1
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2024:10.1007/s12035-024-04427-7. [PMID: 39196495 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Beghelli D, Giusti L, Zallocco L, Ronci M, Cappelli A, Pontifex MG, Muller M, Damiani C, Cirilli I, Hrelia S, Vauzour D, Vittadini E, Favia G, Angeloni C. Dietary fiber supplementation increases Drosophila melanogaster lifespan and gut microbiota diversity. Food Funct 2024; 15:7468-7477. [PMID: 38912918 DOI: 10.1039/d4fo00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| |
Collapse
|
3
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
4
|
Cameirão C, Costa D, Rufino J, Pereira JA, Lino-Neto T, Baptista P. Diversity, Composition, and Specificity of the Philaenus spumarius Bacteriome. Microorganisms 2024; 12:298. [PMID: 38399702 PMCID: PMC10893442 DOI: 10.3390/microorganisms12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Aphrophoridae) was recently classified as a pest due to its ability to act as a vector of the phytopathogen Xylella fastidiosa. This insect has been reported to harbour several symbiotic bacteria that play essential roles in P. spumarius health and fitness. However, the factors driving bacterial assemblages remain largely unexplored. Here, the bacteriome associated with different organs (head, abdomen, and genitalia) of males and females of P. spumarius was characterized using culturally dependent and independent methods and compared in terms of diversity and composition. The bacteriome of P. spumarius is enriched in Proteobacteria, Bacteroidota, and Actinobacteria phyla, as well as in Candidatus Sulcia and Cutibacterium genera. The most frequent isolates were Curtobacterium, Pseudomonas, and Rhizobiaceae sp.1. Males display a more diverse bacterial community than females, but no differences in diversity were found in distinct organs. However, the organ shapes the bacteriome structure more than sex, with the Microbacteriaceae family revealing a high level of organ specificity and the Blattabacteriaceae family showing a high level of sex specificity. Several symbiotic bacterial genera were identified in P. spumarius for the first time, including Rhodococcus, Citrobacter, Halomonas, Streptomyces, and Providencia. Differences in the bacterial composition within P. spumarius organs and sexes suggest an adaptation of bacteria to particular insect tissues, potentially shaped by their significance in the life and overall fitness of P. spumarius. Although more research on the bacteria of P. spumarius interactions is needed, such knowledge could help to develop specific bacterial-based insect management strategies.
Collapse
Affiliation(s)
- Cristina Cameirão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Daniela Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - José Rufino
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.C.); (T.L.-N.)
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (J.A.P.)
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
5
|
Dong Y, Li Y, Ge M, Takatsu T, Wang Z, Zhang X, Ding D, Xu Q. Distinct gut microbial communities and functional predictions in divergent ophiuroid species: host differentiation, ecological niches, and adaptation to cold-water habitats. Microbiol Spectr 2023; 11:e0207323. [PMID: 37889056 PMCID: PMC10715168 DOI: 10.1128/spectrum.02073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Gastrointestinal microorganisms are critical to the survival and adaptation of hosts, and there are few studies on the differences and functions of gastrointestinal microbes in widely distributed species. This study investigated the gut microbes of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) in cold-water habitats of the Northern Pacific Ocean. The results showed that a combination of host and environmental factors shapes the intestinal microbiota of ophiuroids. There was a high similarity in microbial communities between the two groups living in different regions, which may be related to their similar ecological niches. These microorganisms played a vital role in the ecological success of ophiuroids as the foundation for their adaptation to cold-water environments. This study revealed the complex relationship between hosts and their gut microbes, providing insights into the role they play in the adaptation and survival of marine species.
Collapse
Affiliation(s)
- Yue Dong
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiling Ge
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Tetsuya Takatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Dewen Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| |
Collapse
|
6
|
Yun HM, Hyun S. Role of gut commensal bacteria in juvenile developmental growth of the host: insights from Drosophila studies. Anim Cells Syst (Seoul) 2023; 27:329-339. [PMID: 38023592 PMCID: PMC10653766 DOI: 10.1080/19768354.2023.2282726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
The gut microbiome plays a crucial role in maintaining health in a variety of organisms, from insects to humans. Further, beneficial symbiotic microbes are believed to contribute to improving the quality of life of the host. Drosophila is an optimal model for studying host-commensal microbe interactions because it allows for convenient manipulation of intestinal microbial composition. Fly microbiota has a simple taxonomic composition and can be cultivated and genetically tracked. This permits functional studies and analyses of the molecular mechanisms underlying their effects on host physiological processes. In this context, we briefly introduce the principle of juvenile developmental growth in Drosophila. Then, we discuss the current understanding of the molecular mechanisms underlying the effects of gut commensal bacteria, such as Lactiplantibacillus plantarum and Acetobacter pomorum, in the fly gut microbiome on Drosophila juvenile growth, including specific actions of gut hormones and metabolites in conserved cellular signaling systems, such as the insulin/insulin-like (IIS) and the target of rapamycin (TOR) pathways. Given the similarities in tissue function/structure, as well as the high conservation of physiological systems between Drosophila and mammals, findings from the Drosophila model system will have significant implications for understanding the mechanisms underlying the interaction between the host and the gut microbiome in metazoans.
Collapse
Affiliation(s)
- Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
7
|
Lee J, Song X, Hyun B, Jeon CO, Hyun S. Drosophila Gut Immune Pathway Suppresses Host Development-Promoting Effects of Acetic Acid Bacteria. Mol Cells 2023; 46:637-653. [PMID: 37853687 PMCID: PMC10590707 DOI: 10.14348/molcells.2023.0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023] Open
Abstract
The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.
