soil biological quality (QBS-ar) index. Independently of habitat types, total collembolan abundance tended to be lower in the contaminated area when compared with nearby control samples. Typical species distribution of Collembola communities in the contaminated area generally included one or two very common and abundant species and more, relatively rare species of low abundance. In the red mud affected open habitats, a distinct eudominance of Brachystomella parvula and Parisotoma notabilis was observed; whereas in contaminated woodland Parisotoma notabilis formed the bulk of the community with Sphaeridia pumilis, Folsomia manolachei and F. quadrioculata being subdominant. Species sensitive to alkalinity and red mud components (e.g. Hypogastrura vernalis, Lepidocyrtus tomosvaryi) were completely absent or were present only in limited numbers in the contaminated samples.
Collapse
Affiliation(s)
- Daniel Winkler
- Institute of Wildlife Management and Vertebrate Zoology, University of Sopron, Hungary.
| | - Andras Bidló
- Institute of Environmental and Earth Sciences, University of Sopron, Hungary
| | | | - Ádám Erdő
- Institute of Wildlife Management and Vertebrate Zoology, University of Sopron, Hungary
| | - Adrienn Horváth
- Institute of Environmental and Earth Sciences, University of Sopron, Hungary
| |
Collapse
|
28
|
Hemmat-Jou MH, Safari-Sinegani AA, Mirzaie-Asl A, Tahmourespour A. Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1281-1291. [PMID: 30242595 DOI: 10.1007/s10646-018-1981-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Soil pollution occurring at mining sites has adverse impacts on soil microbial diversity. New approaches, such as metagenomics approach, have become a powerful tool to investigate biodiversity of soil microbial communities. In the current study, metagenomics approach was used to investigate the microbial diversity of soils contaminated with different concentrations of lead (Pb) and zinc (Zn). The contaminated soils were collected from a Pb and Zn mine. The soil total DNA was extracted and 16S rDNA genes were amplified using universal primers. The PCR amplicons were sequenced and bioinformatic analysis of metagenomes was conducted to identify prokaryotic diversity in the Pb- and Zn-contaminated soils. The results indicated that the ten most abundant bacteria in all samples were Solirubrobacter (Actinobacteria), Geobacter (Proteobacteria), Edaphobacter (Acidobacteria), Pseudomonas (Proteobacteria), Gemmatiomonas (Gemmatimonadetes), Nitrosomonas, Xanthobacter, and Sphingomonas (Proteobacteria), Pedobacter (Bacterioidetes), and Ktedonobacter (Chloroflexi), descendingly. Archaea were also numerous, and Nitrososphaerales which are important in the nitrogen cycle had the highest abundance in the samples. Although, alpha and beta diversity showed negative effects of Pb and Zn contamination on soil microbial communities, microbial diversity of the contaminated soils was not subjected to a significant change. This study provided valuable insights into microbial composition in heavy metals-contaminated soils.
Collapse
Affiliation(s)
- M H Hemmat-Jou
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - A A Safari-Sinegani
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - A Mirzaie-Asl
- Department of Biotechnology, College of Agriculture, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - A Tahmourespour
- Department of Basic Medical Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
29
|
Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci Rep 2018; 8:14281. [PMID: 30250138 PMCID: PMC6155181 DOI: 10.1038/s41598-018-32688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Organic and inorganic xenobiotic compounds can affect the potential ecological function of the soil, altering its biodiversity. Therefore, the response of microbial communities to environmental pollution is a critical issue in soil ecology. Here, a high-throughput sequencing approach was used to investigate the indigenous bacterial and fungal community structure as well as the impact of pollutants on their diversity and richness in contaminated and noncontaminated soils of a National Interest Priority Site of Campania Region (Italy) called "Terra dei Fuochi". The microbial populations shifted in the polluted soils via their mechanism of adaptation to contamination, establishing a new balance among prokaryotic and eukaryotic populations. Statistical analyses showed that the indigenous microbial communities were most strongly affected by contamination rather than by site of origin. Overabundant taxa and Actinobacteria were identified as sensitive biomarkers for assessing soil pollution and could provide general information on the health of the environment. This study has important implications for microbial ecology in contaminated environments, increasing our knowledge of the capacity of natural ecosystems to develop microbiota adapted to polluted soil in sites with high agricultural potential and providing a possible approach for modeling pollution indicators for bioremediation purposes.
