1
|
An T, Feng W, Li H, Wu Y, Dai P, Liu YJ. Combined effects of microplastics and flupyradifurone on gut microbiota and oxidative status of honeybees (Apis mellifera L.). ENVIRONMENTAL RESEARCH 2025; 270:121026. [PMID: 39909092 DOI: 10.1016/j.envres.2025.121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
The increasing accumulation of polystyrene microplastics (PS-MPs) and the widespread use of flupyradifurone (FPF) affect honeybee health adversely. However, the combined impact of PS-MPs and FPF toxicity on honeybees remains unknown. In this study, honeybee (Apis mellifera L.) was fed with sucrose solutions containing PS-MPs (0.5 or 5 μm, 50 mg/L), FPF (4 mg/L), or their combination for 21 days under laboratory conditions. The effects of PS-MPs and FPF on honeybee physiology, gut microbiota, and stress-related enzyme activities and genes were measured. The findings showed that concurrent exposure to PS-MPs and FPF significantly reduced honeybee survival, with additive effects, decreased sucrose consumption and body weight, and devastated midgut epithelial cells. FPF was the main stressor affecting survival, while PS-MPs exerted a greater influence on body weight. Co-exposure to PS-MPs (0.5 μm) and FPF disrupted gut microbiota, significantly decreasing Lactobacillus abundance. Supplementation with Lactobacillus helsingborgensis improved honeybee survival, highlighting the protective role of gut microbiota. PS-MPs exposure, alone or combined with FPF, increased oxidative stress and decreased detoxification and immune capabilities in honeybees. These findings suggested the combined toxicity of PS-MPs and FPF on honeybees, underscoring the potential ecology risk posed by multiple stressors.
Collapse
Affiliation(s)
- Tong An
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wangjiang Feng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Han Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Tiritelli R, Cilia G, Gómez-Moracho T. The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100106. [PMID: 39925747 PMCID: PMC11803887 DOI: 10.1016/j.cris.2025.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Wu H, Ji C, Wang R, Gao L, Luo W, Liu J. Dietary Quercetin Regulates Gut Microbiome Diversity and Abundance in Apis cerana (Hymenoptera Apidae). INSECTS 2024; 16:20. [PMID: 39859601 PMCID: PMC11766270 DOI: 10.3390/insects16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
Honeybee gut microbiota plays a crucial role in maintaining their health and digestive function. Studies have confirmed that quercetin improves honeybee health by enhancing their pesticide tolerance and survival rates. This study aimed to examine the effects of quercetin on the bee gut microbiome by absolute quantification sequencing. We included 1800 bees from the experimental apiary and exposed them to 151.2, 75.6, and 37.8 mg/L of quercetin. Gut samples were collected on the 5th and 9th days, subjected to a polymerase chain reaction and 16S rRNA sequencing, and analyzed. After 5 days of quercetin treatment, the diversity of the honeybee gut microbiota was altered, and total bacterial copies and Lactobacillus abundance significantly decreased at high quercetin concentrations (151.2 and 75.6 mg/L). On day 9, the gut microbial community had recovered from the adverse effects, and Gilliamella abundance increased in response to 37.8 mg/L quercetin treatment. However, quercetin had no noticeable effects on survival rate, food consumption, and gut structure. Our study confirmed the effect of short-term quercetin intake on the gut microbiota of A. cerana, providing valuable insights into how phytochemicals alter the bee gut microbiome, and their repercussions on host physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jialin Liu
- Institute of Economic Animal, Chongqing Academy of Animal Sciences, Chongqing 402460, China; (H.W.); (C.J.); (R.W.); (L.G.); (W.L.)
| |
Collapse
|
4
|
Su Y, Shi J, Hu Y, Liu J, Wu X. Acetamiprid Exposure Disrupts Gut Microbiota in Adult and Larval Worker Honeybees ( Apis mellifera L.). INSECTS 2024; 15:927. [PMID: 39769529 PMCID: PMC11678641 DOI: 10.3390/insects15120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Acetamiprid is a third-generation neonicotinoid insecticide that is now widely employed for the protection of crops grown in outdoor environments. This is because it is considerably less toxic to pollinating insects than other neonicotinoids. Previous studies have shown that acetamiprid has direct physiological effects on adult and larval bees. However, its effects on the potentially healthy gut microbiota of honeybees have not been fully elucidated. To further investigate the effects, adult and larval worker honeybees were exposed to sucrose solutions containing acetamiprid at concentrations of 0, 5, and 25 mg/L for a period of 7 days (adults) and 4 days (larvae). The results showed that acetamiprid exposure significantly disrupted the honeybees' intestinal microbiota. In adults, acetamiprid exposure led to a significant increase in the relative abundance of Commensalibacter, while the Bifidobacterium and Gilliamella levels decreased. In larvae, we observed significant changes in the microbial composition, notably a marked reduction in Bombella. Further analysis demonstrated that alterations in the gut microbiota of honeybee larvae were associated with disturbances in metabolic pathways that regulate energy metabolism and neurometabolism. These results suggest that acetamiprid affects bee health not only through direct physiological effects, but also through changes in the gut microbiota, which in turn affect the metabolic and immune function of bees. This study underscores the need to evaluate pesticides' risks from a microbiological standpoint and offers crucial insights into how acetamiprid impacts bee health by modifying the gut microbiota. These insights support the more comprehensive assessment of acetamiprid and similar pesticides regarding bee health.
Collapse
Affiliation(s)
- Yuchen Su
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jingliang Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.S.); (J.S.); (Y.H.); (J.L.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
5
|
Tersigni J, Tamim El Jarkass H, James EB, Reinke AW. Interactions between microsporidia and other members of the microbiome. J Eukaryot Microbiol 2024; 71:e13025. [PMID: 38561869 DOI: 10.1111/jeu.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The microbiome is the collection of microbes that are associated with a host. Microsporidia are intracellular eukaryotic parasites that can infect most types of animals. In the last decade, there has been much progress to define the relationship between microsporidia and the microbiome. In this review, we cover an increasing number of reports suggesting that microsporidia are common components of the microbiome in both invertebrates and vertebrates. These microsporidia infections can range from mutualistic to pathogenic, causing several physiological phenotypes, including death. Infection with microsporidia often causes a disruption in the normal microbiome, with both increases and decreases of bacterial, fungal, viral, and protozoan species being observed. This impact on the microbiome can occur through upregulation and downregulation of innate immunity as well as morphological changes to tissues that impact interactions with these microbes. Other microbes, particularly bacteria, can inhibit microsporidia and have been exploited to control microsporidia infections. These bacteria can function through regulating immunity, secreting anti-microsporidia compounds, and, in engineered versions, expressing double-stranded RNA targeting microsporidia genes. We end this review by discussing potential future directions to further understand the complex interactions between microsporidia and the other members of the microbiome.
Collapse
Affiliation(s)
- Jonathan Tersigni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B James
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Lau E, Maccaro J, McFrederick QS, Nieh JC. Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Sci Rep 2024; 14:20037. [PMID: 39198535 PMCID: PMC11358482 DOI: 10.1038/s41598-024-67796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Managed colonies of the European honey bee, Apis mellifera, have faced considerable losses in recent years. A widespread contributing factor is a microsporidian pathogen, Nosema ceranae, which occurs worldwide, is increasingly resistant to antibiotic treatment, and can alter the host's immune response and nutritional uptake. These obligate gut pathogens share their environment with a natural honey bee microbiome whose composition can affect pathogen resistance. We tested the effect of N. ceranae infection on this microbiome by feeding 5 day-old adult bees that had natural, fully developed microbiomes with live N. ceranae spores (40,000 per bee) or a sham inoculation, sterile 2.0 M sucrose solution. We caged and reared these bees in a controlled lab environment and tracked their mortality over 12 d, after which we dissected them, measured their infection levels (gut spore counts), and analyzed their microbiomes. Bees fed live spores had two-fold higher mortality by 12 d and 36.5-fold more spores per bee than controls. There were also strong colony effects on infection levels, and 9% of spore-inoculated bees had no spore counts at all (defined as fed-spores-but-not-infected). Nosema ceranae infection had significant but subtle effects on the gut microbiomes of experimentally infected bees, bees with different infection levels, and fed-spores-but-not-infected vs. bees with gut spores. Specific bacteria, including Gilliamella ASVs, were positively associated with infection, indicating that multiple strains of core gut microbes either facilitate or resist N. ceranae infection. Future studies on the interactions between bacterial, pathogen, and host genotypes would be illuminating.