Collapse
Affiliation(s)
- Jaegeun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Bom Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
8
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
9
|
Levine BH, Hoffman JM. Gut Microbiome Transplants and Their Health Impacts across Species. Microorganisms 2023; 11:1488. [PMID: 37374992 DOI: 10.3390/microorganisms11061488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The human gut, required for ingesting and processing food, extracting nutrients, and excreting waste, is made up of not just human tissue but also trillions of microbes that are responsible for many health-promoting functions. However, this gut microbiome is also associated with multiple diseases and negative health outcomes, many of which do not have a cure or treatment. One potential mechanism to alleviate these negative health effects caused by the microbiome is the use of microbiome transplants. Here, we briefly review the gut's functional relationships in laboratory model systems and humans, with a focus on the different diseases they directly affect. We then provide an overview of the history of microbiome transplants and their use in multiple diseases including Alzheimer's disease, Parkinson's disease, as well as Clostridioides difficile infections, and irritable bowel syndrome. We finally provide insights into areas of research in which microbiome transplant research is lacking, but that simultaneously may provide significant health improvements, including age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin H Levine
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Intestinal colonization with multidrug-resistant Enterobacterales: screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur J Clin Microbiol Infect Dis 2023; 42:229-254. [PMID: 36680641 PMCID: PMC9899200 DOI: 10.1007/s10096-023-04548-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
The clinical impact of infections due to extended-spectrum β-lactamase (ESBL)- and/or carbapenemase-producing Enterobacterales (Ent) has reached dramatic levels worldwide. Infections due to these multidrug-resistant (MDR) pathogens-especially Escherichia coli and Klebsiella pneumoniae-may originate from a prior asymptomatic intestinal colonization that could also favor transmission to other subjects. It is therefore desirable that gut carriers are rapidly identified to try preventing both the occurrence of serious endogenous infections and potential transmission. Together with the infection prevention and control countermeasures, any strategy capable of effectively eradicating the MDR-Ent from the intestinal tract would be desirable. In this narrative review, we present a summary of the different aspects linked to the intestinal colonization due to MDR-Ent. In particular, culture- and molecular-based screening techniques to identify carriers, data on prevalence and risk factors in different populations, clinical impact, length of colonization, and contribution to transmission in various settings will be overviewed. We will also discuss the standard strategies (selective digestive decontamination, fecal microbiota transplant) and those still in development (bacteriophages, probiotics, microcins, and CRISPR-Cas-based) that might be used to decolonize MDR-Ent carriers.
Collapse
|
11
|
Lee J, Yun HM, Han G, Lee GJ, Jeon CO, Hyun S. A bacteria-regulated gut peptide determines host dependence on specific bacteria to support host juvenile development and survival. BMC Biol 2022; 20:258. [PMID: 36397042 PMCID: PMC9670437 DOI: 10.1186/s12915-022-01458-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Commensal microorganisms have a significant impact on the physiology of host animals, including Drosophila. Lactobacillus and Acetobacter, the two most common commensal bacteria in Drosophila, stimulate fly development and growth, but the mechanisms underlying their functional interactions remain elusive. RESULTS We found that imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor binding protein 7, is expressed in gut enterocytes in a bacteria-dependent manner, determining host dependence on specific bacteria for host development. Imp-L2 mutation abolished the stimulatory effects of Lactobacillus, but not of Acetobacter, on fly larval development. The lethality of the Imp-L2 mutant markedly increased under axenic conditions, which was reversed by Acetobacter, but not Lactobacillus, re-association. The host dependence on specific bacteria was determined by Imp-L2 expressed in enterocytes, which was repressed by Acetobacter, but not Lactobacillus. Mechanistically, Lactobacillus and Acetobacter differentially affected steroid hormone-mediated Imp-L2 expression and Imp-L2-specific FOXO regulation. CONCLUSIONS Our finding may provide a way how host switches dependence between different bacterial species when benefiting from varying microbiota.
