1
|
Crandall L, Zaman R, Duthie-Holt M, Jarvis W, Erbilgin N. Navigating the Semiochemical Landscape: Attraction of Subcortical Beetle Communities to Bark Beetle Pheromones, Fungal and Host Tree Volatiles. INSECTS 2025; 16:57. [PMID: 39859638 PMCID: PMC11766014 DOI: 10.3390/insects16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field. Host stress volatiles were derived from lodgepole pine trees stressed by three fungal symbionts of mountain pine beetle and two common phytopathogens. Our results showed that bark beetles, particularly mountain pine beetles, show a preference for a combination of fungal volatiles, particularly 2-methyl-1-butanol and its lures. Without the addition of lures, 2-methyl-1-butanol was also identified as a key fungal volatile in the attraction of mountain pine beetle competitors from the Cerambycidae and Buprestidae families. Predators in the Elateridae and Staphylinidae families showed attraction to host stress volatiles and the healthy tree volatile profiles. These findings suggest that these semiochemicals warrant further field testing for potential use in monitoring and management of subcortical beetle populations.
Collapse
Affiliation(s)
- Leah Crandall
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada; (R.Z.); (N.E.)
| | - Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada; (R.Z.); (N.E.)
| | - Marnie Duthie-Holt
- Ministry of Forests, Government of British Columbia, Cranbrook, BC V1C 7G1, Canada; (M.D.-H.); (W.J.)
| | - Wade Jarvis
- Ministry of Forests, Government of British Columbia, Cranbrook, BC V1C 7G1, Canada; (M.D.-H.); (W.J.)
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada; (R.Z.); (N.E.)
| |
Collapse
|
2
|
Fortier CE, Musso AE, Evenden ML, Zaharia LI, Cooke JEK. Evidence that Ophiostomatoid Fungal Symbionts of Mountain Pine Beetle Do Not Play a Role in Overcoming Lodgepole Pine Defenses During Mass Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:445-458. [PMID: 38240660 DOI: 10.1094/mpmi-06-23-0077-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a devastating forest insect pest that has killed millions of hectares of pines in western North America over the past two decades. Like other bark beetles, MPB vectors ophiostomatoid fungal species, some of which are pathogenic to host pine species. The phytopathogenicity of these fungal symbionts has sparked considerable debate regarding their role in facilitating MPB attack success. We tested the hypothesis that MPB ophiostomatoid fungal associates like Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield contribute to overwhelming host defenses during MPB mass attack. We compared responses of mature lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees growing in natural stands that were mass attacked by MPB with those inoculated with G. clavigera by examining host defense hormones, secondary metabolites, and gene expression profiles. The jasmonate and ethylene signatures of necrotrophic pathogen-triggered response were identified in G. clavigera-inoculated trees, but only the jasmonate signature of a herbivore-triggered response was measured in MPB-attacked trees. Several G. clavigera-induced changes in pine phenolic metabolite profiles and phenolic biosynthesis gene expression patterns were absent in MPB-attacked pines. These findings indicate that ophiostomatoid fungi like G. clavigera are not a major factor in overwhelming host defenses during MPB mass attack. Instead, fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree. Phenolics appear to play a larger role in the host response to G. clavigera than to MPB, although phenolics may also influence MPB feeding and behavior. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Colleen E Fortier
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Antonia E Musso
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - L Irina Zaharia
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, Saskatoon, SK, S7N 0W9, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
3
|
Almiman B. Glimpse into phytopathogenic fungal species in Al Baha Province, Saudi Arabia; identification from molecular and morphological characteristics. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2164458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Bandar Almiman
- Department of Biology, Faculty of Science, Al Baha University, Alaqiq, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Hu X, Tang X, Zhou Y, Ahmad B, Zhang D, Zeng Y, Wei J, Deng L, Chen S, Pan Y. Bioinformatics Analysis, Expression Profiling, and Functional Characterization of Heat Shock Proteins in Wolfi-poria cocos. Bioengineering (Basel) 2023; 10:bioengineering10030390. [PMID: 36978781 PMCID: PMC10045903 DOI: 10.3390/bioengineering10030390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Heat shock proteins (HSPs) play critical roles in regulating different mechanisms under high-temperature conditions. HSPs have been identified and well-studied in different plants. However, there is a lack of information about their genomic organization and roles in medicinal plants and fungi, especially in Wolfi-poria cocos (W. cocos). We identified sixteen heat shock proteins (HSPs) in W. cocos and analyzed in terms of phylogenetic analysis, gene structure, motif distribution patterns, physiochemical properties, and expression comparison in different strains. Based on phylogenetic analysis, HSPs were divided into five subgroups (WcHSP100, WcHSP90, WcHSP70, WcHSP60, and WcsHSP). Subgroups WcHSP100s, WcHSP90s, WcHSP70s, WcHSP60, and WcsHSPs were further divided into 3, 2, 3, 1, and 6 subfamilies, respectively. Moreover, the expression profiling of all HSP genes in five strains of W. cocos under different temperature extremes revealed that expression of most HSPs were induced by high temperature. However, every subfamily showed different expression suggesting distinctive role in heat stress tolerance. WcHSP70-4, WcHSP90-1, and WcHSP100-1 showed the highest response to high temperature stress. Heterologous expression of WcHSP70-4, WcHSP90-1, and WcHSP100-1 genes in Escherichia coli enhanced survival rate of E. coli during heat stress. These findings suggest the role of W. cocos heat shock genes in the high temperature stress tolerance.