Collapse
Affiliation(s)
- Edmund Lau
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Maccaro
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - James C Nieh
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Skičková Š, Kratou M, Svobodová K, Maitre A, Abuin-Denis L, Wu-Chuang A, Obregón D, Said MB, Majláthová V, Krejčí A, Cabezas-Cruz A. Functional redundancy and niche specialization in honeybee and Varroa microbiomes. Int Microbiol 2024:10.1007/s10123-024-00582-y. [PMID: 39172274 DOI: 10.1007/s10123-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
Collapse
Affiliation(s)
- Štefánia Skičková
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia.
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Karolína Svobodová
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Apolline Maitre
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandra Wu-Chuang
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Viktória Majláthová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia
| | - Alena Krejčí
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, 37005, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
8
|
Kim H, Maigoro AY, Lee JH, Frunze O, Kwon HW. The Improving Effects of Probiotic-Added Pollen Substitute Diets on the Gut Microbiota and Individual Health of Honey Bee ( Apis mellifera L.). Microorganisms 2024; 12:1567. [PMID: 39203409 PMCID: PMC11356693 DOI: 10.3390/microorganisms12081567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Honey bee (Apis mellifera L.) health is crucial for honey bee products and effective pollination, and it is closely associated with gut bacteria. Various factors such as reduced habitat, temperature, disease, and diet affect the health of honey bees by disturbing the homeostasis of the gut microbiota. In this study, high-throughput 16S rRNA gene sequencing was used to analyze the gut microbiota of honey bees subjected to seven diets over 5 days. Lactobacillus dominated the microbiota in all diets. Cage experiments (consumption, head protein content, and vitellogenin gene expression level) were conducted to verify the effect of the diet. Through a heatmap, the Diet2 (probiotic-supplemented) group was clustered together with the Beebread and honey group, showing high consumption (177.50 ± 26.16 mg/bee), moderately higher survival duration (29.00 ± 2.83 days), protein content in the head (312.62 ± 28.71 µg/mL), and diet digestibility (48.41 ± 1.90%). Additionally, we analyzed the correlation between gut microbiota and health-related indicators in honey bees fed each diet. Based on the overall results, we identified that probiotic-supplemented diets increased gut microbiota diversity and positively affected the overall health of individual honey bees.
Collapse
Affiliation(s)
- Hyunjee Kim
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Jeong-Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (H.K.); (A.Y.M.); (J.-H.L.); (O.F.)
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- Division of Research and Development, Insensory Inc., 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
9
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Quinn MW, Daisley BA, Vancuren SJ, Bouchema A, Niño E, Reid G, Thompson GJ, Allen-Vercoe E. Apirhabdus apintestini gen. nov., sp. nov., a member of a novel genus of the family Enterobacteriaceae, isolated from the gut of the western honey bee Apis mellifera. Int J Syst Evol Microbiol 2024; 74. [PMID: 38652096 DOI: 10.1099/ijsem.0.006346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
A Gram-negative, motile, rod-shaped bacterial strain, CA-0114T, was isolated from the midgut of a western honey bee, Apis mellifera. The isolate exhibited ≤96.43 % 16S rRNA gene sequence identity (1540 bp) to members of the families Enterobacteriaceae and Erwiniaceae. Phylogenetic trees based on genome blast distance phylogeny and concatenated protein sequences encoded by conserved genes atpD, fusA, gyrB, infB, leuS, pyrG and rpoB separated the isolate from other genera forming a distinct lineage in the Enterobacteriaceae. In both trees, the closest relatives were Tenebrionicola larvae YMB-R21T and Tenebrionibacter intestinalis BIT-L3T, which were isolated previously from Tenebrio molitor L., a plastic-eating mealworm. Digital DNA-DNA hybridization, orthologous average nucleotide identity and average amino acid identity values between strain CA-0114T and the closest related members within the Enterobacteriaceae were ≤23.1, 75.45 and 76.04 %, respectively. The complete genome of strain CA-0114T was 4 451669 bp with a G+C content of 52.12 mol%. Notably, the apparent inability of strain CA-0114T to ferment d-glucose, inositol and l-rhamnose in the API 20E system is unique among closely related members of the Enterobacteriaceae. Based on the results obtained through genotypic and phenotypic analysis, we propose that strain CA-0114T represents a novel species and genus within the family Enterobacteriaceae, for which we propose the name Apirhabdus apintestini gen. nov., sp. nov. (type strain CA-0114T=ATCC TSD-396T=DSM 116385T).
Collapse
Affiliation(s)
- Matthew W Quinn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira Bouchema
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elina Niño
- Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
- University of California Agriculture and Natural Resources, Oakland, CA, 95618, USA
| | - Gregor Reid
- Department of Microbiology & Immunology, Western University, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, Western University, London, ON, N6A 5C1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
11
|
Aguado-López D, Urbieta Magro A, Higes M, Rodríguez JM, Martín-Hernández R. Influence of Age of Infection on the Gut Microbiota in Worker Honey Bees ( Apis mellifera iberiensis) Experimentally Infected with Nosema ceranae. Microorganisms 2024; 12:635. [PMID: 38674580 PMCID: PMC11051791 DOI: 10.3390/microorganisms12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The gut microbiota of honey bees has received increasing interest in the past decades due to its crucial role in their health, and can be disrupted by pathogen infection. Nosema ceranae is an intracellular parasite that affects the epithelial cells of the midgut, altering gut homeostasis and representing a major threat to honey bees. Previous studies indicated that younger worker bees are more susceptible to experimental infection by this parasite, although the impact of infection and of age on the gut bacterial communities remains unclear. To address this, honey bees were experimentally infected with a consistent number of N. ceranae spores at various ages post-emergence (p.e.) and the gut bacteria 7 days post-infection (p.i.) were analysed using real-time quantitative PCR, with the results compared to non-infected controls. Infected bees had a significantly higher proportion and load of Gilliamella apicola. In respect to the age of infection, the bees infected just after emergence had elevated loads of G. apicola, Bifidobacterium asteroides, Bombilactobacillus spp., Lactobacillus spp., Bartonella apis, and Bombella apis. Moreover, the G. apicola load was higher in bees infected at nearly all ages, whereas older non-infected bees had higher loads of Bifidobacterium asteroides, Bombilactobacillus spp., Lactobacillus spp., Ba. apis, and Bo apis. These findings suggest that N. ceranae infection and, in particular, the age of bees at infection modulate the gut bacterial community, with G. apicola being the most severely affected species.