Collapse
Affiliation(s)
- Jaegeun Lee
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyun Myoung Yun
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Gangsik Han
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Gang Jun Lee
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Che Ok Jeon
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Seogang Hyun
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
12
|
Qin W, Li S, Wu N, Wen Z, Xie J, Ma H, Zhang S. Main Factors Influencing the Gut Microbiota of Datong Yaks in Mixed Group. Animals (Basel) 2022; 12:ani12141777. [PMID: 35883324 PMCID: PMC9312300 DOI: 10.3390/ani12141777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study examined the differences and similarities in gut microbial diversity and ecological assembly processes of Datong yaks, including domestic males and females and wild males, which were fed together on the Qinghai-Tibet Plateau in a mixed group. The results revealed that mixed grouping could influence the gut microbiota of these three groups of yaks and improve the gut microbial diversity of domestic females. The findings of this study can help to understand the effects of mixed grouping on the gut microbiota of livestock on the Qinghai-Tibet Plateau and improve the production of Datong yaks. Abstract The Datong yak (Bos grunniens) is the first artificial breed of yaks in the world and has played an important role in the improvement of domestic yak quality on the Qinghai-Tibet Plateau. The Datong yak breeding farm in the Qinghai province of China is the main place for the breeding and feeding of Datong yaks. It hosts domestic Datong yaks and wild male yaks, mainly in mixed groups. Different managements have different effects on livestock. The gut microbiota is closely related to the health and immunity of Datong yaks, and mixed grouping can affect the composition and diversity of the gut microbiota of Datong yaks. To reveal the effects of mixed grouping on the gut microbiota of Datong yaks and wild yaks and identify the main dominant factors, we compared the gut microbial diversities of domestic males and females and wild males based on 16S rRNA V3–V4 regions using fresh fecal samples. The data showed significant differences in the gut microbial diversity of these three groups, and the α-diversity was the highest in wild males. Different factors influence the gut microbiota, and the main influencing factors were different in different groups, including sex differences, host genetics, and physical interactions. We also compared ecological assembly processes in the three groups. The results showed that mixed grouping contributed to the improvement of gut microbial diversity in domestic females. Our study provides effective and feasible suggestions for the feeding and management of the Datong yaks.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Shuang Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Nan Wu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Zhouxuan Wen
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Jiuxiang Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Hongyi Ma
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Yushu 815000, China;
| | - Shoudong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
- Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
13
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
14
|
Calumby RJN, de Almeida LM, de Barros YN, Segura WD, Barbosa VT, da Silva AT, Dornelas CB, Alvino V, Grillo LAM. Characterization of cultivable intestinal microbiota in Rhynchophorus palmarum Linnaeus (Coleoptera: Curculionidae) and determination of its cellulolytic activity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21881. [PMID: 35263470 DOI: 10.1002/arch.21881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Rhynchophorus palmarum Linnaeus is an agricultural pest that affects various palm crops, including coconut (Cocos nucifera) plantations which are prominent in the economy of Northeastern Brazil. Characterization of the intestinal microbiota of R. palmarum, as well as elucidation of aspects related to the biochemistry and physiology of the insect's digestion, is essential for intervention in specific metabolic processes as a form of pest control. Thus, this study aimed to characterize the intestinal microbiota of R. palmarum and investigate its ability to degrade cellulosic substrates, to explore new biological control measures. Intestinal dissection of eight adult R. palmarum insects was performed in a laminar flow chamber, and the intestines were homogenized in sterile phosphate-buffered saline solution. Subsequently, serial dilution aliquots of these solutions were spread on nutritive agar plates for the isolation of bacteria and fungi. The microorganisms were identified by matrix-assisted laser desorption/ionization with a time-of-flight mass spectrometry and evaluated for their ability to degrade cellulose. Fourteen bacterial genera (Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Citrobacter, Enterococcus, Kerstersia, Lactococcus, Micrococcus, Proteus, Providencia, Pseudomonas, Serratia, and Staphylococcus) and two fungal genera (Candida and Saccharomyces)-assigned to the Firmicutes, Actinobacteria, Proteobacteria, and Ascomycota phyla-were identified. The cellulolytic activity was exhibited by six bacterial and one fungal species; of these, Bacillus cereus demonstrated the highest enzyme synthesis (enzymatic index = 4.6). This is the first study characterizing the R. palmarum intestinal microbiota, opening new perspectives for the development of strategies for the biological control of this insect.
Collapse
Affiliation(s)
- Rodrigo J N Calumby
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Lara M de Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Yasmin N de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Wilson D Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Valcilaine T Barbosa
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Antonio T da Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Camila B Dornelas
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Valter Alvino
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Luciano A M Grillo
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
15
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
16
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Gao Y, Wu P, Cui S, Ali A, Zheng G. Divergence in gut bacterial community between females and males in the wolf spider
Pardosa astrigera. Ecol Evol 2022; 12:e8823. [PMID: 35432934 PMCID: PMC9005928 DOI: 10.1002/ece3.8823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sex is one of the important factors affecting gut microbiota. As key predators in agroforestry ecosystem, many spider species show dramatically different activity habits and nutritional requirements between females and males. However, how sex affects gut microbiota of spiders remains unclear. Here, we compared the composition and diversity of gut bacteria between female and male Pardosa astrigera based on bacterial 16S rRNA gene sequencing. Results showed that the richness of bacterial microbiota in female spiders was significantly lower than in male spiders (p < .05). Besides, β‐diversity showed a significant difference between female and male spiders (p = .0270). The relative abundance of Actinobacteriota and Rhodococcus (belongs to Actinobacteriota) was significantly higher in female than in male spiders (p < .05), whereas the relative abundance of Firmicutes and Acinetobacter (belongs to Proteobacteria) and Ruminococcus and Fusicatenibacter (all belong to Firmicutes) was significantly higher in male than in female spiders (p < .05). The results also showed that amino acid and lipid metabolisms were significantly higher in female than in male spiders (p < .05), whereas glycan biosynthesis and metabolism were significantly higher in male than in female spiders (p < .05). Our results imply that sexual variation is a crucial factor in shaping gut bacterial community in P. astrigera spiders, while the distinct differences of bacterial composition are mainly due to their different nutritional and energy requirements.
