1
|
Ye J, Wang Y, Li Q, Hussain S, Chen S, Zhou X, Hou S, Feng Y. Phagocytosis in Marine Coccolithophore Gephyrocapsa huxleyi: Comparison between Calcified and Non-Calcified Strains. BIOLOGY 2024; 13:310. [PMID: 38785792 PMCID: PMC11117637 DOI: 10.3390/biology13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear. In this study, we conducted a series of phagocytosis experiments of calcified diploid and non-calcified haploid strains of coccolithophore Gephyrocapsa huxleyi under light and dark conditions. The phagocytosis capability of each strain was examined based on characteristic fluorescent signals from ingested beads using flow cytometry and fluorescence microscopy. The results show a significantly higher phagocytosis percentage on fluorescent beads in the bacterial prey surrogates of the non-calcified haploid Gephyrocapsa huxleyi strain, than the calcified diploid strain with or without light. In addition, the non-calcified diploid cells seemingly to presented a much higher phagocytosis percentage in darkness than under light. The differential phagocytosis capacities between the calcified diploid and non-calcified haploid Gephyrocapsa huxleyi strains indicate potential distinct nutritional strategies at different coccolithophore life and calcifying stages, which may further shed light on the potential strategies that coccolithophore possesses in unfavorable environments such as twilight zones and the expanding coccolithophore niches in the natural marine environment under the climate change scenario.
Collapse
Affiliation(s)
- Jiayang Ye
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| | - Ying Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Qian Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
| | - Sarfraz Hussain
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
| | - Xunying Zhou
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shengwei Hou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
- Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (Q.L.)
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China;
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
2
|
Charvet S, Bock NA, Kim E, Duhamel S. Transcriptomics reveal a unique phago-mixotrophic response to low nutrient concentrations in the prasinophyte Pterosperma cristatum. ISME COMMUNICATIONS 2024; 4:ycae083. [PMID: 38957873 PMCID: PMC11217555 DOI: 10.1093/ismeco/ycae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Constitutive mixoplankton-plastid-bearing microbial eukaryotes capable of both phototrophy and phagotrophy-are ubiquitous in marine ecosystems and facilitate carbon transfer to higher trophic levels within aquatic food webs, which supports enhanced sinking carbon flux. However, the regulation of the relative contribution of photosynthesis and prey consumption remains poorly characterized. We investigated the transcriptional dynamics behind this phenotypic plasticity in the prasinophyte green alga Pterosperma cristatum. Based on what is known of other mixoplankton species that cannot grow without photosynthesis (obligate phototrophs), we hypothesized that P. cristatum uses phagotrophy to circumvent the restrictions imposed on photosynthesis by nutrient depletion, to obtain nutrients from ingested prey, and to maintain photosynthetic carbon fixation. We observed an increase in feeding as a response to nutrient depletion, coinciding with an upregulation of expression for genes involved in essential steps of phagocytosis including prey recognition, adhesion and engulfment, transport and maturation of food vacuoles, and digestion. Unexpectedly, genes involved in the photosynthetic electron transfer chain, pigment biosynthesis, and carbon fixation were downregulated as feeding increased, implying an abatement of photosynthesis. Contrary to our original hypothesis, our results therefore suggest that depletion of inorganic nutrients triggered an alteration of trophic behavior from photosynthesis to phagotrophy in P. cristatum. While this behavior distinguishes P. cristatum from other groups of constitutive mixoplankton, its physiological response aligns with recent discoveries from natural microbial communities. These findings indicate that mixoplankton communities in nutrient-limited oceans can regulate photosynthesis against bacterivory based on nutrient availability.
Collapse
Affiliation(s)
- Sophie Charvet
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Biology, School of Natural and Social Sciences, Susquehanna University, Selinsgrove, PA 17870, United States
| | - Nicholas A Bock
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Laboratoire d’Océanographie de Villefranche, CNRS and Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Division of EcoScience, Ewha Womans University, Seoul 03760, South Korea
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
3
|
Schomaker RA, Richardson TL, Dudycha JL. Consequences of light spectra for pigment composition and gene expression in the cryptophyte Rhodomonas salina. Environ Microbiol 2023; 25:3280-3297. [PMID: 37845005 DOI: 10.1111/1462-2920.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the β-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.