Collapse
|
30
|
The Golden Activity of Lysinibacillus sphaericus: New Insights on Gold Accumulation and Possible Nanoparticles Biosynthesis. MATERIALS 2018; 11:ma11091587. [PMID: 30200519 PMCID: PMC6163967 DOI: 10.3390/ma11091587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/02/2022]
Abstract
Power struggles surrounding the increasing economic development of gold mining give rise to severe environmental and social problems. Two new strains of Lysinibacillus sphaericus were isolated from an area of active alluvial gold mining exploitation at El Bagre, Antioquia. The absorption capacity of these strains and some of the L. sphaericus Microbiological Research Center (CIMIC) collection (CBAM5, OT4b.31, III(3)7) were evaluated by spectrophotometry according to a calibration gold curve of HAuCl4− with concentrations between 0 µg/mL and 100 µg/mL. Bioassays with living biomass were carried out with an initial gold concentration of 60 µg/mL. Their sorption capacity was evident, reaching percentages of gold removal between 25% and 85% in the first 2 h and 75% to 95% after 48 h. Biosynthesis of possible gold nanoparticles (AuNPs) in assays with living biomass was also observed. Metal sorption was evaluated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) analysis. The sorption and fabrication capacity exhibited by the evaluated strains of L. sphaericus converts this microorganism into a potential alternative for biomining processes, especially those related to gold extraction.
Collapse
|
31
|
Mumtaz S, Streten C, Parry DL, McGuinness KA, Lu P, Gibb KS. Soil uranium concentration at Ranger Uranium Mine Land Application Areas drives changes in the bacterial community. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:14-23. [PMID: 29549875 DOI: 10.1016/j.jenvrad.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms may respond to metal stress by a shift in the microbial community from metal sensitive to metal resistant microorganisms. We assessed the bacterial community from low (2-20 mg kg-1), medium (200-400 mg kg-1), high (500-900 mg kg-1) and very high (>900 mg kg-1) uranium soils at Ranger Uranium Mine in northern Australia through pyrosequencing. Proteobacteria (28.85%) was the most abundant phylum at these sites, followed by Actinobacteria (9.31%), Acidobacteria (7.33%), Verrucomicrobia (2.11%), Firmicutes (2.02%), Chloroflexi (1.11%), Cyanobacteria (0.93%), Planctomycetes (0.82%), Bacteroidetes (0.46%) and Candidate_division_WS3 (Latescibacteria) (0.21%). However, 46.79% of bacteria were unclassified. Bacteria at low U soils differed from soils with elevated uranium. Bacterial OTUs closely related to Kitasatospora spp., Sphingobacteria spp. and Rhodobium spp. were only present at higher uranium concentrations and the bacterial community also changed with seasonal and temporal changes in soil uranium and physicochemical variables. This study using next generation sequencing in association with environmental variables at a uranium mine has laid a foundation for further studies of soil-microbe-metal interactions which may be useful for developing sustainable management and rehabilitation strategies. Furthermore, bacterial species associated with higher uranium may serve as useful indicators of uranium contamination in the wet-dry tropics.
Collapse
Affiliation(s)
- Saqib Mumtaz
- Charles Darwin University, Darwin, NT, Australia.
| | | | - David L Parry
- Charles Darwin University, Darwin, NT, Australia; Australian Institute of Marine Science, Darwin, NT, Australia
| | | | - Ping Lu
- Charles Darwin University, Darwin, NT, Australia; Energy Resources of Australia, Darwin, NT, Australia
| | - Karen S Gibb
- Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
32
|
Luo Y, Wu Y, Wang H, Xing R, Zheng Z, Qiu J, Yang L. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 29541981 DOI: 10.1007/s11356-018-1573-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.
Collapse
Affiliation(s)
- Youfa Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Institute of Applied Ecology, Guizhou University, Guiyang, 550025, China.
| | - Hu Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhilin Zheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jing Qiu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Lian Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
33
|
Rezadehbashi M, Baldwin SA. Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens. Microorganisms 2018; 6:microorganisms6010016. [PMID: 29473875 PMCID: PMC5874630 DOI: 10.3390/microorganisms6010016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/25/2022] Open
Abstract
Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.