Collapse
Affiliation(s)
- Ying Gao
- College of Life Sciences Shenyang Normal University Shenyang China
| | - Pengfeng Wu
- College of Life Sciences Shenyang Normal University Shenyang China
| | - Shuyan Cui
- College of Life Sciences Shenyang Normal University Shenyang China
| | - Abid Ali
- College of Life Sciences Shenyang Normal University Shenyang China
- Department of Entomology University of Agriculture Faisalabad Pakistan
| | - Guo Zheng
- College of Life Sciences Shenyang Normal University Shenyang China
| |
Collapse
|
18
|
Transfer of Human Microbiome to Drosophila Gut Model. Microorganisms 2022; 10:microorganisms10030553. [PMID: 35336128 PMCID: PMC8948740 DOI: 10.3390/microorganisms10030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Laboratory animals with human microbiome have increasingly been used to study the role of bacteria and host interaction. Drosophila melanogaster, as a model of microbiota-host interaction with high reproductive efficiency and high availability, has always been lacking studies of interaction with human gut microbiome. In this study, we attempted to use antibiotic therapy and human fecal exposure strategy to transfer the human microbiome to the drosophila. The method includes depleting the original intestinal bacteria using a broad-spectrum antibiotic and then introducing human microorganisms by a diet supplemented with donor’s fecal samples. The sequencing results showed that 80–87.5% of the OTUs (Operational Taxonomic Units) from donor feces were adopted by the recipient drosophila following 30 days of observation. In comparison to females, the male recipient drosophila inherited more microbiota from the donor feces and had significantly increased lifespan as well as improved vertical climbing ability. Furthermore, distinctly differential expression patterns for age and insulin-like signaling-related genes were obtained for the male vs. female recipients. Only the male drosophila offspring acquired the characteristics of the donor fecal microbiota.
Collapse
|
19
|
Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S. Influence of bacteria on the maintenance of a yeast during Drosophila melanogaster metamorphosis. Anim Microbiome 2021; 3:68. [PMID: 34602098 PMCID: PMC8489055 DOI: 10.1186/s42523-021-00133-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Interactions between microorganisms associated with metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of host-microorganism association throughout the host’s life cycle. We studied the influence of extracellular bacteria on the maintenance of a wild isolate of the yeast Saccharomyces cerevisiae through metamorphosis of the fly Drosophila melanogaster reared in fruit. Yeasts maintained through metamorphosis only when larvae were associated with extracellular bacteria isolated from D. melanogaster faeces. One of these isolates, an Enterobacteriaceae, favoured yeast maintenance during metamorphosis. Such bacterial influence on host-yeast association may have consequences for the ecology and evolution of insect-yeast-bacteria symbioses in the wild.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Antoine Rombaut
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
20
|
Nguyen B, Dinh H, Morimoto J, Ponton F. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104308. [PMID: 34474015 DOI: 10.1016/j.jinsphys.2021.104308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, United Kingdom
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
22
|
Kong Y, Wang L, Jiang B. The Role of Gut Microbiota in Aging and Aging Related Neurodegenerative Disorders: Insights from Drosophila Model. Life (Basel) 2021; 11:life11080855. [PMID: 34440599 PMCID: PMC8399269 DOI: 10.3390/life11080855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a time dependent impairment of physiological function and increased susceptibility to death. It is the major risk factor for neurodegeneration. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD) are the main causes of dementia in the old population. Gut microbiota is a community of microorganisms colonized in the gastrointestinal (GI) tract. The alteration of gut microbiota has been proved to be associated with aging and aging related neurodegeneration. Drosophila is a powerful tool to study microbiota-mediated physiological and pathological functions. Here, we summarize the recent advances using Drosophila as model organisms to clarify the molecular mechanisms and develop a therapeutic method targeting microbiota in aging and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
- Correspondence:
| | - Liyuan Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan 250012, China;
| |
Collapse
|
23
|
Schissel M, Best R, Liesemeyer S, Tan YD, Carlson DJ, Shaffer JJ, Avuthu N, Guda C, Carlson KA. Effect of Nora virus infection on native gut bacterial communities of Drosophila melanogaster. AIMS Microbiol 2021; 7:216-237. [PMID: 34250376 PMCID: PMC8255909 DOI: 10.3934/microbiol.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal microflora is a key component in the maintenance of health and longevity across many species. In humans and mice, nonpathogenic viruses present in the gastrointestinal tract enhance the effects of the native bacterial microbiota. However, it is unclear whether nonpathogenic gastrointestinal viruses, such as Nora virus that infects Drosophila melanogaster, lead to similar observations. Longevity analysis of Nora virus infected (NV+) and uninfected (NV-) D. melanogaster in relationship to presence (B+) or absence (B-) of the native gut bacteria using four different treatment groups, NV+/B+, NV+/B-, NV-/B+, and NV-/B-, was conducted. Data from the longevity results were tested via Kaplan-Meier analysis and demonstrated that Nora virus can be detrimental to the longevity of the organism, whereas bacterial presence is beneficial. These data led to the hypothesis that gastrointestinal bacterial composition varies from NV+ to NV- flies. To test this, NV+ and NV- virgin female flies were collected and aged for 4 days. Surface sterilization followed by dissections of the fat body and the gastrointestinal tract, divided into crop (foregut), midgut, and hindgut, were performed. Ribosomal 16S DNA samples were sequenced to determine the bacterial communities that comprise the microflora in the gastrointestinal tract of NV+ and NV- D. melanogaster. When analyzing operational taxonomic units (OTUs), the data demonstrate that the NV+ samples consist of more OTUs than NV- samples. The NV+ samples were both more rich and diverse in OTUs compared to NV-. When comparing whole body samples to specific organs and organ sections, the whole fly was more diverse in OTUs, whereas the crop was the most rich. These novel data are pertinent in describing where Nora virus infection may be occurring within the gastrointestinal tract, as well as continuing discussion between the relationship of persistent viral and bacterial interaction.
