1
|
Lv M, Chen H, Liang Z, Sun A, Lu S, Ren S, Zhu D, Wei S, Chen L, Ding J. Stress of soil moisture and temperature exacerbates the toxicity of tire wear particles to soil fauna: Tracking the role of additives through host microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135995. [PMID: 39357354 DOI: 10.1016/j.jhazmat.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Tire wear particles (TWPs) are considered as an emerging threat to soil fauna. However, how TWP toxicity to soil fauna responds to the stress of soil moisture and temperature remains unclear. We assessed the toxicity of environmentally relevant TWPs to the soil model species Enchytraeus crypticus under three soil moisture and two temperature gradients. Typical thermoplastic polypropylene (PP) was selected for comparison. Results showed that compared with PP, TWPs exerted stronger toxicity, including decreasing the worm growth, survival and reproduction rates, disturbing the soil and worm gut microbiota, and leaching more diverse and higher contents of additives. Stress of soil moisture and temperature exacerbated TWP toxicity mainly through affecting the leaching and transformation of additives. Fourteen mediated additives significantly contributed to the shift of the gut microbiota under soil moisture and temperature stress, among which 1,3-diphenylguanidine, N,N'-bis(methylphenyl)-1,4-benzenediamine quinone, N-tert-butyl-2-benzothiazolesulfenamide, and 2-aminobenzothiazole were identified as the main drivers. In addition, this study provided the first clear evidence that increased soil moisture and temperature promoted the transformation of additives in the soil. Our study revealed the non-negligible aggravated toxicity of TWPs to soil fauna under stress of soil moisture and temperature, providing novel insights into the environmental behavior of additives.
Collapse
Affiliation(s)
- Min Lv
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Han Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhaoqin Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Tomazelli D, Klauberg-Filho O, Mendes LW, Goss-Souza D. The impact of land-use changes and management intensification on bacterial communities in the last decade: a review. Appl Environ Microbiol 2024; 90:e0030924. [PMID: 38874336 PMCID: PMC11267915 DOI: 10.1128/aem.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
In the last decade, advances in soil bacterial ecology have contributed to increasing agricultural production. Brazil is the world leading agriculture producer and leading soil biodiversity reservoir. Meanwhile, there is still a significant gap in the knowledge regarding the soil microscopic life and its interactions with agricultural practices, and the replacement of natural vegetation by agroecosystems is yet to be unfolded. Through high throughput DNA sequencing, scientists are now exploring the complexity of soil bacterial communities and their relationship with soil and environmental characteristics. This study aimed to investigate the progress of bacterial ecology studies in Brazil over the last 10 years, seeking to understand the effect of the conversion of natural vegetation in agricultural systems on the diversity and structure of the soil microbial communities. We conducted a systematic search for scientific publication databases. Our systematic search has matched 62 scientific articles from three different databases. Most of the studies were placed in southeastern and northern Brazil, with no records of studies about microbial ecology in 17 out of 27 Brazilian states. Out of the 26 studies that examined the effects of replacing natural vegetation with agroecosystems, most authors concluded that changes in soil pH and vegetation cover replacement were the primary drivers of shifts in microbial communities. Understanding the ecology of the bacteria inhabiting Brazilian soils in agroecosystems is paramount for developing more efficient soil management strategies and cleaner agricultural technologies.
Collapse
Affiliation(s)
- Daniela Tomazelli
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Dennis Goss-Souza
- College of Agronomy, Federal Institute of Paraná, Palmas, Paraná, Brazil
| |
Collapse
|
3
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Ren Y, Shao Q, Ge W, Li X, Wang H, Dong C, Zhang Y, Deshmukh SK, Han Y. Assembly Processes and Biogeographical Characteristics of Soil Bacterial Sub-communities of Different Habitats in Urban Green Spaces. Curr Microbiol 2023; 80:309. [PMID: 37535152 DOI: 10.1007/s00284-023-03428-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The process of urbanization is one of the most important human-driven activities that reshape the natural distribution of soil microorganisms. However, it is still unclear about the effects of urbanization on the different taxonomic soil bacterial community dynamics. In this study, we collected soil samples from highly urbanized the regions of Yangtze River Delta, Beijing-Tianjin-Hebei in China, to explore the bio-geographic patterns, assembly processes, and symbiotic patterns of abundant, moderate, and rare bacterial communities. We found that the number of moderate and rare taxa species were lower than that of abundant taxa, but their α-diversity index was higher than abundant taxa. Proteobacteria, Acidobacteria, Actinobacteria, Bacterioidetes, and Chloroflexi were the dominant phylum across all three sub-communities. And the β-diversity value of rare taxa was significantly higher than those of moderate and abundant taxa. Abundant, moderate, and rare sub-communities showed a weak distance-decay relationship, and the moderate taxa had the highest turnover rate of microbial geography in the context of urbanization. Diffusion limitation was the dominant process of soil bacterial community assembly. The co-occurrence networks of abundant, moderate, and rare taxa were dominated by positive correlations. The network of moderate taxa had the highest modularity, followed by abundant taxa. The main functions of the abundant, moderate, and rare taxa were related to Chemoheterotrophy and N transformations. Redundancy analysis showed that the dispersal limitation, climate, and soil properties were the main factors dominating bio-geographic differences in soil bacterial community diversity. We conclude that human-dominated urbanization processes have generated more uncertain survival pressures on soil bacteria, which resulted in a stronger linkage but weak bio-geographic variation for soil bacteria. In the future urban planning process, we suggest that such maintenance of native vegetation and soil types should be considered to maintain the long-term stability of local microbial ecosystem functions.