Collapse
Affiliation(s)
- Xin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Xue Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Yumei Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Bilal Ahmad
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Deli Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yue Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| | - Jingyi Wei
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Liling Deng
- Chongqing Institute of Biotechnology Co., Ltd., Chongqing 401121, China
| | - Shijiang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400062, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing 400715, China
| |
Collapse
|
5
|
Almiman B. Identifying phytopathogenic fungi in Al-Baha province, Saudi Arabia through their molecular and morphological features: An overview. Saudi J Biol Sci 2023; 30:103572. [PMID: 36748076 PMCID: PMC9898442 DOI: 10.1016/j.sjbs.2023.103572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/24/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Fungi are major pathogens of plants. They are responsible for most of the spoilage that occurs to plants in fields or in storage conditions. In addition to the direct impacts of fungi upon the plant's fruiting body, such as leaf spot, wilt, rust, dieback and rot, fungi can contaminate plants with mycotoxins. Twenty isolates were molecularly identified in this study representing eight genera and twelve species. The most common species identified in this work belongs to Aspergillus (33.3%), Penicillium (16.6%) and Fusarium (16.6%) genera, which are well known to have mycotoxigenic species. Environmental factors have a significant influence on the biological activity of fungi, including growth, sporulation and mycotoxin production. Temperature and water activity affect fungal virulence factors, such as growth, colonisation, spread and mycotoxin production. This work found the optimal temperature for the growth of isolates, was 30 °C for 75 % of isolates and at 25 °C for 25 % of isolates. This information is useful, as it helps to identify the phytopathogenic and mycotoxigenic species, and determining optimal growth temperatures is important to control them and reduce their threats.
Collapse
|
6
|
Mattoo AJ, Nonzom S. Investigating diverse methods for inducing sporulation in endophytic fungi. STUDIES IN FUNGI 2022. [DOI: 10.48130/sif-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
7
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
8
|
Field Translocation of Mountain Pine Beetles Suggests Phoretic Mite Communities Are Locally Adapted, and Mite Populations Respond Variably to Climate Warming. INSECTS 2021; 12:insects12020131. [PMID: 33540901 PMCID: PMC7913132 DOI: 10.3390/insects12020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Climate warming has significant effects on forest insect populations, particularly bark beetles, which cause millions of hectares of forest tree damage. Bark beetles live alongside a diverse host of other organisms which affect the success of beetle attacks on trees and are also affected by climate changes. Here, we explore climate effects on symbiotic mite communities associated with the mountain pine beetle (Dendroctonus ponderosae). We show that warming causes significant shifts in the abundance of mites. These effects were dependent on source population, suggesting mite populations are adapted to their local climates. Understanding beetle–mite patterns is important because mites can directly affect beetle reproduction by feeding on eggs, or indirectly affect beetle health by introducing fungi. Our results provide foundational information for understanding how climate change will affect beetle–mite associations; and serve to help determine how these shifting associations will affect the success of bark beetles in forest ecosystems. Abstract Temperature is a key determining factor in the population dynamics of forest insects and their associated biota. Bark beetles, often considered key agents of change in forest ecosystems, are particularly affected by warming in their environment. Beetles associate with various phoretic mite species that have direct/indirect effects on beetle fitness and population dynamics, although there is limited knowledge of how temperature affects these communities. Here, we use a field reciprocal translocation experiment with the addition of a novel “warming” environment to represent future changes in local environment in two populations of a keystone bark beetle species (Dendroctonus ponderosae). We hypothesize that mite community abundances as carried by bark beetles are significantly altered when not in their native environments and when subjected to climate warming. We use multivariate generalized linear models based on species abundance data to show that mite community compositions significantly differ across different field climates; and that these patterns diverge between source populations, indicating local adaptation. Our study offers foundational information on the general effects of simulated climate-warming on the compositional shifts of common and abundant biotic associates of mountain pine beetles and may be used as a model system for other important insect–mite systems.
