1
|
Dos Santos DFB, Herschberger JE, Subedi B, Pocius VM, Neely WJ, Greenspan SE, Becker CG, Romero GQ, Kersch-Becker MF. Leaf Shelters Facilitate the Colonisation of Arthropods and Enhance Microbial Diversity on Plants. Ecol Lett 2024; 27:e14499. [PMID: 39354894 DOI: 10.1111/ele.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 10/03/2024]
Abstract
Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant-associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant-microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.
Collapse
Affiliation(s)
- Danilo F B Dos Santos
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob E Herschberger
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Bijay Subedi
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Victoria M Pocius
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Wesley J Neely
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, Alabama, USA
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gustavo Q Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mônica F Kersch-Becker
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Lau E, Maccaro J, McFrederick QS, Nieh JC. Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Sci Rep 2024; 14:20037. [PMID: 39198535 PMCID: PMC11358482 DOI: 10.1038/s41598-024-67796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Managed colonies of the European honey bee, Apis mellifera, have faced considerable losses in recent years. A widespread contributing factor is a microsporidian pathogen, Nosema ceranae, which occurs worldwide, is increasingly resistant to antibiotic treatment, and can alter the host's immune response and nutritional uptake. These obligate gut pathogens share their environment with a natural honey bee microbiome whose composition can affect pathogen resistance. We tested the effect of N. ceranae infection on this microbiome by feeding 5 day-old adult bees that had natural, fully developed microbiomes with live N. ceranae spores (40,000 per bee) or a sham inoculation, sterile 2.0 M sucrose solution. We caged and reared these bees in a controlled lab environment and tracked their mortality over 12 d, after which we dissected them, measured their infection levels (gut spore counts), and analyzed their microbiomes. Bees fed live spores had two-fold higher mortality by 12 d and 36.5-fold more spores per bee than controls. There were also strong colony effects on infection levels, and 9% of spore-inoculated bees had no spore counts at all (defined as fed-spores-but-not-infected). Nosema ceranae infection had significant but subtle effects on the gut microbiomes of experimentally infected bees, bees with different infection levels, and fed-spores-but-not-infected vs. bees with gut spores. Specific bacteria, including Gilliamella ASVs, were positively associated with infection, indicating that multiple strains of core gut microbes either facilitate or resist N. ceranae infection. Future studies on the interactions between bacterial, pathogen, and host genotypes would be illuminating.
Collapse
Affiliation(s)
- Edmund Lau
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Maccaro
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - James C Nieh
- School of Biological Sciences, Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
5
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Ersoy Omeroglu E, Keriman Arserim-Uçar D, Yegin Z, Çağlayan N, Nur Zafer Yurt M, Busra Tasbasi B, Esma Acar E, Ucak S, Cengiz Ozalp V, Sudagidan M. Determination of Bacterial Diversity of Propolis Microbiota. Chem Biodivers 2023; 20:e202201182. [PMID: 36740570 DOI: 10.1002/cbdv.202201182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Propolis is a natural resinous mixture produced by the excretions of honeybees. PCR amplification of the 16S rRNA gene region was achieved using DNA of pre-enriched propolis samples collected from Apis mellifera production hives (n=37) in Eastern Türkiye (Bingöl and its regions). Next-generation sequencing and metabarcoding techniques were used to identify bacterial communities in propolis samples. Firmicutes dominated the phylum structure, with Proteobacteria, Actinobacteria, Tenericutes, and Spirochaetes following. The top three bacterial families were Bacillaceae, Enterobacteriaceae, and Enterococcaceae. Bacillus (dominantly B. badius and B. thermolactis at the species level) was recognized at the genus level, followed by Enterococcus and Clostridium sensu stricto. Our study comprehensively identified the bacterial diversity of propolis samples. Further investigations targeting to enlighten the microbiota of propolis and its potential application fields are required to gain better insight into ecological, nutritional, and medicinal perspectives.