Collapse
Affiliation(s)
- Maryam Rezadehbashi
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Susan A Baldwin
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Papadopoulou ES, Genitsaris S, Omirou M, Perruchon C, Stamatopoulou A, Ioannides I, Karpouzas DG. Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:16-25. [PMID: 29049942 DOI: 10.1016/j.envpol.2017.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
The application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg-1). The effect of aging on bioaugmentation efficacy was comparatively tested in a soil with similar physicochemical properties and soil microbiota, which was artificially, contaminated with the same TBZ levels (ACS). The impact of bioaugmentation and TBZ on the bacterial diversity in the NCS was explored via amplicon sequencing. Bioaugmentation effectively removed TBZ from both soils at levels up to 400 mg kg-1 but failed at the highest contamination level (12000 mg kg-1). Dissipation of TBZ in bioaugmented samples showed a concentration-dependent pattern, while aging of TBZ had a slight effect on bioaugmentation efficiency. Bioaugmentation had no impact on the soil bacterial diversity, in contrast to TBZ contamination. Soils from the hotspots of TBZ contamination (12000 mg kg-1) showed a drastically lower α-diversity driven by the dominance of β- and γ-proteobacteria at the expense of all other bacterial phyla, especially Actinobacteria. Overall, bioaugmentation with specialized microbial inocula could be an effective solution for the recovery of disposal sites contaminated with persistent chemicals like TBZ.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Lab of Plant and Environmental Biotechnology, 41500 Larissa, Greece
| | - Savvas Genitsaris
- University of Thessaly, Department of Biochemistry and Biotechnology, Lab of Plant and Environmental Biotechnology, 41500 Larissa, Greece
| | | | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Lab of Plant and Environmental Biotechnology, 41500 Larissa, Greece
| | - Anastasia Stamatopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Lab of Plant and Environmental Biotechnology, 41500 Larissa, Greece
| | | | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Lab of Plant and Environmental Biotechnology, 41500 Larissa, Greece.
| |
Collapse
|
35
|
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 2018; 102:1869-1887. [DOI: 10.1007/s00253-017-8712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
36
|
Behera P, Mahapatra S, Mohapatra M, Kim JY, Adhya TK, Raina V, Suar M, Pattnaik AK, Rastogi G. Salinity and macrophyte drive the biogeography of the sedimentary bacterial communities in a brackish water tropical coastal lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:472-485. [PMID: 28395262 DOI: 10.1016/j.scitotenv.2017.03.271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Brackish water coastal lagoons are least understood with respect to the seasonal and temporal variability in their sedimentary bacterial communities. These coastal lagoons are characterized by the steep environmental gradient and provide an excellent model system to decipher the biotic and abiotic factors that determine the bacterial community structure over time and space. Using Illumina sequencing of the 16S rRNA genes from a total of 100 bulk surface sediments, we investigated the sedimentary bacterial communities, their spatiotemporal distribution, and compared them with the rhizosphere sediment communities of a common reed; Phragmites karka and a native seagrass species; Halodule uninervis in Chilika Lagoon. Spatiotemporal patterns in bacterial communities were linked to specific biotic factors (e.g., presence and type of macrophyte) and abiotic factors (e.g., salinity) that drove the community composition. Comparative assessment of communities highlighted bacterial lineages that were responsible for segregating the sediment communities over distinct salinity regimes, seasons, locations, and presence and type of macrophytes. Several bacterial taxa were specific to one of these ecological factors suggesting that species-sorting processes drive specific biogeographical patterns in the bacterial populations. Modeling of proteobacterial lineages against salinity gradient revealed that α- and γ-Proteobacteria increased with salinity, whereas β-Proteobacteria displayed the opposite trend. The wide variety of biogeochemical functions performed by the rhizosphere microbiota of P. karka must be taken into consideration while formulating the management and conservation plan for this reed. Overall, this study provides a comprehensive understanding of the spatiotemporal dynamics and functionality of sedimentary bacterial communities and highlighted the role of biotic and abiotic factors in generating the biogeographical patterns in the bacterial communities of a tropical brackish water coastal lagoon.