Collapse
Affiliation(s)
- Makayla Schissel
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Rebecca Best
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Shelby Liesemeyer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Yuan-De Tan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Darby J. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Julie J. Shaffer
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| | - Nagavardhini Avuthu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA
| | - Kimberly A. Carlson
- Biology Department, University of Nebraska at Kearney, 2401 11 Ave, Kearney, NE 68849, USA
| |
Collapse
|
24
|
Dong ZX, Chen YF, Li HY, Tang QH, Guo J. The Succession of the Gut Microbiota in Insects: A Dynamic Alteration of the Gut Microbiota During the Whole Life Cycle of Honey Bees ( Apis cerana). Front Microbiol 2021; 12:513962. [PMID: 33935980 PMCID: PMC8079811 DOI: 10.3389/fmicb.2021.513962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
The Asian honey bee Apis cerana is a valuable biological resource insect that plays an important role in the ecological environment and agricultural economy. The composition of the gut microbiota has a great influence on the health and development of the host. However, studies on the insect gut microbiota are rarely reported, especially studies on the dynamic succession of the insect gut microbiota. Therefore, this study used high-throughput sequencing technology to sequence the gut microbiota of A. cerana at different developmental stages (0 days post emergence (0 dpe), 1 dpe, 3 dpe, 7 dpe, 12 dpe, 19 dpe, 25 dpe, 30 dpe, and 35 dpe). The results of this study indicated that the diversity of the gut microbiota varied significantly at different developmental stages (ACE, P = 0.045; Chao1, P = 0.031; Shannon, P = 0.0019; Simpson, P = 0.041). In addition, at the phylum and genus taxonomic levels, the dominant constituents in the gut microbiota changed significantly at different developmental stages. Our results also suggest that environmental exposure in the early stages of development has the greatest impact on the gut microbiota. The results of this study reveal the general rule of gut microbiota succession in the A. cerana life cycle. This study not only deepens our understanding of the colonization pattern of the gut microbiota in workers but also provides more comprehensive information for exploring the colonization of the gut microbiota in insects and other animals.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020; 9:microorganisms9010031. [PMID: 33374132 PMCID: PMC7824294 DOI: 10.3390/microorganisms9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.
Collapse
Affiliation(s)
- Hwa-Jin Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Yongjoong Kim
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
- Correspondence:
| |
Collapse
|
26
|
Wan X, Jiang Y, Cao Y, Sun B, Xiang X. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis fallaciosa (Coleoptera, Lucanidae). Animals (Basel) 2020; 10:ani10122352. [PMID: 33317133 PMCID: PMC7764088 DOI: 10.3390/ani10122352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Intestinal microbiota play crucial roles for their hosts. Odontolabis fallaciosa shows striking sexual dimorphism and male trimorphism, which represents an interesting system to study their gut microbiota. We have compared the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa. The gut bacterial community structure was significantly different between males and females. The females were associated with higher bacterial alpha-diversity relative to males. Large males had a higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which contributed to nutritional efficiency. The results increased our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among three male morphs, which might reveal the relationship among the gut microbiota, nutrition level, and phenotypic evolution of the stag beetle. Abstract Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota, which might play an indispensable role in shaping the health of their hosts. The aim of this study was to investigate the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut bacterial community structure was significantly different between males and females, suggesting that sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher bacterial alpha-diversity than males. There was little difference in gut bacterial community structure among the three male morphs. However, compared to medium and small males, large individuals were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the three male morphs.
Collapse
|
27
|
Duan R, Xu H, Gao S, Gao Z, Wang N. Effects of Different Hosts on Bacterial Communities of Parasitic Wasp Nasonia vitripennis. Front Microbiol 2020; 11:1435. [PMID: 32774328 PMCID: PMC7381354 DOI: 10.3389/fmicb.2020.01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitism is a special interspecific relationship in insects. Unlike most other ectoparasites, Nasonia vitripennis spend most of its life cycle (egg, larvae, pupae, and early adult stage) inside the pupae of flies, which is covered with hard puparium. Microbes play important roles in host development and help insect hosts to adapt to various environments. How the microbes of parasitic wasp respond to different fly hosts living in such close relationships motivated this investigation. In this study, we used N. vitripennis and three different fly pupa hosts (Lucilia sericata, Sarcophaga marshalli, and Musca domestica) to address this question, as well as to illustrate the potential transfer of bacteria through the trophic food chains. We found that N. vitripennis from different fly pupa hosts showed distinct microbiota, which means that the different fly hosts could affect the bacterial communities of their parasitic wasps. Some bacteria showed potential horizontal transfer through the trophic food chains, from the food through the fly to the parasitic wasp. We also found that the heritable endosymbiont Wolbachia could transferred from the fly host to the parasite and correlated with the bacterial communities of the corresponding parasitic wasps. Our findings provide new insight to the microbial interactions between parasite and host.