Collapse
Affiliation(s)
- Esra Ersoy Omeroglu
- Biology Department, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, Izmir, 35040, Türkiye
| | | | - Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Sinop, 57000, Türkiye
| | - Nevzat Çağlayan
- Department of Crop and Animal Production, Vocational School of Food, Agriculture, and Livestock, Beekeeping Program, Bingöl University, Bingöl, 12000, Türkiye
| | - Mediha Nur Zafer Yurt
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, 42080, Türkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, 42080, Türkiye
| | - Elif Esma Acar
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, 42080, Türkiye
| | - Samet Ucak
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydın University, Istanbul, 34295, Türkiye
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06830, Türkiye
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, 42080, Türkiye
| |
Collapse
|
7
|
Almeida EL, Ribiere C, Frei W, Kenny D, Coffey MF, O'Toole PW. Geographical and Seasonal Analysis of the Honeybee Microbiome. MICROBIAL ECOLOGY 2023; 85:765-778. [PMID: 35284961 PMCID: PMC9957864 DOI: 10.1007/s00248-022-01986-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/24/2022] [Indexed: 05/07/2023]
Abstract
We previously showed that colonies of thriving and non-thriving honeybees co-located in a single geographically isolated apiary harboured strikingly different microbiomes when sampled at a single time point in the honey season. Here, we profiled the microbiome in returning forager bees from 10 to 12 hives in each of 6 apiaries across the southern half of Ireland, at early, middle, and late time points in the 2019 honey production season. Despite the wide range of geographical locations and forage available, apiary site was not the strongest determinant of the honeybee microbiome. However, there was clear clustering of the honeybee microbiome by time point across all apiaries, independent of which apiary was sampled. The clustering of microbiome by time was weaker although still significant in three of the apiaries, which may be connected to their geographic location and other external factors. The potential forage effect was strongest at the second timepoint (June-July) when the apiaries also displayed greatest difference in microbiome diversity. We identified bacteria in the forager bee microbiome that correlated with hive health as measured by counts of larvae, bees, and honey production. These findings support the hypothesis that the global honeybee microbiome and its constituent species support thriving hives.
Collapse
Affiliation(s)
- Eduardo L Almeida
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Celine Ribiere
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Werner Frei
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Denis Kenny
- Keeling's Farm, Food Central, St. Margaret's, Co. Dublin, K67 YC83, Ireland
| | - Mary F Coffey
- Department of Agriculture Food & the Marine, Backweston Campus, Celbridge, Co. Kildare, W23 X3PH, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland.
| |
Collapse
|
8
|
Su Q, Tang M, Hu J, Tang J, Zhang X, Li X, Niu Q, Zhou X, Luo S, Zhou X. Significant compositional and functional variation reveals the patterns of gut microbiota evolution among the widespread Asian honeybee populations. Front Microbiol 2022; 13:934459. [PMID: 36118209 PMCID: PMC9478171 DOI: 10.3389/fmicb.2022.934459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiome is a crucial element that facilitates a host’s adaptation to a changing environment. Compared to the western honeybee Apis mellifera, the Asian honeybee, Apis cerana populations across its natural range remain mostly semi-feral and are less affected by bee management, which provides a good system to investigate how gut microbiota evolve under environmental heterogeneity on large geographic scales. We compared and analyzed the gut microbiomes of 99 Asian honeybees, from genetically diverged populations covering 13 provinces across China. Bacterial composition varied significantly across populations at phylotype, sequence-discrete population (SDP), and strain levels, but with extensive overlaps, indicating that the diversity of microbial community among A. cerana populations is driven by nestedness. Pollen diets were significantly correlated with both the composition and function of the gut microbiome. Core bacteria, Gilliamella and Lactobacillus Firm-5, showed antagonistic turnovers and contributed to the enrichment in carbohydrate transport and metabolism. By feeding and inoculation bioassays, we confirmed that the variations in pollen polysaccharide composition contributed to the trade-off of these core bacteria. Progressive change, i.e., nestedness, is the foundation of gut microbiome evolution among the Asian honeybee. Such a transition during the co-diversification of gut microbiomes is affected by environmental factors, diets in general, and pollen polysaccharides in particular.
Collapse
Affiliation(s)
- Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiahui Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingan Li
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Qingsheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Shiqi Luo,
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Xin Zhou,
| |
Collapse
|
9
|
Gruneck L, Gentekaki E, Khongphinitbunjong K, Popluechai S. Distinct gut microbiota profiles of Asian honey bee (Apis cerana) foragers. Arch Microbiol 2022; 204:187. [PMID: 35192066 DOI: 10.1007/s00203-022-02800-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 01/05/2023]
Abstract
Bee gut microbial communities have been studied extensively and linked to honey bee biology in terms of stages of bee development and behavior. Associations of bee gut microbiota in health and disease have also been explored. A large number of studies have centered on the gut microbiome of Apis mellifera, with similar investigations lagging far behind in Asian honey bee foragers. In this study, we characterized and compared the gut bacterial profiles of foragers and nurse bees of A. cerana and A. mellifera. Analysis of 16S rRNA partial gene sequences revealed significant differences in gut bacterial communities between the two honey bee species. Despite sharing dominant taxa, Bacteroides was more abundant in A. cerana, while Proteobacteria was higher in A. mellifera. Specific gut members are distinctly associated with hosts performing different tasks (i.e. nurse bees versus foragers). An exclusive abundance of Apibacter detected in Asian honey bee seemed to be a microbial signature of A. cerana foragers. Overall, our study highlights that variations in gut microbiota could be linked to task-specific (nurse bees and foragers) bacterial species associated with honey bees. Future investigations on the symbiotic relationship between host and the resident microbiota would be beneficial for improving honey bee health.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Kitiphong Khongphinitbunjong
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Microbial Products and Innovation Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand. .,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.