Collapse
Affiliation(s)
- Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Barkul, Balugaon, 752030, Odisha, India
| | - Sofia Mahapatra
- Wetland Research and Training Centre, Chilika Development Authority, Barkul, Balugaon, 752030, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Barkul, Balugaon, 752030, Odisha, India
| | - Ji Yoon Kim
- Department of Integrated Biological Science, Pusan National University, Geumjeong-gu, 46241 Busan, South Korea
| | - Tapan K Adhya
- School of Biotechnology, KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Patia, Bhubaneswar, 751024, Odisha, India
| | - Ajit K Pattnaik
- Wetland Research and Training Centre, Chilika Development Authority, Barkul, Balugaon, 752030, Odisha, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Barkul, Balugaon, 752030, Odisha, India.
| |
Collapse
|
37
|
Sutcliffe B, Chariton AA, Harford AJ, Hose GC, Greenfield P, Elbourne LDH, Oytam Y, Stephenson S, Midgley DJ, Paulsen IT. Effects of uranium concentration on microbial community structure and functional potential. Environ Microbiol 2017. [DOI: 10.1111/1462-2920.13839] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Brodie Sutcliffe
- Macquarie UniversitySydney New South Wales, 2109 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | | | - Andrew J. Harford
- Supervising Scientist Branch, Department of the Environment and EnergyDarwin Northern Territory Australia
| | - Grant C. Hose
- Macquarie UniversitySydney New South Wales, 2109 Australia
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | | | - Yalchin Oytam
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - David J. Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - Ian T. Paulsen
- Macquarie UniversitySydney New South Wales, 2109 Australia
| |
Collapse
|
38
|
Theodorakopoulos N, Février L, Barakat M, Ortet P, Christen R, Piette L, Levchuk S, Beaugelin-Seiller K, Sergeant C, Berthomieu C, Chapon V. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination. FEMS Microbiol Ecol 2017. [DOI: 10.1093/femsec/fix079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
39
|
Sánchez-Castro I, Amador-García A, Moreno-Romero C, López-Fernández M, Phrommavanh V, Nos J, Descostes M, Merroun ML. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 166:130-141. [PMID: 27068793 DOI: 10.1016/j.jenvrad.2016.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain.
| | - Ahinara Amador-García
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | - Cristina Moreno-Romero
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Jeremy Nos
- R&D Department, AREVA Mines, La Défense, 92084, Paris, France
| | | | - Mohamed L Merroun
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
40
|
Sitte J, Löffler S, Burkhardt EM, Goldfarb KC, Büchel G, Hazen TC, Küsel K. Metals other than uranium affected microbial community composition in a historical uranium-mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19326-19341. [PMID: 26122566 DOI: 10.1007/s11356-015-4791-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.
Collapse
Affiliation(s)
- Jana Sitte
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, D-07743, Jena, Germany
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sylvia Löffler
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, D-07743, Jena, Germany
- Institute of Earth Science, Friedrich Schiller University, D-07749, Jena, Germany
| | - Eva-Maria Burkhardt
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Katherine C Goldfarb
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Georg Büchel
- Institute of Earth Science, Friedrich Schiller University, D-07749, Jena, Germany
| | - Terry C Hazen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Civil and Environmental Engineering Department, Earth and Planetary Sciences, Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
- Biological Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37831, USA
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, D-07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| |
Collapse
|
41
|
Kaur G, Sharma R, Singh K, Sharma PK. Delineating bacterial community structure of polluted soil samples collected from cancer prone belt of Punjab, India. 3 Biotech 2015; 5:727-734. [PMID: 28324527 PMCID: PMC4569629 DOI: 10.1007/s13205-014-0270-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/13/2014] [Indexed: 11/01/2022] Open
Abstract
16S rRNA gene analysis has emerged as one of the valuable tools that are being utilized in investigating the molecular phylogenetic structure of the particular environment. Here, we embarked upon understanding and delineating the molecular phylogeny structure of microbes in polluted soil samples from cancer prone belt of the Punjab, India, which is highly contaminated with herbicide, pesticide and heavy metals. To investigate the bacterial phylogeny structure, a high-molecular weight metagenomic DNA was extracted from the soil samples, followed by PCR amplification, cloning and analysis of the 16S rRNA genes. Study employing 16S rRNA profiling of the community DNA revealed the presence of two major phylums: the Proteobacteria (26.7 %), the Bacteroidetes (11.2 %), and several minor groups, i.e., Acidobacteria (4.2 %), Actinobacteria (4.2 %), Firmicutes (2.8 %), Verrucomicrobia (2.8 %), Gemmatimonadetes (1.4 %) and Chloroflexi (1.4 %). Among the Proteobacteria, we mainly observed the α-Proteobacteria (18.3 %). Nearly, 38 % of the recovered 16S rRNA gene sequences in this study do not share similarity with known culturable bacterial sequences reported in the genebank data base and hence considered to be novel. More interestingly, 16S rRNA gene sequences of archaeal origin (7.0 %) were also recovered that primarily indicate change in their evolution pattern. A phylogenetic tree constructed based on alignment-dependent method revealed the extent of similarity these clones shared with each other, followed by alignment-independent methods that statistically confirmed the sequence variation among the clones. Despite the high level of contamination in the study area, we observed remarkable microbial diversity that mainly includes the Gram-negative bacteria. The presence of more Gram-negative bacteria indicates that they have evolved a robust mechanism to resist and cope up with these pollutants compared to Gram-positive groups. Investigation of the polluted soil samples employing culture-independent approach revealed important bacterial groups which could be engineered for future bioremediation studies.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Pushpender K Sharma
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Pb, India.