Collapse
Affiliation(s)
- Ruxin Duan
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Heng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Shanshan Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ningxin Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
28
|
Lee HY, Lee SH, Lee JH, Lee WJ, Min KJ. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging (Albany NY) 2020; 11:4611-4640. [PMID: 31299010 PMCID: PMC6660043 DOI: 10.18632/aging.102073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Commensal microbes have mutualistic relationships with their host and mainly live in the host intestine. There are many studies on the relationships between commensal microbes and host physiology. However, there are inconsistent results on the effects of commensal microbes on host lifespan. To clarify this controversy, we generated axenic flies by using two controlled methods – bleaching and antibiotic treatment – and investigated the relationship between the commensal microbes and host lifespan in Drosophila melanogaster. The removal of microbes by using bleaching and antibiotic treatments without detrimental effects increased fly lifespan. Furthermore, a strain of flies colonized with a high load of microbiota showed a greater effect on lifespan extension when the microbes were eliminated, suggesting that commensal bacteria abundance may be a critical determinant of host lifespan. Consistent with those observations, microbial flora of aged fly gut significantly decreased axenic fly lifespan via an increase in bacterial load rather than through a change of bacterial composition. Our elaborately controlled experiments showed that the elimination of commensal microbes without detrimental side effects increased fly lifespan, and that bacterial load was a significant determinant of lifespan. Furthermore, our results indicate the presence of a deterministic connection between commensal microbes and host lifespan.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| |
Collapse
|
29
|
Malek HL, Long TAF. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav Ecol 2020. [DOI: 10.1093/beheco/araa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Individuals are faced with decisions throughout their lifetimes, and the choices they make often have important consequences toward their fitness. Being able to discern which available option is best to pursue often incurs sampling costs, which may be largely avoided by copying the behavior and decisions of others. Although social learning and copying behaviors are widespread, much remains unknown about how effective and adaptive copying behavior is, as well as the factors that underlie its expression. Recently, it has been suggested that since female fruit flies (Drosophila melanogaster) appear to rely heavily on public information when selecting oviposition sites, they are a promising model system for researching patch-choice copying, and more generally, the mechanisms that control decision making. Here, we set out to determine how well female distinguish between socially produced cues, and whether females are using “relevant” signals when choosing an oviposition site. We found that females showed a strong preference for ovipositing on media patches that had been previously occupied by ovipositing females of the same species and diet over other female outgroups. However, in a separate assay, we observed that females favored ovipositing on media patches that previously housed virgin males over those exhibiting alternative conspecific signals. Our results confirm that females use cues left behind by other flies when choosing between potential oviposition sites, though their prioritization of these signals raises serious questions as to whether fruit flies are employing copying behavior, or are instead responding to signals that may not be of relevance to oviposition site suitability.
Collapse
Affiliation(s)
- Heather L Malek
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario, Canada
| | - Tristan A F Long
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, Ontario, Canada
| |
Collapse
|
30
|
Cen S, Yin R, Mao B, Zhao J, Zhang H, Zhai Q, Chen W. Comparative genomics shows niche-specific variations of Lactobacillus plantarum strains isolated from human, Drosophila melanogaster, vegetable and dairy sources. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Chen Y, Zhang S, Zeng B, Zhao J, Yang M, Zhang M, Li Y, Ni Q, Wu D, Li Y. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY) 2020; 12:4778-4793. [PMID: 32176868 PMCID: PMC7138539 DOI: 10.18632/aging.102872] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
A close relationship between age and gut microbiota exists in invertebrates and vertebrates, including humans. Long-living people are a model for studying healthy aging; they also have a distinctive microbiota structure. The relationship between the microbiota of long-living people and aging phenotype remains largely unknown. Herein, the feces of long-living people were transplanted into mice, which were then examined for aging-related indices and beneficial bacteria. Mice transplanted with fecal matter from long-living people (L group) had greater α diversity, more probiotic genera (Lactobacillus and Bifidobacterium), and short-chain fatty acid producing genera (Roseburia, Faecalibacterium, Ruminococcus, Coprococcus) than the control group. L group mice also accumulated less lipofuscin and β-galactosidase and had longer intestinal villi. This study indicates the effects that the gut microbiota from long-living people have on healthy aging.
Collapse
Affiliation(s)
- Yinfeng Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. Front Immunol 2020; 10:3075. [PMID: 32076419 PMCID: PMC7006818 DOI: 10.3389/fimmu.2019.03075] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The sexes show profound differences in responses to infection and the development of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in immune system responses at baseline, upon pathogenic challenge, and over aging. We have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity, and present a database of publications indicating the sex(es) analyzed in each study. While we found a growing interest in the community in adult immunity and in reporting both sexes, the main body of work in this field uses only one sex, or does not stratify by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and fungal infections. Dimorphisms may be mediated by distinct immune compartments, and we review work on sex differences in behavioral, epithelial, cellular, and systemic (fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune tissues, immune senescence, and inflammation are examined. We consider evolutionary drivers for sex differences in immune investment, highlight the features of Drosophila biology that make it particularly amenable to studies of immune dimorphisms, and discuss areas for future exploration.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary-Kate Corbally
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David F. Duneau
- Laboratoire Evolution & Diversite Biologique, UMR5174 EDB, CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jennifer C. Regan
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Lee J, Han G, Kim JW, Jeon CO, Hyun S. Taxon-Specific Effects of Lactobacillus on Drosophila Host Development. MICROBIAL ECOLOGY 2020; 79:241-251. [PMID: 31250075 DOI: 10.1007/s00248-019-01404-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Commensal microbiota heavily influence metazoan host physiology. Drosophila melanogaster has been proven a valuable animal model for studying many aspects of host-microbiota interaction. Lactobacillus are the most common human probiotics and are also one of the major symbiotic bacteria in Drosophila. Although the beneficial effects of Lactobacillus on fly development and physiology have been recognized, how broadly these effects are observed across the Lactobacillus taxa remains largely unknown. In this study, four Lactobacillus species including five strains of L. plantarum were examined for their effects on fly larval development. Monoassociation of germ-free flies with L. rhamnosus (GG) most strongly accelerated fly larval development. Monoassociation with L. plantarum moderately accelerated fly development, but monoassociation with L. reuteri or L. sakei had marginal effects, despite similar bacterial loads in the host gut. An L. plantarum strain previously isolated from our lab rarely enhanced larval development, confirming the strain-specific effects of L. plantarum. The correlation between development-promoting effects and protein digestion activity in the host gut was found only among the members of L. plantarum species. Moreover, the cytoprotective response in the host gut known to be induced by L. plantarum was not correlated with development-promoting effects among any of the bacteria tested. Our results suggest that a broad range of Lactobacillus taxa are able to reside in the fly gut, but their ability to enhance host larval development is highly varied. This study may aid our understanding of the basic principles underlying the beneficial effects of probiotic commensal bacteria on metazoan development.