| |
Collapse
|
10
|
Castelli L, Branchiccela B, Romero H, Zunino P, Antúnez K. Seasonal Dynamics of the Honey Bee Gut Microbiota in Colonies Under Subtropical Climate : Seasonal Dynamics of Honey Bee Gut Microbiota. MICROBIAL ECOLOGY 2022; 83:492-500. [PMID: 33973059 DOI: 10.1007/s00248-021-01756-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Belén Branchiccela
- Sección Apicultura, Programa Nacional de Producción Familiar, INIA La Estanzuela, Ruta 50, Km 11, Colonia, Uruguay
| | - Héctor Romero
- Departamento de Ecología Y Evolución, Facultad de Ciencias, Laboratorio de Organización Y Evolución del Genoma, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
11
|
Powell JE, Carver Z, Leonard SP, Moran NA. Field-Realistic Tylosin Exposure Impacts Honey Bee Microbiota and Pathogen Susceptibility, Which Is Ameliorated by Native Gut Probiotics. Microbiol Spectr 2021; 9:e0010321. [PMID: 34160267 PMCID: PMC8552731 DOI: 10.1128/spectrum.00103-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotics have been applied to honey bee (Apis mellifera) hives for decades to treat Paenibacillus larvae, which causes American foulbrood disease and kills honey bee larvae. One of the few antibiotics approved in apiculture is tylosin tartrate. This study examined how a realistic hive treatment regimen of tylosin affected the gut microbiota of bees and susceptibility to a bacterial pathogen. Tylosin treatment reduced bacterial species richness and phylogenetic diversity and reduced the absolute abundances and strain diversity of the beneficial core gut bacteria Snodgrassella alvi and Bifidobacterium spp. Bees from hives treated with tylosin died more quickly after being fed a bacterial pathogen (Serratia marcescens) in the laboratory. We then tested whether a probiotic cocktail of core bee gut species could bolster pathogen resistance. Probiotic exposure increased survival of bees from both control and tylosin-treated hives. Finally, we measured tylosin tolerance of core bee gut bacteria by plating cultured isolates on media with different tylosin concentrations. We observed highly variable responses, including large differences among strains of both S. alvi and Gilliamella spp. Thus, probiotic treatments using cultured bee gut bacteria may ameliorate harmful perturbations of the gut microbiota caused by antibiotics or other factors. IMPORTANCE The antibiotic tylosin tartrate is used to treat honey bee hives to control Paenibacillus larvae, the bacterium that causes American foulbrood. We found that bees from tylosin-treated hives had gut microbiomes with depleted overall diversity as well as reduced absolute abundances and strain diversity of the beneficial bee gut bacteria Snodgrassella alvi and Bifidobacterium spp. Furthermore, bees from treated hives suffered higher mortality when challenged with an opportunistic pathogen. Bees receiving a probiotic treatment, consisting of a cocktail of cultured isolates of native bee gut bacteria, had increased survival following pathogen challenge. Thus, probiotic treatment with native gut bacteria may ameliorate negative effects of antibiotic exposure.
Collapse
Affiliation(s)
- J. Elijah Powell
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Zac Carver
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sean P. Leonard
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
12
|
Rothman JA, Loope KJ, McFrederick QS, Wilson Rankin EE. Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus. PLoS One 2021; 16:e0255463. [PMID: 34324610 PMCID: PMC8321129 DOI: 10.1371/journal.pone.0255463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California: Irvine, Irvine, CA, United States of America
| | - Kevin J. Loope
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| | - Erin E. Wilson Rankin
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| |
Collapse
|
13
|
Tang QH, Miao CH, Chen YF, Dong ZX, Cao Z, Liao SQ, Wang JX, Wang ZW, Guo J. The composition of bacteria in gut and beebread of stingless bees (Apidae: Meliponini) from tropics Yunnan, China. Antonie van Leeuwenhoek 2021; 114:1293-1305. [PMID: 34110551 DOI: 10.1007/s10482-021-01602-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Stingless bees are the main pollinators in tropical and subtropical regions. However, there are only a few studies on the structure and composition of bacteria in the gut and beebread of stingless bees, especially in China. To address this shortage of information, we characterized the microbiota of three common species of stingless bees (Lepidotrigona terminata, Lepidotrigona ventralis and Tetragonula pagdeni) and beebread samples of T. pagdeni. The results showed that the gut of stingless bees contained a set of dominant bacteria, including Acetobacter-like, Snodgrassella, Lactobacillus, Psychrobacter, Pseudomonas, Bifidobacterium and other species. The gut microbiota structures of the three stingless bees were different, and the abundances of bacterial species in the gut varied between communities of the same bee species. The reasons for this are manifold and may include food preference, age and genetic differences. In addition, the abundances of Lactobacillus, Carnimonas, Escherichia-Shigella, Acinetobacter and other species were high in the beebread of stingless bees. In conclusion, our findings reveal the bacteria composition and structure of the gut and beebread of stingless bees in China and deepen our understanding of the dominant bacteria of the gut and beebread of stingless bees.