Collapse
Affiliation(s)
- Daniel Aguado-López
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Almudena Urbieta Magro
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain;
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.M.); (M.H.)
| |
Collapse
|
12
|
Xiong Q, Sopko B, Klimov PB, Hubert J. A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae. mSystems 2024; 9:e0082923. [PMID: 38380907 PMCID: PMC10949449 DOI: 10.1128/msystems.00829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Pavel B. Klimov
- Purdue University, Lilly Hall of Life Sciences, West Lafayette, Indiana, USA
| | - Jan Hubert
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
13
|
Erban T, Parizkova K, Sopko B, Talacko P, Markovic M, Jarosova J, Votypka J. Imidacloprid increases the prevalence of the intestinal parasite Lotmaria passim in honey bee workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166973. [PMID: 37699488 DOI: 10.1016/j.scitotenv.2023.166973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
A challenge in bee protection is to assess the risks of pesticide-pathogen interactions. Lotmaria passim, a ubiquitous unicellular parasite in honey bees, is considered harmful under specific conditions. Imidacloprid causes unpredictable side effects. Research indicates that both L. passim and imidacloprid may affect the physiology, behavior, immunity, microbiome and lifespan of honey bees. We designed cage experiments to test whether the infection of L. passim is affected by a sublethal dose of imidacloprid. Workers collected at the time of emergence were exposed to L. passim and 2.5 μg/L imidacloprid in the coexposure treatment group. First, samples of bees were taken from cages since they were 5 days old and 3 days postinfection, i.e., after finishing an artificial 24 h L. passim infection. Additional bees were collected every two additional days. In addition, bees frozen at the time of emergence and collected from the unexposed group were analyzed. Abdomens were analyzed using qPCR to determine parasite load, while corresponding selected heads were subjected to a label-free proteomic analysis. Our results show that bees are free of L. passim at the time of emergence. Furthermore, imidacloprid considerably increased the prevalence as well as parasite loads in individual bees. This means that imidacloprid facilitates infection, enabling faster parasite spread in a colony and potentially to surrounding colonies. The proteomic analysis of bee heads showed that imidacloprid neutralized the increased transferrin 1 expression by L. passim. Importantly, this promising marker has been previously observed to be upregulated by infections, including gut parasites. This study contributes to understanding the side effects of imidacloprid and demonstrates that a single xenobiotic/pesticide compound can interact with the gut parasite. Our methodology can be used to assess the effects of different compounds on L. passim.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia.
| | - Kamila Parizkova
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Prumyslova 595, Vestec CZ-252 50, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague 6-Lysolaje CZ-165 02, Czechia
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, Prague 2 CZ-128 00, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 1160/31, Ceske Budejovice CZ-37005, Czechia
| |
Collapse
|
14
|
Stara J, Hubert J. Does Leptinotarsa decemlineata larval survival after pesticide treatment depend on microbiome composition? PEST MANAGEMENT SCIENCE 2023; 79:4921-4930. [PMID: 37532920 DOI: 10.1002/ps.7694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The microbiomes of some arthropods are believed to eliminate pesticides by chemical degradation or stimulation of the host immune system. The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important agricultural pest with known resistance to used pesticides. We sought to analyze microbiome composition in CPB larvae from different sites and to identify the effect of pesticides on the microbiome of surviving and dead larvae after chlorpyrifos treatment in laboratory. Changes in the Lactococcus lactis community in larvae treated with chlorpyrifos and fed by potato leaves with L. lactis cover were studied by manipulative experiment. The microbiome was characterized by sequencing the 16S RNA gene. RESULTS The microbiome of L. decemlineata larvae is composed of a few operational taxonomic units (OTUs) (Enterobacteriaceae, Pseudocitrobacter, Acinetobacter, Pseudomonas, L. lactis, Enterococcus, Burkholderia and Spiroplasma leptinotarsae). The microbiome varied among the samples from eight sites and showed differences in profiles between surviving and dead larvae. The survival of larvae after chlorpyrifos treatment was correlated with a higher proportion of L. lactis sequences in the microbiome. The S. leptinotarsa profile also increased in the surviving larvae, but this OTU was not present in all sampling sites. In manipulative experiments, larvae treated with L. lactis had five-fold lower mortality rates than untreated larvae. CONCLUSION These results indicate that the microbiome of larvae is formed from a few bacterial taxa depending on the sampling site. A member of the gut microbiome, L. lactis, is believed to help overcome the toxic effects of chlorpyrifos in the larval gut. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jan Hubert
- Crop Research Institute, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
15
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
16
|
Robi DT, Temteme S, Aleme M, Bogale A, Getachew A, Mendesil E. Epidemiology, factors influencing prevalence and level of varroosis infestation ( Varroa destructor) in honeybee ( Apis mellifera) colonies in different agroecologies of Southwest Ethiopia. Parasite Epidemiol Control 2023; 23:e00325. [PMID: 37711152 PMCID: PMC10498395 DOI: 10.1016/j.parepi.2023.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
Little information is available on the epidemiology of varroosis caused by Varroa mite, Varroa destructor infestation in Ethiopia, although it is a devastating honeybee disease that results in significant economic losses in beekeeping. Therefore, between October 2021 and October 2022, a cross-sectional study was carried out in different agroecology zones in Southwest Ethiopia to determine the prevalence and associated risk factors for varroosis, as well as the effects of this disease on honeybee colonies and honey production. A multivariate logistic regression analysis was performed to identify possible risk factors for the prevalence of V. destructor. A total of 384 adult honeybee and worker or drone brood samples were collected from honeybee colonies and examined using standard diagnostic techniques in the laboratory. The result shows that the prevalence of V. destructor was found to be 39.3% (95% CI 34.44-44.21) and 43.2% (38.27-48.18) in adult honeybees and brood, respectively. The major risk factors for the prevalence of V. destructor in the study areas included agroecology (OR = 5.2, 95% CI 1.75-14.85), type of hive (OR = 2.9, 95% CI 1.17-17.03), management system (OR = 4.3, 95% CI 1.23-14.70), and colony management (OR = 3.5, 95% CI 1.31-9.14). The lower level of colony infestation in adult bees and brood was measured as 1.97 ± 0.14 and 3.19 ± 0.25, respectively. Season, colony status, colony management, and agroecology were among the determinant factors of the level of varroa mite infestation in adult bees and brood. The results of the study demonstrated that honey production losses are largely attributable to V. destructor infestation. Therefore, it is critical to inform the community about the effects of V. destructor on honey production and develop and implement effective management strategies for this disease. In addition, further research should be done to identify and isolate additional factors that contribute to varroosis in honeybees in different regions.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Awraris Getachew
- Department of Animal Sciences, College of Agriculture and Environmental Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture & Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
17
|
Lazarova S, Lozanova L, Neov B, Shumkova R, Balkanska R, Palova N, Salkova D, Radoslavov G, Hristov P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:693-702. [PMID: 37545319 DOI: 10.1017/s0007485323000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.
Collapse
Affiliation(s)
- Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyudmila Lozanova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Ralitsa Balkanska
- Department 'Special Branches', Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, Sredets 8300, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
García-Vicente EJ, Martín M, Rey-Casero I, Pérez A, Martínez R, Bravo M, Alonso JM, Risco D. Effect of feed supplementation with probiotics and postbiotics on strength and health status of honey bee (Apis mellifera) hives during late spring. Res Vet Sci 2023; 159:237-243. [PMID: 37178627 DOI: 10.1016/j.rvsc.2023.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Currently, beekeeping faces many risks, such as deteriorating health of honeybees in hives, which results in high mortality rates, mainly during winter. An important consequence is the emergence/re-emergence of communicable diseases such as varroosis or nosemosis. These diseases jeopardize the continuity of the sector because of the absence of effective treatments and harmful residues that they can be retained on wax or honey. This study aimed to evaluate how feed supplementation with probiotic and postbiotic products derived from lactic acid bacteria affected the strength, dynamic population, and sanitary parameters of honey bees. Three groups of 30 hives were established and fed with feed supplemented with control, probiotic, or postbiotic products, with a total of nine applications over two months in late spring. Two monitoring tests were conducted to evaluate the strength and health status of hives. Hives that consumed postbiotic products enhanced their strength, increased bee population and egg laying of the queen, and maintained their reserves of pollen, whereas these parameters decreased in hives belonging to other groups. Furthermore, although the results suggested a favorable effect of postbiotic products on the trend of N. ceranae infection levels, probiotics showed intermediate results. While awaiting long-term results regarding V. destructor infestation, which showed similar trends in all groups, feed supplementation with postbiotics could be an important tool for beekeepers to enhance the strength and health status of their hives.