Collapse
Affiliation(s)
- Jaegeun Lee
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Gangsik Han
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jae Woon Kim
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
34
|
Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, Mao JH, Secombe J, Dan Z, Chen JH, Wang Z, Dong X, Qiu C, Chang X, Zhang D, Celniker SE, Liu X. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host Microbe 2019; 25:537-552.e8. [PMID: 30902578 DOI: 10.1016/j.chom.2019.02.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 12/05/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Loss-of-function mutations in the histone demethylases KDM5A, KDM5B, or KDM5C are found in intellectual disability (ID) and autism spectrum disorders (ASD) patients. Here, we use the model organism Drosophila melanogaster to delineate how KDM5 contributes to ID and ASD. We show that reducing KDM5 causes intestinal barrier dysfunction and changes in social behavior that correlates with compositional changes in the gut microbiota. Therapeutic alteration of the dysbiotic microbiota through antibiotic administration or feeding with a probiotic Lactobacillus strain partially rescues the behavioral, lifespan, and cellular phenotypes observed in kdm5-deficient flies. Mechanistically, KDM5 was found to transcriptionally regulate component genes of the immune deficiency (IMD) signaling pathway and subsequent maintenance of host-commensal bacteria homeostasis in a demethylase-dependent manner. Together, our study uses a genetic approach to dissect the role of KDM5 in the gut-microbiome-brain axis and suggests that modifying the gut microbiome may provide therapeutic benefits for ID and ASD patients.
Collapse
Affiliation(s)
- Kun Chen
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaoting Luan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinxia Chang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julie Secombe
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Zhou Dan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jian-Huan Chen
- Genomic and Precision Medicine Laboratory, Department of Public Health, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zibin Wang
- Center for Analysis and Testing, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Dong
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chen Qiu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Dong Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
| |
Collapse
|
35
|
Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018; 11:dmm034520. [PMID: 30504122 PMCID: PMC6307910 DOI: 10.1242/dmm.034520] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal barrier permeability has been correlated with aging and disease, including type 2 diabetes, Crohn's disease, celiac disease, multiple sclerosis and irritable bowel syndrome. The prevalence of these ailments has risen together with an increase in industrial food processing and food additive consumption. Additives, including sugar, metal oxide nanoparticles, surfactants and sodium chloride, have all been suggested to increase intestinal permeability. We used two complementary model systems to examine the effects of food additives on gut barrier function: a Drosophila in vivo model and an in vitro human cell co-culture model. Of the additives tested, intestinal permeability was increased most dramatically by high sugar. High sugar also increased feeding but reduced gut and overall animal size. We also examined how food additives affected the activity of a gut mucosal defense factor, intestinal alkaline phosphatase (IAP), which fluctuates with bacterial load and affects intestinal permeability. We found that high sugar reduced IAP activity in both models. Artificial manipulation of the microbiome influenced gut permeability in both models, revealing a complex relationship between the two. This study extends previous work in flies and humans showing that diet can play a role in the health of the gut barrier. Moreover, simple models can be used to study mechanisms underlying the effects of diet on gut permeability and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew T Pereira
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jillian A Nostro
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | | |
Collapse
|
36
|
Min KJ, Tatar M. Unraveling the Molecular Mechanism of Immunosenescence in Drosophila. Int J Mol Sci 2018; 19:E2472. [PMID: 30134574 PMCID: PMC6164973 DOI: 10.3390/ijms19092472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022] Open
Abstract
A common feature of the aging process is a decline in immune system performance. Extensive research has sought to elucidate how changes in adaptive immunity contribute to aging and to provide evidence showing that changes in innate immunity have an important role in the overall decline of net immune function. Drosophila is an emerging model used to address questions related to immunosenescence via research that integrates its capacity for genetic dissection of aging with groundbreaking molecular biology related to innate immunity. Herein, we review information on the immunosenescence of Drosophila and suggest its possible mechanisms that involve changes in insulin/IGF(insulin-like growth factor)-1 signaling, hormones such as juvenile hormone and 20-hydroxyecdysone, and feedback system degeneration. Lastly, the emerging role of microbiota on the regulation of immunity and aging in Drosophila is discussed.
Collapse
Affiliation(s)
- Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea.