Collapse
Affiliation(s)
- Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chun-Hui Miao
- Sericulture and Apiculture Reserach Institute, Yunnan Academy of Agriculutral Sciences, Mengzi, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhe Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shi-Qun Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jia-Xuan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
14
|
Kapheim KM, Johnson MM, Jolley M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 2021; 11:2993. [PMID: 33542351 PMCID: PMC7862682 DOI: 10.1038/s41598-021-82573-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.
Collapse
Affiliation(s)
- Karen M. Kapheim
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Makenna M. Johnson
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Maggi Jolley
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
15
|
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. Characterization of the Kenyan Honey Bee ( Apis mellifera) Gut Microbiota: A First Look at Tropical and Sub-Saharan African Bee Associated Microbiomes. Microorganisms 2020; 8:microorganisms8111721. [PMID: 33153032 PMCID: PMC7692941 DOI: 10.3390/microorganisms8111721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays important roles in many physiological processes of the host including digestion, protection, detoxification, and development of immune responses. The honey bee (Apis mellifera) has emerged as model for gut-microbiota host interaction studies due to its gut microbiota being highly conserved and having a simple composition. A key gap in this model is understanding how the microbiome differs regionally, including sampling from the tropics and in particular from Africa. The African region is important from the perspective of the native diversity of the bees, and differences in landscape and bee management. Here, we characterized the honey bee gut microbiota in sub-Saharan Africa using 16S rRNA amplicon sequencing. We confirm the presence of the core gut microbiota members and highlight different compositions of these communities across regions. We found that bees from the coastal regions harbor a higher relative abundance and diversity on core members. Additionally, we showed that Gilliamella, Snodgrassella, and Frischella dominate in all locations, and that altitude and humidity affect Gilliamella abundance. In contrast, we found that Lactobacillus was less common compared temperate regions of the world. This study is a first comprehensive characterization of the gut microbiota of honey bees from sub-Saharan Africa and underscores the need to study microbiome diversity in other indigenous bee species and regions.
Collapse
Affiliation(s)
- Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Jacqueline Wahura Waweru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Juan C. Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Correspondence:
| |
Collapse
|
16
|
Geldert C, Abdo Z, Stewart JE, H S A. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. J Appl Microbiol 2020; 130:1705-1720. [PMID: 33058297 DOI: 10.1111/jam.14897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
AIM Determine the impact of beneficial phytochemicals on diversity and abundance of the gut microbiome in the honey bee (Apis mellifera). METHODS AND RESULTS Eight-day-old honey bee workers were fed 25 ppm of phytochemical (caffeine, gallic acid, p-coumaric acid or kaempferol) in 20% sucrose. Guts of bees collected at 3 and 6 days were excised and subjected to next-generation sequencing for bacterial 16S and fungal ITS regions. Although phytochemical supplementation fostered gut microbial diversity and abundance, the patterns differed between phytochemicals and there was a temporal stabilization of the bacterial community. While bacterial and fungal communities responded differently, all phytochemical treatments displayed increased abundance of the most represented bacterial genera, Snodgrassella sp. and Lactobacillus sp. CONCLUSIONS Phytochemical supplementation improves gut microbial diversity and abundance, reiterating the need for diverse habitats that provide bees with access to pollen and nectar rich in these micronutrients. Diverse gut microbiota can provide a strong line of defense for bees against biotic stressors while improving worker bee lifespan. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the impact of phytochemical supplementation on gut microbiota in honey bees and these findings have implications for strategic hive management through standardization of effective phytochemical and probiotic feed supplements.