Collapse
Affiliation(s)
- Yulian Ren
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Ge
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haiyan Wang
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanwei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, Guizhou, China
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Lee J, Zhou X, Seo YO, Lee ST, Yun J, Yang Y, Kim J, Kang H. Effects of vegetation shift from needleleaf to broadleaf species on forest soil CO 2 emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158907. [PMID: 36150592 DOI: 10.1016/j.scitotenv.2022.158907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Forest soil harbors diverse microbial communities with decisive roles in ecosystem processes. Vegetation shift from needleleaf to broadleaf species is occurring across the globe due to climate change and anthropogenic activities, potentially change forest soil microbial communities and C cycle. However, our knowledge on the impact of such vegetation shift on soil microbial community and activities, and its consequences on forest soil C dynamics are still not well established. Here, we examined the seasonal variation of soil CO2 emission, soil extracellular enzyme activities (EEAs), and soil bacterial, fungal communities in subtropical forest from broadleaf, needleleaf, and mixed stands. In addition, soil CO2 emission and soil EEAs were measured in temperate forest during the growing season. Soil organic matter (SOM) content significantly differs between broadleaf and needleleaf forests and primarily distinguish various soil chemical and microbial characteristics. Significantly higher EEAs and soil CO2 emission in broadleaf forest compared to needleleaf forest were observed both in subtropical and temperate forests. The relative abundance of Basidiomycota positively correlated with SOM and EEAs and indirectly increase soil CO2 emission whereas the relative abundance of Ascomycota exhibits opposite trend, suggesting that soil fungal communities play a key role in determining the different microbial activities between broadleaf and needleleaf stands. The temperature sensitivity of soil CO2 emission was significantly higher in broadleaf forest compared to needleleaf forest, further suggesting that the soil organic carbon in broadleaf forests is more vulnerable to warming.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Xue Zhou
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea; College of Agricultural Science and Engineering, Hohai University, China
| | - Yeon Ok Seo
- Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Republic of Korea
| | - Sang Tae Lee
- Lab of Silvicultural Practices and Management, National Institute of Forest Science, Republic of Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Republic of Korea.
| |
Collapse
|
6
|
Espinosa-Urgel M. Connecting environmental and evolutionary microbiology for the development of new agrobiotechnological tools. Environ Microbiol 2023; 25:87-90. [PMID: 36519350 PMCID: PMC10087822 DOI: 10.1111/1462-2920.16197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
7
|
Kim D, Chae N, Kim M, Nam S, Kim TK, Park KT, Lee BY, Kim E, Lee H. Microbial metabolic responses and CO 2 emissions differentiated by soil water content variation in subarctic tundra soils. J Microbiol 2022; 60:1130-1138. [PMID: 36422843 DOI: 10.1007/s12275-022-2378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Recent rapid air temperature increases across the northern-latitude tundra have prolonged permafrost thawing and snow melting periods, resulting in increased soil temperature (Ts) and volumetric soil water content (SWC). Under prolonged soil warming at 8°C, Alaskan tundra soils were incubated in a microcosm system and examined for the SWC differential influence on the microbial decomposition activity of large molecular weight (MW) humic substances (HS). When one microcosm soil (AKC1-1) was incubated at a constant SWC of 41% for 90 days (T = 90) and then SWC was gradually decreased from 41% to 29% for another T = 90, the initial HS was partly depolymerized. In contrast, in AKC1-2 incubated at a gradually decreasing SWC from the initial 32% to 10% for T = 90 and then increasing to 27% for another T = 90, HS depolymerization was undetected. Overall, the microbial communities in AKC1-1 could maintain metabolic activity at sufficient and constant SWC during the initial T = 90 incubation. In contrast, AKC1-2 microbes may have been damaged by drought stress during the drying SWC regimen, possibly resulting in the loss of HS decomposition activity, which did not recover even after re-wetting to an optimal SWC range (20-40%). After T = 90, the CO2 production in both treatments was attributed to the increased decomposition of small-MW organic compounds (including aerobic HS-degradative products) within an optimal SWC range. We expect this study to provide new insights into the early effects of warming- and topography-induced SWC variations on the microbial contribution to CO2 emissions via HS decomposition in northern-latitude tundra soil.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Namyi Chae
- Institutes of Life Sciences and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sungjin Nam
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tai Kyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Ki-Tea Park
- Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Bang Yong Lee
- Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| |