Collapse
Affiliation(s)
| | - Tammi L Richardson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- School of the Earth, Ocean, & Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Millette NC, Gast RJ, Luo JY, Moeller HV, Stamieszkin K, Andersen KH, Brownlee EF, Cohen NR, Duhamel S, Dutkiewicz S, Glibert PM, Johnson MD, Leles SG, Maloney AE, Mcmanus GB, Poulton N, Princiotta SD, Sanders RW, Wilken S. Mixoplankton and mixotrophy: future research priorities. JOURNAL OF PLANKTON RESEARCH 2023; 45:576-596. [PMID: 37483910 PMCID: PMC10361813 DOI: 10.1093/plankt/fbad020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 07/25/2023]
Abstract
Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.
Collapse
Affiliation(s)
| | - Rebecca J Gast
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Jessica Y Luo
- NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, 1120 Noble Hall, Santa Barbara, CA 93106, USA
| | - Karen Stamieszkin
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Ken H Andersen
- Center for Ocean Life, Natl. Inst. of Aquatic Resources, Technical University of Denmark, Kemitorvet, Bygning 202, Kongens Lyngby 2840, Denmark
| | - Emily F Brownlee
- Department of Biology, St. Mary’s College of Maryland, 18952 E. Fisher Road, St. Mary’s City, MD 20686, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, The University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721, USA
| | - Stephanie Dutkiewicz
- Center for Global Change Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02874, USA
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Rd, Cambridge, MD 21613, USA
| | - Matthew D Johnson
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Suzana G Leles
- Department of Marine and Environmental Biology, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Ashley E Maloney
- Geosciences Department, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
| | - George B Mcmanus
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT 06340, USA
| | - Nicole Poulton
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Sarah D Princiotta
- Biology Department, Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Robert W Sanders
- Department of Biology, Temple University, 1900 N. 12th St., Philadelphia, PA 19122, USA
| | - Susanne Wilken
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
5
|
Flynn KJ, Mitra A. Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification. JOURNAL OF PLANKTON RESEARCH 2023; 45:636-651. [PMID: 37483909 PMCID: PMC10361812 DOI: 10.1093/plankt/fbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/28/2023] [Indexed: 07/25/2023]
Abstract
Plankton phototrophy consumes CO2, increasing seawater pH, while heterotrophy does the converse. Elevation of pH (>8.5) during coastal blooms becomes increasingly deleterious for plankton. Mixoplankton, which can be important bloom-formers, engage in both photoautotrophy and phagoheterotrophy; in theory, this activity could create a relatively stable pH environment for plankton growth. Using a systems biology modelling approach, we explored whether different mixoplankton functional groups could modulate the environmental pH compared to the extreme activities of phototrophic phytoplankton and heterotrophic zooplankton. Activities by most mixoplankton groups do not stabilize seawater pH. Through access to additional nutrient streams from internal recycling with phagotrophy, mixoplankton phototrophy is enhanced, elevating pH; this is especially so for constitutive and plastidic specialist non-constitutive mixoplankton. Mixoplankton blooms can exceed the size of phytoplankton blooms; the synergisms of mixoplankton physiology, accessing nutrition via phagotrophy as well as from inorganic sources, enhance or augment primary production rather than depressing it. Ocean acidification will thus enable larger coastal mixoplankton blooms to form before basification becomes detrimental. The dynamics of such bloom developments will depend on whether the mixoplankton are consuming heterotrophs and/or phototrophs and how the plankton community succession evolves.