Collapse
Affiliation(s)
- C Geldert
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Z Abdo
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Arathi H S
- USDA/ARS, WRRC Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| |
Collapse
|
17
|
Rothman JA, Russell KA, Leger L, McFrederick QS, Graystock P. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes. Proc Biol Sci 2020; 287:20200980. [PMID: 33109012 PMCID: PMC7661295 DOI: 10.1098/rspb.2020.0980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023] Open
Abstract
Bumblebees (Bombus spp.) are important and widespread insect pollinators, but the act of foraging on flowers can expose them to harmful pesticides and chemicals such as oxidizers and heavy metals. How these compounds directly influence bee survival and indirectly affect bee health via the gut microbiome is largely unknown. As toxicants in floral nectar and pollen take many forms, we explored the genomes of bee-associated microbes for their potential to detoxify cadmium, copper, selenate, the neonicotinoid pesticide imidacloprid, and hydrogen peroxide-which have all been identified in floral nectar and pollen. We then exposed Bombus impatiens workers to varying concentrations of these chemicals via their diet and assayed direct effects on bee survival. Using field-realistic doses, we further explored the indirect effects on bee microbiomes. We found multiple putative genes in core gut microbes that may aid in detoxifying harmful chemicals. We also found that while the chemicals are largely toxic at levels within and above field-realistic concentrations, the field-realistic concentrations-except for imidacloprid-altered the composition of the bee microbiome, potentially causing gut dysbiosis. Overall, our study shows that chemicals found in floral nectar and pollen can cause bee mortality, and likely have indirect, deleterious effects on bee health via their influence on the bee microbiome.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Kaleigh A. Russell
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | - Peter Graystock
- Department of Entomology, University of California, Riverside, CA 92521, USA
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
18
|
Diet Breadth Affects Bacterial Identity but Not Diversity in the Pollen Provisions of Closely Related Polylectic and Oligolectic Bees. INSECTS 2020; 11:insects11090645. [PMID: 32962223 PMCID: PMC7564857 DOI: 10.3390/insects11090645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Solitary bees are important pollinators in managed and wild ecosystems. Across the bee phylogeny, bees may forage on a single species of plant, few plant species, or a broad diversity of plants. During foraging, these bees are often exposed to microbes, and in turn, may inoculate the brood cell and pollen provision of their offspring with these microbes. It is becoming evident that pollen-associated microbes are important to bee health, but it is not known how diet breadth impacts bees’ exposure to microbes. In this study, we collected pollen provisions from the bees Osmia lignaria and Osmia ribifloris at four different sites, then characterized the bacterial populations within the pollen provisions with 16S rRNA gene sequencing. We found that diet breadth did not have large effects on the bacteria found in the pollen provisions. We also note that the bacterial communities were slightly different between bee species and site, and there was minimal overlap in the unique bacterial variants between sites and bee species too. Our research supports the hypothesis of environmental transmission for solitary bee microbes, and we suggest future studies investigate the impacts of microbes on larval health. Abstract Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees.
Collapse
|
19
|
Bleau N, Bouslama S, Giovenazzo P, Derome N. Dynamics of the Honeybee ( Apis mellifera) Gut Microbiota Throughout the Overwintering Period in Canada. Microorganisms 2020; 8:microorganisms8081146. [PMID: 32751209 PMCID: PMC7464175 DOI: 10.3390/microorganisms8081146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Microbial symbionts inhabiting the honeybee gut (i.e., gut microbiota) are essential for food digestion, immunity, and gut protection of their host. The taxonomic composition of the gut microbiota is dynamic throughout the honeybee life cycle and the foraging season. However, it remains unclear how drastic changes occurring in winter, such as food shortage and cold weather, impact gut microbiota dynamics. The objective of this study was to characterize the gut microbiota of the honeybee during the overwintering period in a northern temperate climate in Canada. The microbiota of nine honeybee colonies was characterized by metataxonomy of 16S rDNA between September 2017 and June 2018. Overall, the results showed that microbiota taxonomic composition experienced major compositional shifts in fall and spring. From September to November, Enterobacteriaceae decreased, while Neisseriaceae increased. From April to June, Orbaceae increased, whereas Rhizobiaceae nearly disappeared. Bacterial diversity of the gut microbiota decreased drastically before and after overwintering, but it remained stable during winter. We conclude that the honeybee gut microbiota is likely to be impacted by the important meteorological and dietary changes that take place before and after the overwintering period. Laboratory trials are needed to determine how the observed variations affect the honeybee health.