Collapse
Affiliation(s)
| | - María Martín
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | | | - Ana Pérez
- Neobéitar S.L. Av. Alemania 6 1°B, 10001 Cáceres, Spain
| | - Remigio Martínez
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain
| | - María Bravo
- Ingulados, Miguel Servet 11-13, 10004 Cáceres, Spain.
| | - Juan Manuel Alonso
- Department of Animal Health, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| | - David Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| |
Collapse
|
19
|
Botero J, Sombolestani AS, Cnockaert M, Peeters C, Borremans W, De Vuyst L, Vereecken NJ, Michez D, Smagghe G, Bonilla-Rosso G, Engel P, Vandamme P. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome 2023; 5:25. [PMID: 37120592 PMCID: PMC10149009 DOI: 10.1186/s42523-023-00248-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND To understand mechanisms of adaptation and plasticity of pollinators and other insects a better understanding of diversity and function of their key symbionts is required. Commensalibacter is a genus of acetic acid bacterial symbionts in the gut of honey bees and other insect species, yet little information is available on the diversity and function of Commensalibacter bacteria. In the present study, whole-genome sequences of 12 Commensalibacter isolates from bumble bees, butterflies, Asian hornets and rowan berries were determined, and publicly available genome assemblies of 14 Commensalibacter strains were used in a phylogenomic and comparative genomic analysis. RESULTS The phylogenomic analysis revealed that the 26 Commensalibacter isolates represented four species, i.e. Commensalibacter intestini and three novel species for which we propose the names Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Comparative genomic analysis revealed that the four Commensalibacter species had similar genetic pathways for central metabolism characterized by a complete tricarboxylic acid cycle and pentose phosphate pathway, but their genomes differed in size, G + C content, amino acid metabolism and carbohydrate-utilizing enzymes. The reduced genome size, the large number of species-specific gene clusters, and the small number of gene clusters shared between C. melissae and other Commensalibacter species suggested a unique evolutionary process in C. melissae, the Western honey bee symbiont. CONCLUSION The genus Commensalibacter is a widely distributed insect symbiont that consists of multiple species, each contributing in a species specific manner to the physiology of the holobiont host.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Atena Sadat Sombolestani
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Wim Borremans
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Nicolas J Vereecken
- Agroecology Lab, Université libre de Bruxelles, Boulevard du Triomphe CP 264/02, 1050, Brussels, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du parc 20, 7000, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - German Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
20
|
Fernandez De Landa G, Alberoni D, Baffoni L, Fernandez De Landa M, Revainera PD, Porrini LP, Brasesco C, Quintana S, Zumpano F, Eguaras MJ, Maggi MD, Di Gioia D. The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. ENVIRONMENTAL MICROBIOME 2023; 18:38. [PMID: 37098635 PMCID: PMC10131457 DOI: 10.1186/s40793-023-00494-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.
Collapse
Affiliation(s)
- Gregorio Fernandez De Landa
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Mateo Fernandez De Landa
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Pablo Damian Revainera
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Leonardo Pablo Porrini
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Constanza Brasesco
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Silvina Quintana
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Francisco Zumpano
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Funes 3350, Universidad Nacional de Mar del Plata-CONICET, 7600, Mar del Plata, Argentina
| | - Martìn Javier Eguaras
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Matias Daniel Maggi
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
21
|
Carvajal RI, Silva-Mieres F, Ilabaca A, Rocha J, Arellano-Arriagada L, Zuniga Arbalti FA, García-Cancino A. Isolation and characterization of Lactobacillus casei A14.2, a strain with immunomodulating activity on Apis mellifera. Saudi J Biol Sci 2023; 30:103612. [PMID: 36936701 PMCID: PMC10020679 DOI: 10.1016/j.sjbs.2023.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Considering the economic and environmental role played by bees and their present threats it is necessary to develop food supplements favoring their health. The aim of this work was to isolate and characterize an immunomodulating probiotic capable to improve the health of honeybee colonies. For this purpose, bacterial strains were isolated from Apis mellifera bees (N = 180) obtained at three apiaries. A total of 44 strains were isolated and 9 of them were identified as Lactobacillus having the capacity to grow under saccharose osmotic stress, at pH 4.0 and possessing a wide susceptibility to antibiotics. Results allowed to select two strains but finally only one of them, strain A14.2 showed a very significant immunomodulating activity. This strain increased the expression of mRNA codifying the antimicrobial peptides 24 h post-administration. We evaluated its growth kinetics under aerobic and microaerobic conditions and its survival in the presence of high concentrations of saccharose. Results demonstrated that Lactobacillus casei A14.2 strain was highly tolerant to oxygen and that it was able to adapt to saccharose enriched environments (50% and 100% w/v). Finally, L. casei A14.2 strain was administered monthly during summer and early fall to 4 honeybee colonies (2 controls and 2 treatments). The results showed a gradual sustained decrease of infestation (p < 0.05) by the pathogenic Nosema spp. but no reduction in the infestation by the mite Varroa destructor. These results suggest that the administration of this potential probiotic, may increase the resistance of honeybee colonies to infectious diseases caused by Nosema spp.
Collapse
Affiliation(s)
- Romina I. Carvajal
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Sede Concepción, Lientur 1457, Concepción 4030000, Chile
| | - Fabiola Silva-Mieres
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Alejandra Ilabaca
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Jorge Rocha
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Luciano Arellano-Arriagada
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Felipe A. Zuniga Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| |
Collapse
|
22
|
Jabal-Uriel C, Alba C, Higes M, Rodríguez JM, Martín-Hernández R. Effect of Nosema ceranae infection and season on the gut bacteriome composition of the European honeybee (Apis mellifera). Sci Rep 2022; 12:9326. [PMID: 35662256 PMCID: PMC9167302 DOI: 10.1038/s41598-022-13337-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Nosema ceranae is an intracellular parasite that infects honeybees' gut altering the digestive functions; therefore, it has the potential of affecting the composition of the gut microbiome. In this work, individual bees of known age were sampled both in spring and autumn, and their digestive tracts were assessed for N. ceranae infection. Intestinal microbiome was assessed by sequencing the bacterial 16S rRNA gene in two different gut sections, the anterior section (AS; midgut and a half of ileum) and the posterior section (PS; second half of ileum and rectum). A preliminary analysis with a first batch of samples (n = 42) showed that AS samples had a higher potential to discriminate between infected and non-infected bees than PS samples. As a consequence, AS samples were selected for subsequent analyses. When analyzing the whole set of AS samples (n = 158) no changes in α- or β-diversity were observed between infected and non-infected bees. However, significant changes in the relative abundance of Proteobacteria and Firmicutes appeared when a subgroup of highly infected bees was compared to the group of non-infected bees. Seasonality and bees' age had a significant impact in shaping the bacteriome structure and composition of the bees' gut. Further research is needed to elucidate possible associations between the microbiome and N. ceranae infection in order to find efficient strategies for prevention of infections through modulation of bees' microbiome.
Collapse
Affiliation(s)
- Clara Jabal-Uriel
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040, Madrid, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT - ESF/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, 02006, Albacete, Spain.
| |
Collapse
|
23
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|
24
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
25
|
Standard Methods for Dissection of Varroa destructor Females. INSECTS 2021; 13:insects13010037. [PMID: 35055880 PMCID: PMC8781925 DOI: 10.3390/insects13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
Varroa destructor (Anderson and Trueman) is known as a major pest of Apis mellifera L, especially in the Northern Hemisphere where its effects can be deleterious. As an obligate parasite, this mite relies entirely on its host to reproduce and complete its cycle. Studies focusing on isolated organs are needed to better comprehend this organism. To conduct such targeted molecular or physiological studies, the dissection of V. destructor mites is crucial as it allows the extraction of specific organs. Here, we propose a technical article showing detailed steps of females V. destructor dissection, illustrated with pictures and videos. These illustrated guidelines will represent a helpful tool to go further in V. destructor research.