Collapse
Affiliation(s)
| | - Aditee Mitra
- School of Earth and Environmental Sciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
6
|
Costa MRA, Cardoso MML, Selmeczy GB, Padisák J, Becker V. Phytoplankton functional responses induced by extreme hydrological events in a tropical reservoir. HYDROBIOLOGIA 2023:1-19. [PMID: 37363742 PMCID: PMC10184627 DOI: 10.1007/s10750-023-05241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Climate change is affecting the global hydrological cycle, causing drastic changes in precipitation patterns. Extreme climatic events are becoming more frequent and intense than in the past, leading to water-level fluctuations and affecting aquatic ecosystems. Semiarid regions are very susceptible to changing climate. We analyzed a 10 years dataset from a tropical semiarid reservoir during extreme hydrological events (heavy rains and prolonged drought), and evaluated phytoplankton functional responses to environmental conditions. We found, as hypothesized, that phytoplankton functional structure change in a temporal scale due to water-volume fluctuation induced by the rainfall pattern. Depth and inorganic material acted as environmental filters selecting phytoplankton groups. High water level seems to improve water quality and low water level worsen it. Colonial and filamentous cyanobacteria dominate the wet period; however, it may have a critical threshold during severe periods of drought, which will lead to dominance of groups well adapted to low light conditions and with mixotrophic metabolism. Phytoplankton functional approaches can simplify phytoplankton identification and reflect better the environmental conditions than the taxonomic approach. Therefore, these approaches can help to understand the shifts in aquatic ecosystems under extreme hydrological events and predict functional response of phytoplankton being an important tool to water management and conservation. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-023-05241-3.
Collapse
Affiliation(s)
- Mariana R. A. Costa
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brazil
| | - Maria M. L. Cardoso
- Secretaria da Educação da Ciência e Tecnologia do Estado da Paraíba, Avenida Dr. João da Mata, nº 200, Jaguaribe, João Pessoa, PB Brasil
| | - Géza B. Selmeczy
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- University of Pannonia, Center of Natural Science, Limnology Research Group, Egyetem u. 10, H-8200 Veszprém, Hungary, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| | - Judit Padisák
- ELKH-PE Limnoecology Research Group, Egyetem u. 10, Veszprém, 8200 Hungary
- University of Pannonia, Center of Natural Science, Limnology Research Group, Egyetem u. 10, H-8200 Veszprém, Hungary, University of Pannonia, Egyetem u. 10, Veszprém, 8200 Hungary
| | - Vanessa Becker
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brazil
- Departamento de Engenharia Civil e Ambiental, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho 3000, Natal, RN Brasil
| |
Collapse
|
7
|
Schenone L, Balseiro E, Modenutti B. Light dependence in the phototrophy-phagotrophy balance of constitutive and non-constitutive mixotrophic protists. Oecologia 2022; 200:295-306. [PMID: 35962828 DOI: 10.1007/s00442-022-05226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
Mixotrophic protists display contrasting nutritional strategies and are key groups connecting planktonic food webs. They comprise constitutive mixotrophs (CMs) that have an innate photosynthetic ability and non-constitutive mixotrophs (NCMs) that acquire it from their prey. We modelled phototrophy and phagotrophy of two mixotrophic protists as a function of irradiance and prey abundance. We hypothesised that differences in their physiology (constitutive versus non-constitutive mixotrophy) can result in different responses to light gradients. We fitted the models with primary production and bacterivory data from laboratory and field experiments with the nanoflagellate Chrysochromulina parva (CM) and the ciliate Ophrydium naumanni (NCM) from north Andean Patagonian lakes. We found a non-monotonic response of phototrophy and phagotrophy to irradiance in both mixotrophs, which was successfully represented by our models. Maximum values for phototrophy and phagotrophy were found at intermediate irradiance coinciding with the light at the deep chlorophyll maxima in these lakes. At lower and higher irradiances, we found a decoupling between phototrophy and phagotrophy in the NCM while these functions were more coupled in the CM. Our modelling approach revealed the difference between both mixotrophic functional types on the balance between their nutritional strategies under different light scenarios. Thus, our proposed models can be applied to account how changing environmental conditions affect both primary and secondary production within the planktonic microbial food web.