Collapse
Affiliation(s)
- Naomie Bleau
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
- Correspondence:
| | - Sidki Bouslama
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| | - Pierre Giovenazzo
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), 120a Chemin du Roy, Deschambault, QC G0A 1S0, Canada
| | - Nicolas Derome
- Biology Departement, Laval University, 1045 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada; (S.B.); (P.G.); (N.D.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Laval University, 1030 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Luo ZW, Dong ZX, Chen YF, Li HY, Tang QH, Li JL, Guo J. Comparative analysis of the gut microbiota of Apis cerana in Yunnan using high-throughput sequencing. Arch Microbiol 2020; 202:2557-2567. [PMID: 32666301 DOI: 10.1007/s00203-020-01974-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Gut microbes play an important role in host disease and health. The Asian honey bee Apis cerana is an important pollinator of agricultural crops in China. However, there are still few studies on the structure and composition of the microbiota in the intestine of A. cerana, especially A. cerana in Yunnan. To understand the species and composition of the microbiota in the intestine of A. cerana in Yunnan, we used high-throughput sequencing technology to carry out 16S rRNA sequencing on 50 samples from Kunming, Xishuangbanna and Mengzi. The results show that both from the phylum level and the genus level, the structure and abundance of the microbiota in the gut of A. cerana from the three regions tended to be the same. At the phylum level, the abundance of Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Acidobacteria and other species was high in A. cerana from different areas. At the genus level, the abundance of Lactobacillus, Gilliamella, Snodgrassella, Apibacter, Candidatus Schmidhempelia and other species was high in A. cerana from different areas. Due to its unique geographical environment and climatic conditions, at the genus level, the diversity of bacterial communities in Xishuangbanna was significantly lower than that in the other two regions, which was about 100 genera less. In conclusion, our results reveal the composition and structure of the intestinal microbiota of bees in Yunnan and deepen our understanding of the intestinal microbiota of bees.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ji-Lian Li
- Institute of Apiculture, Chinese Academy of Agricultural Science/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
21
|
Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME JOURNAL 2019; 14:801-814. [PMID: 31836840 PMCID: PMC7031341 DOI: 10.1038/s41396-019-0568-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
Abstract
Adult honeybees harbor a specialized gut microbiota of relatively low complexity. While seasonal differences in community composition have been reported, previous studies have focused on compositional changes rather than differences in absolute bacterial loads. Moreover, little is known about the gut microbiota of winter bees, which live much longer than bees during the foraging season, and which are critical for colony survival. We quantified seven core members of the bee gut microbiota in a single colony over 2 years and characterized the community composition in 14 colonies during summer and winter. Our data show that total bacterial loads substantially differ between foragers, nurses, and winter bees. Long-lived winter bees had the highest bacterial loads and the lowest community α-diversity, with a characteristic shift toward high levels of Bartonella and Commensalibacter, and a reduction of opportunistic colonizers. Using gnotobiotic bee experiments, we show that diet is a major contributor to the observed differences in bacterial loads. Overall, our study reveals that the gut microbiota of winter bees is remarkably different from foragers and nurses. Considering the importance of winter bees for colony survival, future work should focus on the role of the gut microbiota in winter bee health and disease.
Collapse
Affiliation(s)
- Lucie Kešnerová
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michaël Troilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
23
|
Palmer-Young EC, Ngor L, Nevarez RB, Rothman JA, Raffel TR, McFrederick QS. Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 2019; 21:4706-4723. [PMID: 31573120 PMCID: PMC7316186 DOI: 10.1111/1462-2920.14805] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
Abstract
High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Jason A. Rothman
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Thomas R Raffel
- Department of Biology, Oakland University, Rochester, MI, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
24
|
Rothman JA, Leger L, Kirkwood JS, McFrederick QS. Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation. Appl Environ Microbiol 2019; 85:e01411-19. [PMID: 31471302 PMCID: PMC6803295 DOI: 10.1128/aem.01411-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees' metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Lactobacillus Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants.IMPORTANCE Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees' microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media in vitro and suggest that bacteria may reduce metal burden in their hosts.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
25
|
Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol 2019; 21:3417-3429. [PMID: 31026366 DOI: 10.1111/1462-2920.14641] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/02/2023]
Abstract
Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l-1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes - Snodgrassella alvi and Lactobacillus bombicola - in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001-10 mg l-1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Peter Graystock
- Department of Entomology, University of California, Riverside, CA, 92521, USA.,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kaleigh Russell
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, Riverside, CA, 92521, USA.,Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol 2019; 27:1034-1044. [PMID: 31451346 DOI: 10.1016/j.tim.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating reports of global bee declines have drawn much attention to the bee microbiota and its importance. Most research has focused on social bees, while solitary species have received scant attention despite their enormous biodiversity, ecological importance, and agroeconomic value. We review insights from several recent studies on diversity, function, and drivers of the solitary-bee microbiota, and compare these factors with those relevant to the social-bee microbiota. Despite basic similarities, the social-bee model, with host-specific core microbiota and social transmission, is not representative of the vast majority of bee species. The solitary-bee microbiota exhibits greater variability and biodiversity, with a strong impact of environmental acquisition routes. Our synthesis identifies outstanding questions that will build understanding of these interactions, responses to environmental threats, and consequences for health.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany
| | - Quinn S McFrederick
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany.