Collapse
|
26
|
Mráz P, Hýbl M, Kopecký M, Bohatá A, Hoštičková I, Šipoš J, Vočadlová K, Čurn V. Screening of Honey Bee Pathogens in the Czech Republic and Their Prevalence in Various Habitats. INSECTS 2021; 12:insects12121051. [PMID: 34940139 PMCID: PMC8706798 DOI: 10.3390/insects12121051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023]
Abstract
Western honey bee (Apis mellifera) is one of the most important pollinators in the world. Thus, a recent honey bee health decline and frequent honey bee mass losses have drawn attention and concern. Honey bee fitness is primarily reduced by pathogens, parasites, and viral load, exposure to pesticides and their residues, and inadequate nutrition from both the quality and amount of food resources. This study evaluated the prevalence of the most common honey bee pathogens and viruses in different habitats across the Czech Republic. The agroecosystems, urban ecosystems, and national park were chosen for sampling from 250 colonies in 50 apiaries. Surprisingly, the most prevalent honey bee pathogens belong to the family Trypanosomatidae including Lotmaria passim and Crithidia mellificae. As expected, the most prevalent viruses were DWV, followed by ABPV. Additionally, the occurrence of DWV-B and DWV-C were correlated with honey bee colony mortality. From the habitat point of view, most pathogens occurred in the town habitat, less in the agroecosystem and least in the national park. The opposite trend was observed in the occurrence of viruses. However, the prevalence of viruses was not affected by habitat.
Collapse
Affiliation(s)
- Petr Mráz
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
- Correspondence:
| | - Marian Hýbl
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Marek Kopecký
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Andrea Bohatá
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Irena Hoštičková
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Jan Šipoš
- Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Kateřina Vočadlová
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| | - Vladislav Čurn
- Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic; (M.H.); (M.K.); (A.B.); (I.H.); (K.V.); (V.Č.)
| |
Collapse
|
27
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
28
|
Tejerina MR, Benítez-Ahrendts MR, Audisio MC. Lactobacillus salivarius A3iob Reduces the Incidence of Varroa destructor and Nosema Spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob Proteins 2021; 12:1360-1369. [PMID: 32172463 DOI: 10.1007/s12602-020-09638-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactobacillus salivarius A3iob was administered to productive colonies belonging to commercial apiaries of small beekeepers (around 30-50 hives each one), from four departments of the province of Jujuy (Argentina): Yala, Tilquiza, El Carmen, and Los Alisos. The incidence of Varroa destructor and Nosema spp., before and after winter, was monitored during 2 years of study (2014-2015). Depending on the geographical location of each apiary and the application time, a monthly dose of the bacteria (105 CFU/mL) reduced the levels of varroasis between 50 and 80%. Interestingly, L. salivarius A3iob cells remitted the percentage of the mites to undetectable values in an apiary treated with flumethrin (at Yala, Yungas region).On the other hand, the spore levels of Nosema spp. in the lactobacilli-treated colonies also depended on the apiary and the year of application, but a significant decrease was mainly observed in the post-winter period. However, at Rivera (El Carmen's department), no significant changes were detected in both parameters.These results obtained after 2 years of work suggest that delivering L. salivarius A3iob cells to the bee colonies can become a new eco-friendly tool to cooperate with the control of these bees' pests.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600, Jujuy, Argentina
| | | | - Marcela Carina Audisio
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, 4402FDC, Salta, Argentina.
| |
Collapse
|
29
|
Balakrishnan B, Wu H, Cao L, Zhang Y, Li W, Han R. Immune Response and Hemolymph Microbiota of Apis mellifera and Apis cerana After the Challenge With Recombinant Varroa Toxic Protein. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1310-1320. [PMID: 33822096 DOI: 10.1093/jee/toab047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 06/12/2023]
Abstract
The honey bee is a significant crop pollinator and key model insect for understanding social behavior, disease transmission, and development. The ectoparasitic Varroa destructor mite put threats on the honey bee industry. A Varroa toxic protein (VTP) from the saliva of Varroa mites contributes to the toxicity toward Apis cerana and the deformed wing virus elevation in Apis mellifera. However, the immune response and hemolymph microbiota of honey bee species after the injection of recombinant VTP has not yet been reported. In this study, both A. cerana and A. mellifera worker larvae were injected with the recombinant VTP. Then the expressions of the honey bee immune genes abaecin, defensin, and domeless at three time points were determined by qRT-PCR, and hemolymph microbial community were analyzed by culture-dependent method, after recombinant VTP injection. The mortality rates of A. cerana larvae were much higher than those of A. mellifera larvae after VTP challenge. VTP injection induced the upregulation of defensin gene expression in A. mellifera larvae, and higher levels of abaecin and domeless mRNAs response in A. cerana larvae, compared with the control (without any injection). Phosphate buffer saline (PBS) injection also upregulated the expression levels of abaecin, defensin, and domeless in A. mellifera and A. cerana larvae. Three bacterial species (Enterococcus faecalis, Staphylococcus cohnii, and Bacillus cereus) were isolated from the hemolymph of A. cerana larvae after VTP injection and at 48 h after PBS injections. Two bacterial species (Stenotrophomonas maltophilia and Staphylococcus aureus) were isolated from A. mellifera larvae after VTP challenge. No bacterial colonies were detected from the larval hemolymph of both honey bee species treated by injection only and the control. The result indicates that abaecin, defensin, and domeless genes and hemolymph microbiota respond to the VTP challenge. VTP injection might induce the dramatic growth of different bacterial species in the hemolymph of the injected larvae of A. mellifera and A. cerana, which provide cues for further studying the interactions among the honey bee, VTP, and hemolymph bacteria.
Collapse
Affiliation(s)
- Balachandar Balakrishnan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Hua Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, Guangdong, China
| |
Collapse
|
30
|
Tejerina MR, Cabana MJ, Benitez-Ahrendts MR. Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J Invertebr Pathol 2020; 178:107521. [PMID: 33347864 DOI: 10.1016/j.jip.2020.107521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/21/2023]
Abstract
Beekeeping activities have increased recently in Argentina, a country that is a major consumer of honey and other products from hives. With the advancement of monoculture areas in Argentina and worldwide, beekeepers move from one area to another in search of floral resources, thus spreading diseases such as chalkbrood, caused by the fungus Ascosphaera apis. Although there are few effective antifungals for the control of chalkbrood, different natural products have been investigated in recent years. Current research is focusing on the intestinal microbiota for the prevention of different pathogens and parasites. In this work, we analyzed the in vivo probiotic effect of three lactic acid bacteria (genus Lactobacillus spp.) isolated from pollen bread from apiaries of Jujuy province on A. apis strains from Spanish and Argentine provinces. Special hives were made for the assays, and a protective effect was observed in larvae of bees fed lactic acid bacteria added to sugar syrup at 105 CFU/mL concentrations, administered from May to September in two consecutive years. The results showed that the three lactic acid bacteria reduced larval mummification by percentages greater than 80%. Therefore, this work brings a first approximation of the in vivo probiotic effect of lactic bacteria against A. apis.