| |
Collapse
|
42
|
Subha B, Song YC, Woo JH. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing. MARINE POLLUTION BULLETIN 2015; 98:235-246. [PMID: 26139459 DOI: 10.1016/j.marpolbul.2015.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity.
Collapse
Affiliation(s)
- Bakthavachallam Subha
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Young Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea.
| | - Jung Hui Woo
- Nuclear Power Equipment Research Center, Korea Maritime and Ocean University, Busan, South Korea
| |
Collapse
|
43
|
|
44
|
Changes in the composition and diversity of bacterial communities 13 years after soil reclamation of abandoned mine land in eastern China. Ecol Res 2014. [DOI: 10.1007/s11284-014-1230-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS One 2014; 9:e115024. [PMID: 25502754 PMCID: PMC4263735 DOI: 10.1371/journal.pone.0115024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022] Open
Abstract
The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.
Collapse
|
46
|
Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CAM, Zhou J, He Z, Wen C, Röling WFM. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
Gupta AK, Rastogi G, Nayduch D, Sawant SS, Bhonde RR, Shouche YS. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:345-354. [PMID: 24805263 DOI: 10.1111/mve.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
Flesh flies of the genus Sarcophaga (Diptera: Sarcophagidae) are carrion-breeding, necrophagous insects important in medical and veterinary entomology as potential transmitters of pathogens to humans and animals. Our aim was to analyse the diversity of gut-associated bacteria in wild-caught larvae and adult flesh flies using culture-dependent and culture-independent methods. Analysis of 16S rRNA gene sequences from cultured isolates and clone libraries revealed bacteria affiliated to Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes in the guts of larval and adult flesh flies. Bacteria cultured from larval and adult flesh fly guts belonged to the genera Acinetobacter, Bacillus, Budvicia, Citrobacter, Dermacoccus, Enterococcus, Ignatzschineria, Lysinibacillus, Myroides, Pasteurella, Proteus, Providencia and Staphylococcus. Phylogenetic analysis showed clone sequences of the genera Aeromonas, Bacillus, Bradyrhizobium, Citrobacter, Clostridium, Corynebacterium, Ignatzschineria, Klebsiella, Pantoea, Propionibacterium, Proteus, Providencia, Serratia, Sporosarcina, Weissella and Wohlfahrtiimonas. Species of clinically significant genera such as Ignatzschineria and Wohlfahrtiimonas spp. were detected in both larvae and adult flesh flies. Sequence analysis of 16S rRNA gene libraries supported culture-based results and revealed the presence of additional bacterial taxa. This study determined the diversity of gut microbiota in flesh flies, which will bolster the ability to assess microbiological risk associated with the presence of these flies. The present data thereby establish a platform for a much larger study.
Collapse
Affiliation(s)
- A K Gupta
- Molecular Biology Unit, National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
48
|
Preliminary comparison of quantification efficiency between DNA-derived dataset and cell-derived dataset of mixed diatom sample based on rDNA-ITS sequence analysis. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Abstract
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.
Collapse
|
50
|
Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|