| |
Collapse
|
27
|
Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS. Floral and Foliar Source Affect the Bee Nest Microbial Community. MICROBIAL ECOLOGY 2019; 78:506-516. [PMID: 30552443 DOI: 10.1007/s00248-018-1300-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Managed pollinators such as the alfalfa leafcutting bee, Megachile rotundata, are essential to the production of a wide variety of agricultural crops. These pollinators encounter a diverse array of microbes when foraging for food and nest-building materials on various plants. To test the hypothesis that food and nest-building source affects the composition of the bee-nest microbiome, we exposed M. rotundata adults to treatments that varied both floral and foliar source in a 2 × 2 factorial design. We used 16S rRNA gene and internal transcribed spacer (ITS) sequencing to capture the bacterial and fungal diversity of the bee nests. We found that nest microbial communities were significantly different between treatments, indicating that bee nests become inoculated with environmentally derived microbes. We did not find evidence of interactions between the fungi and bacteria within our samples. Furthermore, both the bacterial and fungal communities were quite diverse and contained numerous exact sequence variants (ESVs) of known plant and bee pathogens that differed based on treatment. Our research indicates that bees deposit plant-associated microbes into their nests, including multiple plant pathogens such as smut fungi and bacteria that cause blight and wilt. The presence of plant pathogens in larval pollen provisions highlights the potential for bee nests to act as disease reservoirs across seasons. We therefore suggest that future research should investigate the ability of bees to transmit pathogens from nest to host plant.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Corey Andrikopoulos
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA
| | - Diana Cox-Foster
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA.
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA.
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
28
|
Ribière C, Hegarty C, Stephenson H, Whelan P, O'Toole PW. Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-thriving Hives. MICROBIAL ECOLOGY 2019; 78:195-205. [PMID: 30467713 DOI: 10.1007/s00248-018-1287-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/06/2018] [Indexed: 05/23/2023]
Abstract
The recent worldwide decline of honey bee colonies is a major ecological problem which also threatens pollinated crop production. Several interacting stressors such as environmental pressures and pathogens are suspected. Recently, the gut microbiota has emerged as a critical factor affecting bee health and fitness. We profiled the bacterial communities associated with the gut and whole body of worker bees to assess whether non-thriving colonies could be separated from thriving hives based on their microbial signature. The microbiota of thriving colonies was characterised by higher diversity and higher relative abundance of bacterial taxa involved in sugar degradation that were previously associated with healthy bees (e.g. Commensalibacter sp. and Bartonella apis). In contrast, the microbiota of non-thriving bees was depleted in health-associated species (e.g. Lactobacillus apis), and bacterial taxa associated with disease states (e.g. Gilliamella apicola) and pollen degradation (e.g. G. apicola and Bifidobacterium asteroides) were present in higher abundance compared to thriving colonies. Gut and whole-body microbiota shared a similar dominant core but their comparison showed differences in composition and relative abundance. More differences in taxon relative abundance between gut and whole body were observed in non-thriving bees, suggesting that microbiota associated with other bee organs might also be different. Thus, microbiota profiling could be used as a diagnostic tool in beekeeping practices to predict hive health and guide hive management.
Collapse
Affiliation(s)
- Céline Ribière
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Claire Hegarty
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Hannah Stephenson
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland
| | - Padraig Whelan
- Apis Protect Limited, Environmental Research Centre, Lee Road, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Ireland, Food Science Building, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
29
|
McFrederick QS, Rehan SM. Wild Bee Pollen Usage and Microbial Communities Co-vary Across Landscapes. MICROBIAL ECOLOGY 2019; 77:513-522. [PMID: 30069710 DOI: 10.1007/s00248-018-1232-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/12/2018] [Indexed: 05/11/2023]
Abstract
Bees forage for pollen and nectar at flowers but simultaneously acquire pathogenic, commensal, and likely beneficial microbes from these same flowers. Characterizing pollen usage of wild bees is therefore crucial to their conservation yet remains a challenging task. To understand pollen usage across landscapes and how this affects microbial communities found in the pollen provisions collected from flowers, we studied the generalist small carpenter bee Ceratina australensis. We collected C. australensis nests from three different climatic zones across eastern and southern Australia. To characterize the plant, fungal, and bacterial composition of these pollen provisions, we used a metabarcoding and next-generation sequencing approach. We found that the species richness of plant types, fungi, and bacteria was highest in a subtropical zone compared to a temperate or a grassland zone. The composition of these communities also differentiated by zone, particularly in pollen composition and fungal communities. Moreover, pollen composition strongly correlated with fungal community composition, suggesting that variation in pollen usage across landscapes results in variation in microbial communities. While how these pollen usage and microbial community patterns affect bee health merits additional work, these data further our understanding of how flowering plant community composition affects not only the pollen usage of a generalist bee but also its associated microbial communities.