Collapse
Affiliation(s)
- Marcos Raúl Tejerina
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600 Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina.
| | - María José Cabana
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600 Jujuy, Argentina
| | - Marcelo Rafael Benitez-Ahrendts
- Cátedra de Microbiología, Sanidad apícola y Meliponícola, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, 4600 Jujuy, Argentina; Instituto de Ecorregiones Andinas (INECOA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Bolivia 1239, San Salvador de Jujuy, Jujuy, Argentina
| |
Collapse
|
31
|
Mathis KA, Bronstein JL. Our Current Understanding of Commensalism. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-040844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensalisms, interactions between two species in which one species benefits and the other experiences no net effect, are frequently mentioned in the ecological literature but are surprisingly little studied. Here we review and synthesize our limited understanding of commensalism. We then argue that commensalism is not a single type of interaction; rather, it is a suite of phenomena associated with distinct ecological processes and evolutionary consequences. For each form of commensalism we define, we present evidence for how, where, and why it occurs, including when it is evolutionarily persistent and when it is an occasional outcome of interactions that are usually mutualistic or antagonistic. We argue that commensalism should be of great interest in the study of species interactions due to its location at the center of the continuum between positive and negative outcomes. Finally, we offer a roadmap for future research.
Collapse
Affiliation(s)
- Kaitlyn A. Mathis
- Department of Biology, Clark University, Worcester, Massachusetts 01610, USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
32
|
Geldert C, Abdo Z, Stewart JE, H S A. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. J Appl Microbiol 2020; 130:1705-1720. [PMID: 33058297 DOI: 10.1111/jam.14897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
AIM Determine the impact of beneficial phytochemicals on diversity and abundance of the gut microbiome in the honey bee (Apis mellifera). METHODS AND RESULTS Eight-day-old honey bee workers were fed 25 ppm of phytochemical (caffeine, gallic acid, p-coumaric acid or kaempferol) in 20% sucrose. Guts of bees collected at 3 and 6 days were excised and subjected to next-generation sequencing for bacterial 16S and fungal ITS regions. Although phytochemical supplementation fostered gut microbial diversity and abundance, the patterns differed between phytochemicals and there was a temporal stabilization of the bacterial community. While bacterial and fungal communities responded differently, all phytochemical treatments displayed increased abundance of the most represented bacterial genera, Snodgrassella sp. and Lactobacillus sp. CONCLUSIONS Phytochemical supplementation improves gut microbial diversity and abundance, reiterating the need for diverse habitats that provide bees with access to pollen and nectar rich in these micronutrients. Diverse gut microbiota can provide a strong line of defense for bees against biotic stressors while improving worker bee lifespan. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the impact of phytochemical supplementation on gut microbiota in honey bees and these findings have implications for strategic hive management through standardization of effective phytochemical and probiotic feed supplements.
Collapse
Affiliation(s)
- C Geldert
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Z Abdo
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Arathi H S
- USDA/ARS, WRRC Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| |
Collapse
|
33
|
Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerg Top Life Sci 2020; 4:45-57. [PMID: 32537655 PMCID: PMC7326341 DOI: 10.1042/etls20190125] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.
Collapse
|
34
|
Microbial Ecology of European Foul Brood Disease in the Honey Bee ( Apis mellifera): Towards a Microbiome Understanding of Disease Susceptibility. INSECTS 2020; 11:insects11090555. [PMID: 32825355 PMCID: PMC7565670 DOI: 10.3390/insects11090555] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/01/2023]
Abstract
Simple Summary Honey bees are vital to the agriculture of the world, but like all managed organisms, disease control has become challenging due to the overuse and misuse of antibiotics. Alternate solutions with potential to control disease include natural compounds and probiotic supplements. Probiotic supplements in honey bees have been praised by industry, but studies applying probiotics to honey bee larval disease are lacking and technically challenging. In this study we tested the effectiveness of a demonstrated probiotic (Parasacharribacter apium strain C6) to mitigate a damaging larval disease called European Foul Brood (EFB). Based on a controlled laboratory study and two separate trials, the probiotic had no effect on EFB disease. The control groups performed as expected, validating the very sensitive lab procedure used to artificially rear honey bee larvae. Surprisingly, the probiotic provided no survival benefit to larvae in the absence of disease, contradicting past results. We discuss the difficult technique of larval rearing in the laboratory with reference to an improved experimental design introducing disease agents and potential remedies. In summary, our findings indicate that the representation of honey bee health and disease in the laboratory setting requires repeatable validation with reference to rigorous control and natural colony context. Abstract European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.
Collapse
|
35
|
Huang Q, Evans JD. Targeting the honey bee gut parasite Nosema ceranae with siRNA positively affects gut bacteria. BMC Microbiol 2020; 20:258. [PMID: 32807095 PMCID: PMC7433167 DOI: 10.1186/s12866-020-01939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gut microbial communities can contribute positively and negatively to host health. So far, eight core bacterial taxonomic clusters have been reported in honey bees. These bacteria are involved in host metabolism and defenses. Nosema ceranae is a gut intracellular parasite of honey bees which destroys epithelial cells and gut tissue integrity. Studies have shown protective impacts of honey bee gut microbiota towards N. ceranae infection. However, the impacts of N. ceranae on the relative abundance of honey bee gut microbiota remains unclear, and has been confounded during prior infection assays which resulted in the co-inoculation of bacteria during Nosema challenges. We used a novel method, the suppression of N. ceranae with specific siRNAs, to measure the impacts of Nosema on the gut microbiome. RESULTS Suppressing N. ceranae led to significant positive effects on microbial abundance. Nevertheless, 15 bacterial taxa, including three core taxa, were negatively correlated with N. ceranae levels. In particular, one co-regulated group of 7 bacteria was significantly negatively correlated with N. ceranae levels. CONCLUSIONS N. ceranae are negatively correlated with the abundance of 15 identified bacteria. Our results provide insights into interactions between gut microbes and N. ceranae during infection.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Zhimin Avenue 1101, Nanchang, 330045, China.
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, BARC-East Building 306, Beltsville, MD, 20705, USA.
| |
Collapse
|
36
|
Bleau N, Bouslama S, Giovenazzo P, Derome N. Dynamics of the Honeybee ( Apis mellifera) Gut Microbiota Throughout the Overwintering Period in Canada. Microorganisms 2020; 8:microorganisms8081146. [PMID: 32751209 PMCID: PMC7464175 DOI: 10.3390/microorganisms8081146] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.
Collapse
Affiliation(s)
- Naomie Bleau
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| | - Sidki Bouslama
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Pierre Giovenazzo
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
| | - Nicolas Derome
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
37
|
Ma W, Zheng X, Li L, Shen J, Li W, Gao Y. Changes in the gut microbiota of honey bees associated with jujube flower disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110616. [PMID: 32334202 DOI: 10.1016/j.ecoenv.2020.110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Honeybees are prone to poisoning after collecting jujube nectar during the jujube flowering period ('honeybee's jujube flower disease'). To explore the mechanism of honeybee poisoning, the gut microbiota of honeybees undergoing the disease were characterised based on amplicon sequencing of the 16 S rRNA gene. Our results showed that the composition and diversity of the gut microbiota were significantly altered in diseased honeybees. We observed a decrease in the relative abundance of Proteobacteria and increased abundances of Firmicutes and Actinobacteria in the midgut and hindgut of diseased honeybees. Moreover, linear discriminant analysis (LDA) effect size revealed significantly selected enrichment of Fructobacillus and Snodgrassella in the midguts from diseased honeybees and Lactobacillus, Bifidobacterium, and Snodgrassella in the hindguts from diseased honeybees. Tax4Fun anylasis indicated that the functional potential of the diseased honeybee gut bacterial community was significantly changed relative to the healthy honeybee. Carbohydrate metabolism, nucleotides metabolism, amino acid synthesis metabolism, coenzyme and vitamins metabolism were increased, while energy metabolism and xenobiotic biodegradation and metabolism were decreased in the diseased honeybees. These results provide a new perspective for evaluating the response of honeybees to jujube flower disease based on changes in the intestinal microflora.