Collapse
|
9
|
Soderberg DN, Mock KE, Hofstetter RW, Bentz BJ. Translocation experiment reveals capacity for mountain pine beetle persistence under climate warming. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- Ecology Center Utah State University 5205 Old Main Hill Logan Utah84322USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- Ecology Center Utah State University 5205 Old Main Hill Logan Utah84322USA
| | - Richard W. Hofstetter
- School of Forestry College of Engineering, Forestry and Natural Sciences Northern Arizona University Flagstaff Arizona86011USA
| | - Barbara J. Bentz
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- U.S. Forest Service Rocky Mountain Research Station 860 N. 1200 E Logan Utah84321USA
| |
Collapse
|
10
|
Schlatter DC, Kahl K, Carlson B, Huggins DR, Paulitz T. Fungal community composition and diversity vary with soil depth and landscape position in a no-till wheat-based cropping system. FEMS Microbiol Ecol 2019; 94:5003378. [PMID: 29800123 DOI: 10.1093/femsec/fiy098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 11/14/2022] Open
Abstract
Soil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field. Fungal communities were highly stratified with soil depth, where deeper depths harbored distinct fungal taxa and more variable, less diverse fungal communities. Fungal communities from deep soils harbored a greater portion of taxa inferred to have pathotrophic or symbiotrophic in addition to saprotrophic lifestyles. Co-occurrence networks of fungal taxa became smaller and denser as soil depth increased. In contrast, differences between fungal communities from north-facing and south-facing slopes were relatively minor, suggesting that plant host, tillage, and fertilizer may be stronger drivers of fungal communities than landscape position.
Collapse
Affiliation(s)
- Daniel C Schlatter
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| | - Kendall Kahl
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844 United States
| | - Bryan Carlson
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - David R Huggins
- USDA-ARS, Northwest Sustainable Agroecosystems Research Unit, Pullman, WA 99164, United States
| | - Timothy Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164, United States
| |
Collapse
|
11
|
Ojeda Alayon DI, Tsui CKM, Feau N, Capron A, Dhillon B, Zhang Y, Massoumi Alamouti S, Boone CK, Carroll AL, Cooke JEK, Roe AD, Sperling FAH, Hamelin RC. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol Ecol 2017; 26:2077-2091. [PMID: 28231417 DOI: 10.1111/mec.14074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.
Collapse
Affiliation(s)
- Dario I Ojeda Alayon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Clement K M Tsui
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Arnaud Capron
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Yiyuan Zhang
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Sepideh Massoumi Alamouti
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada, V2N 4Z9
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Amanda D Roe
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3.,Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St E, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4.,Institut de Biologie Intégrative des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec City, QC, Canada, G1V 0A6
| |
Collapse
|
12
|
Kandasamy D, Gershenzon J, Hammerbacher A. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control. J Chem Ecol 2016; 42:952-969. [PMID: 27687998 PMCID: PMC5101256 DOI: 10.1007/s10886-016-0768-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/14/2016] [Accepted: 09/07/2016] [Indexed: 11/06/2022]
Abstract
Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized.
Collapse
Affiliation(s)
- Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany.
| | - Almuth Hammerbacher
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
13
|
West DR, Briggs JS, Jacobi WR, Negrón JF. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains. ENVIRONMENTAL ENTOMOLOGY 2016; 45:127-141. [PMID: 26546596 DOI: 10.1093/ee/nvv167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions.
Collapse
Affiliation(s)
- Daniel R West
- Colorado State University, Colorado State Forest Service, 5060 Campus Delivery, Fort Collins, CO 80523-5060 (; ),
| | - Jennifer S Briggs
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Box 25046, M.S. 980, Bldg., 25, Denver Federal Center, Denver, CO 80225 , and
| | - William R Jacobi
- Colorado State University, Colorado State Forest Service, 5060 Campus Delivery, Fort Collins, CO 80523-5060 (; )
| | - José F Negrón
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect, Fort Collins, CO 80525
| |
Collapse
|