Collapse
Affiliation(s)
- Luca Schenone
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Esteban Balseiro
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Beatriz Modenutti
- Laboratorio de Limnología, INIBIOMA-CONICET, Universidad Nacional del Comahue. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
8
|
Duarte Ferreira G, Romano F, Medić N, Pitta P, Hansen PJ, Flynn KJ, Mitra A, Calbet A. Mixoplankton interferences in dilution grazing experiments. Sci Rep 2021; 11:23849. [PMID: 34903787 PMCID: PMC8668877 DOI: 10.1038/s41598-021-03176-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
It remains unclear as to how mixoplankton (coupled phototrophy and phagotrophy in one cell) affects the estimation of grazing rates obtained from the widely used dilution grazing technique. To address this issue, we prepared laboratory-controlled dilution experiments with known mixtures of phyto-, protozoo-, and mixoplankton, operated under different light regimes and species combinations. Our results evidenced that chlorophyll is an inadequate proxy for phytoplankton when mixoplankton are present. Conversely, species-specific cellular counts could assist (although not fully solve) in the integration of mixoplanktonic activity in a dilution experiment. Moreover, cell counts can expose prey selectivity patterns and intraguild interactions among grazers. Our results also demonstrated that whole community approaches mimic reality better than single-species laboratory experiments. We also confirmed that light is required for protozoo- and mixoplankton to correctly express their feeding activity, and that overall diurnal grazing is higher than nocturnal. Thus, we recommend that a detailed examination of initial and final plankton communities should become routine in dilution experiments, and that incubations should preferably be started at the beginning of both day and night periods. Finally, we hypothesize that in silico approaches may help disentangle the contribution of mixoplankton to the community grazing of a given system.
Collapse
Affiliation(s)
- Guilherme Duarte Ferreira
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain. .,Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark.
| | - Filomena Romano
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark.,Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Greece
| | - Nikola Medić
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Greece
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark
| | - Kevin J Flynn
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Aditee Mitra
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Albert Calbet
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| |
Collapse
|
9
|
González-Olalla JM, Medina-Sánchez JM, Norici A, Carrillo P. Regulation of Phagotrophy by Prey, Low Nutrients, and Low Light in the Mixotrophic Haptophyte Isochrysis galbana. MICROBIAL ECOLOGY 2021; 82:981-993. [PMID: 33661311 DOI: 10.1007/s00248-021-01723-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.
Collapse
Affiliation(s)
- Juan Manuel González-Olalla
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain.
| | - Juan Manuel Medina-Sánchez
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Presentación Carrillo
- University Institute of Water research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
- Department of Ecology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
10
|
Experimental identification and in silico prediction of bacterivory in green algae. THE ISME JOURNAL 2021; 15:1987-2000. [PMID: 33649548 PMCID: PMC8245530 DOI: 10.1038/s41396-021-00899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
While algal phago-mixotrophs play a major role in aquatic microbial food webs, their diversity remains poorly understood. Recent studies have indicated several species of prasinophytes, early diverging green algae, to be able to consume bacteria for nutrition. To further explore the occurrence of phago-mixotrophy in green algae, we conducted feeding experiments with live fluorescently labeled bacteria stained with CellTracker Green CMFDA, heat-killed bacteria stained with 5-(4,6-dichlorotriazin-2-yl) aminofluorescein (DTAF), and magnetic beads. Feeding was detected via microscopy and/or flow cytometry in five strains of prasinophytes when provided with live bacteria: Pterosperma cristatum NIES626, Pyramimonas parkeae CCMP726, Pyramimonas parkeae NIES254, Nephroselmis pyriformis RCC618, and Dolichomastix tenuilepis CCMP3274. No feeding was detected when heat-killed bacteria or magnetic beads were provided, suggesting a strong preference for live prey in the strains tested. In parallel to experimental assays, green algal bacterivory was investigated using a gene-based prediction model. The predictions agreed with the experimental results and suggested bacterivory potential in additional green algae. Our observations underline the likelihood of widespread occurrence of phago-mixotrophy among green algae, while additionally highlighting potential biases introduced when using prey proxy to evaluate bacterial ingestion by algal cells.
Collapse
|
11
|
Jimenez V, Burns JA, Le Gall F, Not F, Vaulot D. No evidence of Phago-mixotropy in Micromonas polaris (Mamiellophyceae), the Dominant Picophytoplankton Species in the Arctic. JOURNAL OF PHYCOLOGY 2021; 57:435-446. [PMID: 33394518 DOI: 10.1111/jpy.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
In the Arctic Ocean, the small green alga Micromonas polaris dominates picophytoplankton during the summer months but is also present in winter. It has been previously hypothesized to be phago-mixotrophic (capable of bacteria ingestion) based on laboratory and field experiments. Prey uptake was analyzed in several M. polaris strains isolated from different regions and depths of the Arctic Ocean and in Ochromonas triangulata, a known phago-mixotroph used as a control. Measuring ingestion of either fluorescent beads or fluorescently labeled bacteria by flow cytometry, we found no evidence of phago-mixotrophy in any M. polaris strain while O. triangulata was ingesting both beads and bacteria. In addition, in silico predictions revealed that members of the genus Micromonas lack a genetic signature of phagocytotic capacity.