Collapse
Affiliation(s)
- WeiHua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China.
| | - Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Lixin Li
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jinshan Shen
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
38
|
Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol 2020; 28:1010-1021. [PMID: 32680791 DOI: 10.1016/j.tim.2020.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Pesticide exposure, infectious disease, and nutritional stress contribute to honey bee mortality and a high rate of colony loss. This realization has fueled a decades-long investigation into the single and combined effects of each stressor and their overall bearing on insect physiology. However, one element largely missing from this research effort has been the evaluation of underlying microbial communities in resisting environmental stressors and their influence on host immunity and disease tolerance. In humans, multigenerational bombardment by antibiotics is linked with many contemporary diseases. Here, we draw a parallel conclusion for the case in honey bees and suggest that chronic exposure to antimicrobial xenobiotics can systematically deplete honey bees of their microbes and hamper cross-generational preservation of host-adapted symbionts that are crucial to health.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - John A Chmiel
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON, N6C 2R5, Canada; Department of Surgery, Schulich School of Medicine, London, ON, N6A 5C1, Canada.
| |
Collapse
|
39
|
Lamei S, Stephan JG, Nilson B, Sieuwerts S, Riesbeck K, de Miranda JR, Forsgren E. Feeding Honeybee Colonies with Honeybee-Specific Lactic Acid Bacteria (Hbs-LAB) Does Not Affect Colony-Level Hbs-LAB Composition or Paenibacillus larvae Spore Levels, Although American Foulbrood Affected Colonies Harbor a More Diverse Hbs-LAB Community. MICROBIAL ECOLOGY 2020; 79:743-755. [PMID: 31506760 PMCID: PMC7176604 DOI: 10.1007/s00248-019-01434-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The main current methods for controlling American Foulbrood (AFB) in honeybees, caused by the bacterial pathogen Paenibacillus larvae, are enforced incineration or prophylactic antibiotic treatment, neither of which is fully satisfactory. This has led to an increased interest in the natural relationships between the pathogenic and mutualistic microorganisms of the honeybee microbiome, in particular, the antagonistic effects of Honeybee-Specific Lactic Acid Bacteria (hbs-LAB) against P. larvae. We investigated whether supplemental administration of these bacteria affected P. larvae infection at colony level over an entire flowering season. Over the season, the supplements affected neither colony-level hbs-LAB composition nor naturally subclinical or clinical P. larvae spore levels. The composition of hbs-LAB in colonies was, however, more diverse in apiaries with a history of clinical AFB, although this was also unrelated to P. larvae spore levels. During the experiments, we also showed that qPCR could detect a wider range of hbs-LAB, with higher specificity and sensitivity than mass spectrometry. Honeybee colonies are complex super-organisms where social immune defenses, natural homeostatic mechanisms, and microbiome diversity and function play a major role in disease resistance. This means that observations made at the individual bee level cannot be simply extrapolated to infer similar effects at colony level. Although individual laboratory larval assays have clearly demonstrated the antagonistic effects of hbs-LAB on P. larvae infection, the results from the experiments presented here indicate that direct conversion of such practice to colony-level administration of live hbs-LAB is not effective.
Collapse
Affiliation(s)
- Sepideh Lamei
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Bo Nilson
- Clinical Microbiology, Labmedicine, Region Skåne, Lund, Sweden
- Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | | | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
40
|
Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol 2020; 3:51. [PMID: 32005933 PMCID: PMC6994608 DOI: 10.1038/s42003-020-0775-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
It is still not understood how honey bee parasite changes the gene expression to adapt to the host environment and how the host simultaneously responds to the parasite infection by modifying its own gene expression. To address this question, we studied a trypanosomatid, Lotmaria passim, which can be cultured in medium and inhabit the honey bee hindgut. We found that L. passim decreases mRNAs associated with protein translation, glycolysis, detoxification of radical oxygen species, and kinetoplast respiratory chain to adapt to the anaerobic and nutritionally poor honey bee hindgut during the infection. After the long term infection, the host appears to be in poor nutritional status, indicated by the increase and decrease of take-out and vitellogenin mRNAs, respectively. Simultaneous gene expression profiling of L. passim and honey bee during infection by dual RNA-seq provided insight into how both parasite and host modify their gene expressions.
Collapse
Affiliation(s)
- Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Jing Lei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
41
|
Rouzé R, Moné A, Delbac F, Belzunces L, Blot N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ 2019; 34:226-233. [PMID: 31378758 PMCID: PMC6759349 DOI: 10.1264/jsme2.me18169] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.
Collapse
Affiliation(s)
- Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Anne Moné
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | | | - Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| |
Collapse
|
42
|
Ribière C, Hegarty C, Stephenson H, Whelan P, O'Toole PW. Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-thriving Hives. MICROBIAL ECOLOGY 2019; 78:195-205. [PMID: 30467713 DOI: 10.1007/s00248-018-1287-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/06/2018] [Indexed: 05/23/2023]
Abstract
The recent worldwide decline of honey bee colonies is a major ecological problem which also threatens pollinated crop production. Several interacting stressors such as environmental pressures and pathogens are suspected. Recently, the gut microbiota has emerged as a critical factor affecting bee health and fitness. We profiled the bacterial communities associated with the gut and whole body of worker bees to assess whether non-thriving colonies could be separated from thriving hives based on their microbial signature. The microbiota of thriving colonies was characterised by higher diversity and higher relative abundance of bacterial taxa involved in sugar degradation that were previously associated with healthy bees (e.g. Commensalibacter sp. and Bartonella apis). In contrast, the microbiota of non-thriving bees was depleted in health-associated species (e.g. Lactobacillus apis), and bacterial taxa associated with disease states (e.g. Gilliamella apicola) and pollen degradation (e.g. G. apicola and Bifidobacterium asteroides) were present in higher abundance compared to thriving colonies. Gut and whole-body microbiota shared a similar dominant core but their comparison showed differences in composition and relative abundance. More differences in taxon relative abundance between gut and whole body were observed in non-thriving bees, suggesting that microbiota associated with other bee organs might also be different. Thus, microbiota profiling could be used as a diagnostic tool in beekeeping practices to predict hive health and guide hive management.
Collapse
Affiliation(s)
- Céline Ribière
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Claire Hegarty
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Hannah Stephenson
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Padraig Whelan
- Apis Protect Limited, Environmental Research Centre, Lee Road, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
43
|
Strobl V, Yañez O, Straub L, Albrecht M, Neumann P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int J Parasitol 2019; 49:605-613. [PMID: 31163178 DOI: 10.1016/j.ijpara.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022]
Abstract
The parasite Crithidia mellificae (Kinetoplastea: Trypanosomatidae) infects honeybees, Apis mellifera. No pathogenic effects have been found in individual hosts, despite positive correlations between infections and colony mortalities. The solitary bee Osmia cornuta might constitute a host, but controlled infections are lacking to date. Here, we challenged male and female O. cornuta and honeybee workers in laboratory cages with C. mellificae. No parasite cells were found in any control. Parasite numbers increased 6.6 fold in honeybees between days 6 and 19 p.i. and significantly reduced survival. In O. cornuta, C. mellificae numbers increased 2-3.6 fold within cages and significantly reduced survival of males, but not females. The proportion of infected hosts increased in O. cornuta cages with faeces, but not in honeybee cages without faeces, suggesting faecal - oral transmission. The data show that O. cornuta is a host of C. mellificae and suggest that males are more susceptible. The higher mortality of infected honeybees proposes a mechanism for correlations between C. mellificae infections and colony mortalities.