Collapse
Affiliation(s)
- Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA
| |
Collapse
|
30
|
Ellegaard KM, Engel P. Genomic diversity landscape of the honey bee gut microbiota. Nat Commun 2019; 10:446. [PMID: 30683856 PMCID: PMC6347622 DOI: 10.1038/s41467-019-08303-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/28/2018] [Indexed: 01/12/2023] Open
Abstract
The structure and distribution of genomic diversity in natural microbial communities is largely unexplored. Here, we used shotgun metagenomics to assess the diversity of the honey bee gut microbiota, a community consisting of few bacterial phylotypes. Our results show that most phylotypes are composed of sequence-discrete populations, which co-exist in individual bees and show age-specific abundance profiles. In contrast, strains present within these sequence-discrete populations were found to segregate into individual bees. Consequently, despite a conserved phylotype composition, each honey bee harbors a distinct community at the functional level. While ecological differentiation seems to facilitate coexistence at higher taxonomic levels, our findings suggest that, at the level of strains, priority effects during community assembly result in individualized profiles, despite the social lifestyle of the host. Our study underscores the need to move beyond phylotype-level characterizations to understand the function of this community, and illustrates its potential for strain-level analysis.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
31
|
Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ. Influence of Feeding Type and Nosema ceranae Infection on the Gut Microbiota of Apis cerana Workers. mSystems 2018; 3:e00177-18. [PMID: 30417114 PMCID: PMC6222045 DOI: 10.1128/msystems.00177-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota plays an essential role in the health of bees. To elucidate the effect of feed and Nosema ceranae infection on the gut microbiota of honey bee (Apis cerana), we used 16S rRNA sequencing to survey the gut microbiota of honey bee workers fed with sugar water or beebread and inoculated with or without N. ceranae. The gut microbiota of A. cerana is dominated by Serratia, Snodgrassella, and Lactobacillus genera. The overall gut microbiota diversity was show to be significantly differential by feeding type. N. ceranae infection significantly affects the gut microbiota only in bees fed with sugar water. Higher abundances of Lactobacillus, Gluconacetobacter, and Snodgrassella and lower abundances of Serratia were found in bees fed with beebread than in those fed with sugar water. N. ceranae infection led to a higher abundance of Snodgrassella and a lower abundance of Serratia in sugar-fed bees. Imputed bacterial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed the significant metagenomics functional differences by feeding and N. ceranae infections. Furthermore, A. cerana workers fed with sugar water showed lower N. ceranae spore loads but higher mortality than those fed with beebread. The cumulative mortality was strongly positive correlated (rho = 0.61) with the changes of overall microbiota dissimilarities by N. ceranae infection. Both feeding types and N. ceranae infection significantly affect the gut microbiota in A. cerana workers. Beebread not only provides better nutrition but also helps establish a more stable gut microbiota and therefore protects bees in response to N. ceranae infection. IMPORTANCE The gut microbiota plays an essential role in the health of bees. Scientific evidence suggests that diet and infection can affect the gut microbiota and modulate the health of the gut; however, the interplay between those two factors and the bee gut microbiota is not well known. In this study, we used a high-throughput sequencing method to monitor the changes of gut microbiota associated with both feeding types and Nosema ceranae infection. Our results showed that the gut microbiota composition and diversity of Asian honey bee were significantly associated with both feeding types and the N. ceranae infection. More interestingly, bees fed with beebread showed higher microbiota stability and lower mortality rates than those fed with sugar water when infected by N. ceranae. Those data suggest that beebread has the potential not only to provide better nutrition but also help to establish a more stable gut microbiota to protect bees against N. ceranae infection.
Collapse
Affiliation(s)
- Shao K. Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Kun T. Ye
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Wei F. Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Bi H. Ying
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Xin Su
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Li H. Lin
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Jiang H. Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Yan P. Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, USA
| | - Ji L. Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiu L. Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jian Z. Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Anderson KE, Ricigliano VA, Mott BM, Copeland DC, Floyd AS, Maes P. The queen's gut refines with age: longevity phenotypes in a social insect model. MICROBIOME 2018; 6:108. [PMID: 29914555 PMCID: PMC6006926 DOI: 10.1186/s40168-018-0489-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. RESULTS We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. CONCLUSIONS We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are progressively dominated by three major Proteobacteria, but these same species were sparse or significantly depleted in long-lived queen phenotypes. More broadly, age-related changes in the honey bee microbiota reflect the regulatory anatomy of reproductive host metabolism. Our synthesis suggests that the evolution of colony-level reproductive physiology formed the context for host-microbial interactions and age-related succession of honey bee microbiota.
Collapse
Affiliation(s)
- Kirk E. Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | | | - Brendon M. Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
| | - Duan C. Copeland
- Department of Microbiology, School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Amy S. Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | - Patrick Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
33
|
Meikle WG, Holst N, Colin T, Weiss M, Carroll MJ, McFrederick QS, Barron AB. Using within-day hive weight changes to measure environmental effects on honey bee colonies. PLoS One 2018; 13:e0197589. [PMID: 29791462 PMCID: PMC5965838 DOI: 10.1371/journal.pone.0197589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/06/2018] [Indexed: 11/18/2022] Open
Abstract
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect.
Collapse
Affiliation(s)
- William G. Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
- * E-mail:
| | - Niels Holst
- Dept. of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, Denmark
| | - Théotime Colin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
| | - Mark J. Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California, Riverside, CA, United States of America
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|