Collapse
Affiliation(s)
- Valeria Jimenez
- Ecology of Marine Plankton, Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - John A Burns
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Florence Le Gall
- Ecology of Marine Plankton, Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Fabrice Not
- Ecology of Marine Plankton, Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Daniel Vaulot
- Ecology of Marine Plankton, Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
12
|
An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters. Sci Rep 2021; 11:2915. [PMID: 33536514 PMCID: PMC7858608 DOI: 10.1038/s41598-021-82413-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/20/2021] [Indexed: 11/08/2022] Open
Abstract
The pelagic spring bloom is essential for Arctic marine food webs, and a crucial driver of carbon transport to the ocean depths. A critical challenge is understanding its timing and magnitude, to predict its changes in coming decades. Spring bloom onset is typically light-limited, beginning when irradiance increases or during ice breakup. Here we report an acute 9-day under-ice algal bloom in nutrient-poor, freshwater-influenced water under 1-m thick sea ice. It was dominated by mixotrophic brackish water haptophytes (Chrysochromulina/ Prymnesium) that produced 5.7 g C m-2 new production. This estimate represents about half the annual pelagic production, occurring below sea ice with a large contribution from the mixotrophic algae bloom. The freshwater-influenced, nutrient-dilute and low light environment combined with mixotrophic community dominance implies that phagotrophy played a critical role in the under-ice bloom. We argue that such blooms dominated by potentially toxic mixotrophic algae might become more common and widespread in the future Arctic Ocean.
Collapse
|
13
|
Schenone L, Balseiro EG, Bastidas Navarro M, Modenutti BE. Modelling the consequence of glacier retreat on mixotrophic nanoflagellate bacterivory: a Bayesian approach. OIKOS 2020. [DOI: 10.1111/oik.07170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Schenone
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Esteban G. Balseiro
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Marcela Bastidas Navarro
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| | - Beatriz E. Modenutti
- Laboratorio de Limnología, INIBIOMA (CONICET‐UNCo), Quintral 1250 San Carlos de Bariloche (8400) Río Negro Argentina
| |
Collapse
|
14
|
Livanou E, Barsakis K, Psarra S, Lika K. Modelling the nutritional strategies in mixotrophic nanoflagellates. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Coenen AR, Hu SK, Luo E, Muratore D, Weitz JS. A Primer for Microbiome Time-Series Analysis. Front Genet 2020; 11:310. [PMID: 32373155 PMCID: PMC7186479 DOI: 10.3389/fgene.2020.00310] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.
Collapse
Affiliation(s)
- Ashley R. Coenen
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Sarah K. Hu
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA, United States
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, United States
| | - Daniel Muratore
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Joshua S. Weitz
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
16
|
Alcamán-Arias ME, Farías L, Verdugo J, Alarcón-Schumacher T, Díez B. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer. FEMS Microbiol Lett 2019; 365:4961137. [PMID: 29788084 DOI: 10.1093/femsle/fny090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities, metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied from 0.3 mg m-3 in February to a maximum of 2.5 mg m-3 in March, together with a decrease in nutrients; however, nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods; however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta, Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates). During high Chla conditions, HCO3- uptake rates during daytime incubations increased 5-fold (>2516 nmol C L-1 d-1), and increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3- (>706 nmol N L-1 d-1) and NH4+ (41.7 nmol N L-1 d-1) uptake rates were 2- and 3-fold higher, respectively, due to activity from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial communities.