Collapse
Affiliation(s)
- Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroecology and Environment, Agroscope, Zürich, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Centre, Agroscope, Bern, Switzerland
| |
Collapse
|
44
|
Rubanov A, Russell KA, Rothman JA, Nieh JC, McFrederick QS. Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci Rep 2019; 9:3820. [PMID: 30846803 PMCID: PMC6405881 DOI: 10.1038/s41598-019-40347-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 11/09/2022] Open
Abstract
The honey bee, Apis mellifera, pollinates a wide variety of essential crops in numerous ecosystems around the world but faces many modern challenges. Among these, the microsporidian pathogen Nosema ceranae is one of the primary detriments to honey bee health. Nosema infects the honey bee gut, which harbors a highly specific, coevolved microbiota heavily involved in bee immune function and nutrition. Here, we extend previous work investigating interactions between the honey bee gut microbiome and N. ceranae by studying experimentally infected bees that were returned to their colonies and sampled 5, 10, and 21 days post-infection. We measured Nosema load with quantitative PCR and characterized microbiota with 16S rRNA gene amplicon sequencing. We found significant colony level variation in infection levels, and subtle differences between the microbiota of colonies with high infection levels versus those with low infection levels. Two exact sequence variants of Gilliamella, a core gut symbiont that has previously been associated with gut dysbiosis, were significantly more abundant in bees from colonies with high Nosema loads versus those with low Nosema loads. These bacteria deserve further study to determine if they facilitate more intense infection by Nosema ceranae.
Collapse
Affiliation(s)
- Andrey Rubanov
- UCSD Division of Biological Sciences Section of Ecology, Behavior, and Evolution 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, USA
| | - Kaleigh A Russell
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Jason A Rothman
- Graduate Program in Microbiology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - James C Nieh
- UCSD Division of Biological Sciences Section of Ecology, Behavior, and Evolution 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, USA.
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
- Graduate Program in Microbiology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
45
|
Insights into the metabolism and behaviour of Varroa destructor mites from analysis of their waste excretions. Parasitology 2018; 146:527-532. [PMID: 30409232 PMCID: PMC6425362 DOI: 10.1017/s0031182018001762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Varroa destructor mites (Acari: Varroidae) are harmful ectoparasites of Apis mellifera honey bees. Female foundresses of wax-capped pupal host cells and their daughters feed on host fluids from open wounds on the host's integument. Details of V. destructor mite nutrition are forthcoming, and little is known about the potential physical effects on hosts from mite feeding. Chemical analysis of waste excretions can infer details of animals’ nutrition. Here, chemical analysis by high-performance liquid chromatography/mass spectrometry (HPLC-MS/MS) of mite excretions showed that the purine content of V. destructor waste consists of guanine with traces of hypoxanthine. Traces of uric acid and caffeine were also detected. Concentrations of guanine attenuated over time and excretions collected from senescing mites did not contain detectable guanine. Non-reproducing individual female mites maintained in vitro, housed in gelatin capsules and provided a honey bee pupa, deposited an average of nearly 18 excretions daily, mostly on the host's integument rather than on the capsule wall. The weight and volume of excretions suggest mites can consume nearly a microlitre of host fluids each day. Compounded over 10 days, this together with open wounds, could lead to substantial water loss and stress to developing pupae.
Collapse
|
46
|
Stefanini I. Yeast-insect associations: It takes guts. Yeast 2018; 35:315-330. [PMID: 29363168 PMCID: PMC5947625 DOI: 10.1002/yea.3309] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/02/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Insects interact with microorganisms in several situations, ranging from the accidental interaction to locate attractive food or the acquisition of essential nutrients missing in the main food source. Despite a wealth of studies recently focused on bacteria, the interactions between insects and yeasts have relevant implications for both of the parties involved. The insect intestine shows several structural and physiological differences among species, but it is generally a hostile environment for many microorganisms, selecting against the most sensitive and at the same time guaranteeing a less competitive environment to resistant ones. An intensive characterization of the interactions between yeasts and insects has highlighted their relevance not only for attraction to food but also for the insect's development and behaviour. Conversely, some yeasts have been shown to benefit from interactions with insects, in some cases by being carried among different environments. In addition, the insect intestine may provide a place to reside for prolonged periods and possibly mate or generate sexual forms able to mate once back in the external environments. YEA-May-17-0084.R3.
Collapse
Affiliation(s)
- Irene Stefanini
- Division of Biomedical SciencesUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
47
|
Vejnovic B, Stevanovic J, Schwarz RS, Aleksic N, Mirilovic M, Jovanovic NM, Stanimirovic Z. Quantitative PCR assessment of Lotmaria passim in Apis mellifera colonies co-infected naturally with Nosema ceranae. J Invertebr Pathol 2018; 151:76-81. [DOI: 10.1016/j.jip.2017.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
|
48
|
Erban T, Ledvinka O, Kamler M, Hortova B, Nesvorna M, Tyl J, Titera D, Markovic M, Hubert J. Bacterial community associated with worker honeybees ( Apis mellifera) affected by European foulbrood. PeerJ 2017; 5:e3816. [PMID: 28966892 PMCID: PMC5619233 DOI: 10.7717/peerj.3816] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/26/2017] [Indexed: 01/17/2023] Open
Abstract
Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis mellifera L.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2. Conclusions High-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence of M. plutonius within the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius due to the greatly increased incidence of the pathogen. The presence of M. plutonius sequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms that E. faecalis is a secondary invader to M. plutonius; however, other putative secondary invaders were not identified in this study.
Collapse
Affiliation(s)
| | - Ondrej Ledvinka
- Crop Research Institute, Prague, Czechia.,Czech Hydrometeorological Institute, Prague, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| | | | | | - Jan Tyl
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| | - Dalibor Titera
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia.,Department of Zoology and Fisheries/Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | | | - Jan Hubert
- Crop Research Institute, Prague, Czechia
| |
Collapse
|
49
|
Erban T, Ledvinka O, Kamler M, Nesvorna M, Hortova B, Tyl J, Titera D, Markovic M, Hubert J. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis. Sci Rep 2017; 7:5084. [PMID: 28698604 PMCID: PMC5506040 DOI: 10.1038/s41598-017-05076-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Honeybee (Apis mellifera L.) workers act as passive vectors of Paenibacillus larvae spores, which cause the quarantine disease American foulbrood (AFB). We assessed the relative proportions of P. larvae within the honeybee microbiome using metabarcoding analysis of the 16 S rRNA gene. The microbiome was analyzed in workers outside of the AFB zone (control - AFB0), in workers from asymptomatic colonies in an AFB apiary (AFB1), and in workers from colonies exhibiting clinical AFB symptoms (AFB2). The microbiome was processed for the entire community and for a cut-off microbiome comprising pathogenic/environmental bacteria following the removal of core bacterial sequences; varroosis levels were considered in the statistical analysis. No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria. There was no significant difference in the relative abundance of P. larvae between the AFB1 and AFB0 colonies, but we did observe a 9-fold increase in P. larvae abundance in AFB2 relative to the abundance in AFB1. The relative sequence numbers of Citrobacter freundii and Hafnia alvei were higher in AFB2 and AFB1 than in AFB0, whereas Enterococcus faecalis, Klebsiella oxytoca, Spiroplasma melliferum and Morganella morganii were more abundant in AFB0 and AFB1 than in AFB2.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Ondrej Ledvinka
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
- Czech Hydrometeorological Institute, Na Sabatce 2050/17, Prague 412, CZ-143 06, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Maslovice-Dol 94, Libcice nad Vltavou, CZ-252 66, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Bronislava Hortova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Jan Tyl
- Bee Research Institute at Dol, Maslovice-Dol 94, Libcice nad Vltavou, CZ-252 66, Czechia
| | - Dalibor Titera
- Bee Research Institute at Dol, Maslovice-Dol 94, Libcice nad Vltavou, CZ-252 66, Czechia
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague 6-Suchdol, Czechia
| | - Martin Markovic
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| |
Collapse
|