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
37
|
Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 2018; 16:e2005710. [PMID: 29975680 PMCID: PMC6049943 DOI: 10.1371/journal.pbio.2005710] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Animals live together with diverse bacteria that can impact their biology. In Drosophila melanogaster, gut-associated bacterial communities are relatively simple in composition but also have a strong impact on host development and physiology. It is generally assumed that gut bacteria in D. melanogaster are transient and their constant ingestion with food is required to maintain their presence in the gut. Here, we identify bacterial species from wild-caught D. melanogaster that stably associate with the host independently of continuous inoculation. Moreover, we show that specific Acetobacter wild isolates can proliferate in the gut. We further demonstrate that the interaction between D. melanogaster and the wild isolated Acetobacter thailandicus is mutually beneficial and that the stability of the gut association is key to this mutualism. The stable population in the gut of D. melanogaster allows continuous bacterial spreading into the environment, which is advantageous to the bacterium itself. The bacterial dissemination is in turn advantageous to the host because the next generation of flies develops in the presence of this particularly beneficial bacterium. A. thailandicus leads to a faster host development and higher fertility of emerging adults when compared to other bacteria isolated from wild-caught flies. Furthermore, A. thailandicus is sufficient and advantageous when D. melanogaster develops in axenic or freshly collected figs, respectively. This isolate of A. thailandicus colonizes several genotypes of D. melanogaster but not the closely related D. simulans, indicating that the stable association is host specific. This work establishes a new conceptual model to understand D. melanogaster-gut microbiota interactions in an ecological context; stable interactions can be mutualistic through microbial farming, a common strategy in insects. Moreover, these results develop the use of D. melanogaster as a model to study gut microbiota proliferation and colonization.
Collapse
Affiliation(s)
- Inês S. Pais
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
38
|
Role of jeotgal, a Korean traditional fermented fish sauce, in microbial dynamics and metabolite profiles during kimchi fermentation. Food Chem 2018; 265:135-143. [PMID: 29884364 DOI: 10.1016/j.foodchem.2018.05.093] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/28/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022]
Abstract
We investigated the effects of jeotgal (fermented fish sauce) on kimchi fermentation, with or without saeu-jeot and myeolchi-jeot. Bacterial community analysis showed that Leuconostoc, Weissella, Lactobacillus, and Tetragenococcus were the dominant genera; however, their succession depended on the presence of jeotgal. Leuconostoc gasicomitatum was the dominant species in kimchi without jeotgal, whereas Weissella koreensis and Lactobacillus sakei were the dominant species in kimchi with myeolchi-jeot and saeu-jeot, respectively. Metabolite analysis, using 1H NMR, showed that the amounts of amino acids and gamma-aminobutyric acid (GABA) were higher in kimchi with jeotgal. Increases in acetate, lactate, and mannitol contents depended on fructose consumption and were more rapid in kimchi with jeotgal. Moreover, the consumption of various amino acids affected the increase in kimchi LAB. Thus, the role of jeotgal in kimchi fermentation was related to enhancement of taste, the amino acid source, and the increases in levels of functional metabolites.
Collapse
|
39
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
40
|
Ng SH, Stat M, Bunce M, Simmons LW. The influence of diet and environment on the gut microbial community of field crickets. Ecol Evol 2018; 8:4704-4720. [PMID: 29760910 PMCID: PMC5938447 DOI: 10.1002/ece3.3977] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The extent to which diet and environment influence gut community membership (presence or absence of taxa) and structure (individual taxon abundance) is the subject of growing interest in microbiome research. Here, we examined the gut bacterial communities of three cricket groups: (1) wild caught field crickets, (2) laboratory-reared crickets fed cat chow, and (3) laboratory-reared crickets fed chemically defined diets. We found that both environment and diet greatly altered the structure of the gut bacterial community. Wild crickets had greater gut microbial diversity and higher Firmicutes to Bacteroidetes ratios, in contrast to laboratory-reared crickets. Predictive metagenomes revealed that laboratory-reared crickets were significantly enriched in amino acid degradation pathways, while wild crickets had a higher relative abundance of peptidases that would aid in amino acid release. Although wild and laboratory animals differ greatly in their bacterial communities, we show that the community proportional membership remains stable from Phylum to Family taxonomic levels regardless of differences in environment and diet, suggesting that endogenous factors, such as host genetics, have greater control in shaping gut community membership.
Collapse
Affiliation(s)
- Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley Australia
| | - Michael Stat
- Department of Biological Sciences Macquarie University Sydney Australia.,Trace and Environmental DNA (TrEnD) Laboratory Department of Environment and Agriculture Curtin University Perth Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory Department of Environment and Agriculture Curtin University Perth Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology School of Biological Sciences University of Western Australia Crawley Australia
| |
Collapse
|
41
|
The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster. Gut Pathog 2018; 10:12. [PMID: 29581730 PMCID: PMC5861609 DOI: 10.1186/s13099-018-0239-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/12/2018] [Indexed: 02/01/2023] Open
Abstract
Background The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra, shown to display numerous health benefits in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata, has previously been shown to confer positive effects on the gut homeostasis of the fruit fly, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit flies, worms and yeast, its anti-aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fly gut. Results Rhodiola rosea treatment significantly increased the abundance of Acetobacter, while subsequently decreasing the abundance of Lactobacillales of the fly gut at 10 and 40 days of age. Additionally, supplementation of the extract decreased the total culturable bacterial load of the fly gut, while increasing the overall quantifiable bacterial load. The extract did not display any antimicrobial activity when disk diffusion tests were performed on bacteria belonging to Microbacterium, Bacillus, and Lactococcus. Conclusions Under standard and conventional rearing conditions, supplementation of R. rosea significantly alters the microbial community of the fly gut, but without any general antibacterial activity. Further studies should investigate whether R. rosea impacts the gut immunity across multiple animal models and ages.
Collapse
|