Collapse
Affiliation(s)
- María E Alcamán-Arias
- Department of Oceanography, Universidad de Concepción, 4070386 Concepción, Chile.,Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile.,Center for Climate and Resilience Research (CR) 2, Universidad de Chile, 8370448 Santiago, Chile
| | - Laura Farías
- Department of Oceanography, Universidad de Concepción, 4070386 Concepción, Chile.,Center for Climate and Resilience Research (CR) 2, Universidad de Chile, 8370448 Santiago, Chile
| | - Josefa Verdugo
- Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile.,Center for Climate and Resilience Research (CR) 2, Universidad de Chile, 8370448 Santiago, Chile
| |
Collapse
|
17
|
Cabrerizo MJ, González-Olalla JM, Hinojosa-López VJ, Peralta-Cornejo FJ, Carrillo P. A shifting balance: responses of mixotrophic marine algae to cooling and warming under UVR. THE NEW PHYTOLOGIST 2019; 221:1317-1327. [PMID: 30306559 DOI: 10.1111/nph.15470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Mixotrophy is a dominant metabolic strategy in ecosystems worldwide. Shifts in temperature (T) and light (i.e. the ultraviolet portion of spectrum (UVR)) are key abiotic factors that modulate the conditions under which an organism is able to live. However, whether the interaction between both drivers alters mixotrophy in a global-change context remains unassessed. To determine the T × UVR effects on relative electron transport rates, nonphotochemical quenching, bacterivory, and bacterial production, we conducted an experiment with Isochrysis galbana populations grown mixotrophically, which were exposed to 5°C of cooling and warming with respect to the control (19°C) with (or without) UVR over light-dark cycles and different timescales. At the beginning of the experiment, cooling inhibited the relative electron transport and bacterivory rates, whereas warming depressed only bacterivory regardless of the radiation treatment. By the end of the experiment, warming and UVR conditions stimulated bacterivory. These reduced relative electron transport rates (c. 50% (warming) and > 70% (cooling)) were offset by increased (35%) cumulative bacterivory rates under warming and UVR conditions. We propose that mixotrophy constitutes an energy-saving and a compensatory mechanism to gain carbon (C) when photosynthesis is impaired, and highlight the need to consider the natural environmental changes affecting the populations when we test the impacts of interacting global-change drivers.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, Granada, 18071, España
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/Ramón y Cajal, 4, Granada, 18071, España
| | - Juan Manuel González-Olalla
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva s/n, Granada, 18071, España
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/Ramón y Cajal, 4, Granada, 18071, España
| | - Víctor J Hinojosa-López
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/Ramón y Cajal, 4, Granada, 18071, España
| | - Francisco J Peralta-Cornejo
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/Ramón y Cajal, 4, Granada, 18071, España
| | - Presentación Carrillo
- Instituto Universitario de Investigación del Agua, Universidad de Granada, C/Ramón y Cajal, 4, Granada, 18071, España
| |
Collapse
|
18
|
Ballen-Segura M, Catalan J, Felip M. Experimental evidence of the quantitative relationship between the prokaryote ingestion rate and the food vacuole content in mixotrophic phytoflagellates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:704-710. [PMID: 30259678 DOI: 10.1111/1758-2229.12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/04/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The verification that many phytoflagellates ingest prokaryotes has changed the view of the microbial loop in aquatic ecosystems. Still, progress is limited because the phagotrophic activity is difficult to quantify in natural assemblages. Linking the food vacuole content in protist with the ingestion rate of prokaryotes would provide a crucial step forward. In this study, using the catalysed reporter deposition - fluorescence in situ hybridization protocol (CARD-FISH), which allows the visualization of labelled prokaryotes inside protists without relying on incubation procedures, we experimentally relate the food vacuole content of prokaryotes (Vc ) to the population-averaged ingestion rates (Ir ) estimated using bacteria-size fluorescent microspheres. The two variables relate according to the equation Ir = 7.52 Vc 0.9 , which indicates a prokaryote half-life of about 6 min in the protist vacuole. Five mixotrophic flagellate species from natural and culture populations were evaluated seven times during 24 h; they provided a broad range of average vacuole content (0.01 to 2.02 prokaryote protist-1 ) and ingestion rates (0.18 to 23 prokaryote protist-1 h-1 ). Consequently, the relationship found can be applied to quantify the mixotrophy activity in a large variety of field and experimental studies.
Collapse
Affiliation(s)
- Miguel Ballen-Segura
- Centre d'Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala Sant Francesc, 14. 17300, Blanes, Catalonia, Spain
- Escuela de Ciencias Exactas e Ingenierias, Universidad Sergio Arboleda, Calle 74 #, 14-14, Bogotá, Colombia
| | - Jordi Catalan
- CREAF, Campus UAB, Edifici C, 08193, Cerdanyola del Vallès, Catalonia, Spain
- CSIC, Campus UAB, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Marisol Felip
- CREAF, Campus UAB, Edifici C, 08193, Cerdanyola del Vallès, Catalonia, Spain
- Departament BECCA i Centre de Recerca d'Alta Muntanya, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol 2018; 16:137. [PMID: 30482201 PMCID: PMC6260743 DOI: 10.1186/s12915-018-0593-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. Conclusion We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic “rewiring” that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae. Electronic supplementary material The online version of this article (10.1186/s12915-018-0593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France.,INRA, USC 1408 AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38000, Grenoble, France
| | - Malika Chabi
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Christophe Djemiel
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology & Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79 Street, New York, NY, 10024, USA
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Anderson R, Charvet S, Hansen PJ. Mixotrophy in Chlorophytes and Haptophytes-Effect of Irradiance, Macronutrient, Micronutrient and Vitamin Limitation. Front Microbiol 2018; 9:1704. [PMID: 30108563 PMCID: PMC6080504 DOI: 10.3389/fmicb.2018.01704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023] Open
Abstract
Chlorophytes and haptophytes are key contributors to global phytoplankton biomass and productivity. Mixotrophic bacterivory has been detected for both groups, but a shortage of studies with cultured representatives hinders a consistent picture of the ecological relevance and regulation of this trophic strategy. Here, the growth, primary production, fraction of feeding cells (acidotropic probes) and bacterivory rates (surrogate prey) are tested for two species of the chlorophyte genus Nephroselmis and the haptophyte Isochrysis galbana under contrasting regimes of light (high vs. low) and nutrients (non-limited and macronutrient-, micronutrient- and vitamin-limited), at low bacterial concentrations (<107 bacteria mL-1). All three species were obligate phototrophs, unable to compensate for low light conditions through feeding. Under nutrient limitation, N. rotunda and I. galbana fed, but growth ceased or was significantly lower than in the control. Thus, mixotrophic bacterivory could be a survival rather than a growth strategy for certain species. In contrast, nutrient-limited N. pyriformis achieved growth rates equivalent to the control through feeding. This strikingly differs with the classical view of chlorophytes as primarily non-feeders and indicates mixotrophic bacterivory can be a significant trophic strategy for green algae, even at the low bacterial concentrations found in oligotrophic open oceans.
Collapse
Affiliation(s)
- Ruth Anderson
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Sophie Charvet
- Leibniz Institute for Baltic Sea Research Warnemuende, Rostock, Germany.,Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, New York, NY, United States
| | - Per J Hansen
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
21
|
Bach LT, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS One 2017; 12:e0188198. [PMID: 29190760 PMCID: PMC5708705 DOI: 10.1371/journal.pone.0188198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022] Open
Abstract
The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
Collapse
Affiliation(s)
- Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Santiago Alvarez-Fernandez
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Thomas Hornick
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Stechlin, Germany
| | - Annegret Stuhr
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
22
|
MacIntyre HL, Cullen JJ, Whitsitt TJ, Petri B. Enumerating viable phytoplankton using a culture-based Most Probable Number assay following ultraviolet-C treatment. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1073-1094. [PMID: 29755205 PMCID: PMC5928191 DOI: 10.1007/s10811-017-1254-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 06/02/2023]
Abstract
Ballast water management systems (BWMS) must be tested to assess their compliance with standards for the discharge of organisms, for example in the ≥ 10- and < 50-μm size category, which is dominated by phytoplankton. Assessment of BWMS performance with the vital stains fluorescein diacetate + 5-chlorofluorescein diacetate, required by regulations in the USA, is problematic in the case of ultraviolet-C (UVC) radiation. This is because UVC targets nucleotides-and thus reproduction, hence viability-rather than membrane integrity, which is assayed by the stains. The Serial Dilution Culture-Most Probable Number (SDC-MPN) method, long used to enumerate fragile phytoplankton from natural communities, is appropriate for counting viable phytoplankton. We developed QA/QC "best practice" criteria for its application as a robust and repeatable assay of viable cells in cultures of phytoplankton before and after experimental treatment, then constructed dose-response curves for UVC-induced loss of viable cells in 12 species of phytoplankton from seven divisions. Sensitivity to UVC, expressed as the dose required to reduce viability by 99%-the criterion for type approval of treatment systems-varied more than 10-fold and was not correlated with cell size. The form of the dose-response curves varied between taxa, with most having a threshold dose below which there was no reduction in viability. Analysis of the patterns of growth indicates that if recovery from treatment occurred, it was complete in 1 or 2 days in > 80% of cases, long before the assays were terminated. We conclude that the SDC-MPN assay as described is robust and adaptable for use on natural phytoplankton.
Collapse
Affiliation(s)
- Hugh L. MacIntyre
- Department of Oceanography, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - John J. Cullen
- Department of Oceanography, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Trina J. Whitsitt
- Department of Oceanography, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Brian Petri
- Trojan Technologies, 3020 Gore Rd, London, ON N5V 4T7 Canada
| |
Collapse
|
23
|
Anderson R, Jürgens K, Hansen PJ. Mixotrophic Phytoflagellate Bacterivory Field Measurements Strongly Biased by Standard Approaches: A Case Study. Front Microbiol 2017; 8:1398. [PMID: 28798734 PMCID: PMC5526857 DOI: 10.3389/fmicb.2017.01398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterivory among small (≤20 μm) phytoflagellates (SP) is increasingly recognized as a globally relevant phenomenon, impacting a wide range of aspects from primary production levels to marine fisheries. However, to correctly parametrize mixotrophic SP in biogeochemical and food web models, a better understanding of the magnitude and regulation of in situ SP feeding is urgently needed. Current methods to determine SP bacterivory in the field may introduce biases by treating these organisms as equivalent to heterotrophic nanoflagellates (HNF). In the present case study we experimentally tested two generally employed assumptions of such studies: (A) bacterivory rates of the whole SP community and of distinct SP groups remain constant over 'short' time scales (hours to a day) and (B) SP community ingestion rates approximate the average ingestion rate of all feeding individuals. Food vacuole markers (acidotropic probes), were applied along the diel cycle at three stations in December 2015, and May and June 2016. In December and June, surrogate prey (fluorescently labeled bacteria) were used in parallel at one sampling station. Sampling at different times of day produced an up to fourfold difference in estimates of SP daily bacterivorous impact. In contrast, daily bacterivory estimates for HNF remained constant in almost all cases. The perceived principal SP bacterivorous groups also shifted strongly. As an example, picoeukaryotes dominated total SP bacterivory in daylight hours but completely ceased to feed at night. Finally, a large fraction of the SP community was not feeding at all time points tested. This lead to significant errors in estimated ingestion rates determined using the whole SP community, being up to 16 times lower than those determined solely for actively feeding mixotrophic SP. Overall, this case study indicates that applying the two commonly used premises outlined above can introduce significant biases and considerably alter our perception of mixotrophy in a given system.
Collapse
Affiliation(s)
- Ruth Anderson
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea ResearchRostock, Germany
| | - Per J Hansen
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| |
Collapse
|
24
|
Ghyoot C, Flynn KJ, Mitra A, Lancelot C, Gypens N. Modeling Plankton Mixotrophy: A Mechanistic Model Consistent with the Shuter-Type Biochemical Approach. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
25
|
Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol 2016. [DOI: 10.1007/s00300-016-2045-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Princiotta SD, Smith BT, Sanders RW. Temperature-dependent phagotrophy and phototrophy in a mixotrophic chrysophyte. JOURNAL OF PHYCOLOGY 2016; 52:432-440. [PMID: 27273535 DOI: 10.1111/jpy.12405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/05/2016] [Indexed: 06/06/2023]
Abstract
The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m(-2) · s(-1) , with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m(-2) · s(-1) ). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m(-2) · s(-1) ), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%-30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient-modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms.
Collapse
Affiliation(s)
- Sarah DeVaul Princiotta
- Department of Biology, Temple University, 1900 N. 12th St, Philadelphia, Pennsylvania, 19122, USA
| | - Brian T Smith
- Department of Biology, Temple University, 1900 N. 12th St, Philadelphia, Pennsylvania, 19122, USA
| | - Robert W Sanders
- Department of Biology, Temple University, 1900 N. 12th St, Philadelphia, Pennsylvania, 19122, USA
| |
Collapse
|