Collapse
|
8
|
Bacterial community changes and their responses to nitrogen addition among different alpine grassland types at the eastern edge of Qinghai-Tibetan Plateau. Arch Microbiol 2021; 203:5963-5974. [PMID: 34557954 DOI: 10.1007/s00203-021-02535-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
Soil microbes play a fundamental role in maintaining nutrient biogeochemical cycles. To understand the distribution of soil bacterial communities on grassland plateaus, high-throughput sequencing was used to compare bacterial communities in soils from swamp meadows (SM), alpine meadows (AM), alpine steppes (AS), and desert steppes (DS) at the eastern edge of the Qinghai-Tibetan Plateau (QTP) in China. We then compared response to nitrogen addition between SM and DS soils in microcosms. Bacterial α-diversity decreased from SM > AM > AS > DS. Variations in soil properties across grassland types was associated with different soil bacterial communities corresponding to bacterial species associated with nutrient cycles to those associated with degradation. Soil moisture, pH, and total phosphorus were the main drivers of these differences. Nitrogen addition decreased bacterial diversity but had inconsistent effects on soil bacterial communities in SM and DS, which may also indicate that different alpine grassland soil types have unique bacterial communities. Alpine grassland degradation significantly affects bacterial communities, and the response to nitrogen addition depends on the alpine grassland type. These results allow for better predictions of soil bacteria community-level responses to geochemical and environmental change in alpine areas.
Collapse
|
9
|
Zhou X, Khashi U Rahman M, Liu J, Wu F. Soil acidification mediates changes in soil bacterial community assembly processes in response to agricultural intensification. Environ Microbiol 2021; 23:4741-4755. [PMID: 34289203 PMCID: PMC9291526 DOI: 10.1111/1462-2920.15675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Agricultural intensification is known to alter the assembly of soil microbial communities, which regulate several critical ecosystem processes. However, the underlying ecological processes driving changes in microbial community assembly, particularly at the regional scale, remain poorly understood. Using 16S rDNA sequencing, we characterized soil bacterial community assembly in three land‐use types with increasing land‐use intensity: open fields cultivated with main crops (CF) or vegetables (VF), and greenhouses cultivated with vegetables (VG). Compared with CF, VF and VG altered bacterial community composition and decreased spatial turnover rates of edaphic variables and bacterial communities. Bacterial community assembly was primarily governed by deterministic processes; however, bacterial communities in VF and VG were phylogenetically less clustered and more influenced by variable selection and less by dispersal limitation. Soil pH was the most important edaphic variable mediating the changes in bacterial community assembly processes induced by agricultural intensification. Specifically, decreasing soil pH led to stochastic assembly of bacterial community. Soil pH was lower in more intensively managed lands, especially in case of VG (pH range: 5.86–7.42). Overall, agricultural intensification altered soil bacterial community assembly processes, which was associated with soil acidification. These findings may have implications for improving soil quality and agroecosystem sustainability.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.,Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | | | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.,Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
10
|
Effects of Soil Properties and Plant Diversity on Soil Microbial Community Composition and Diversity during Secondary Succession. FORESTS 2021. [DOI: 10.3390/f12060805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soil microbial communities play an important role in maintaining the ecosystem during forest secondary succession. However, the underlying mechanisms that drive change in soil microbial community structures during secondary succession remain poorly defined in species-rich subtropical coniferous forests. In this study, Illumina high-throughput sequencing was used to analyze the variations in soil microbial community structures during forest secondary succession in subtropical coniferous forests in China. The role of soil properties and plant diversity in affecting soil bacterial and fungal communities was determined using random forest and structural equation models. Highly variable soil microbial diversity was observed in different stages of secondary succession. Bacterial community diversity rose from early to middle and late successional stages, whereas fungal community diversity increased from early to middle successional stages and then declined in the late stage. The relative abundance of Acidobacteria, Gemmatimonadetes, Eremiobacterota(WPS-2), Rokubacteria, and Mortierellomycota increased during succession, whereas the relative abundance of Ascomycota and Mucoromycota decreased. The community composition and diversity of the soil microbial community were remarkably influenced by plant diversity and soil properties. Notably, tree species richness (TSR) displayed a significant and direct correlation to the composition and diversity of both bacterial and fungal communities. The carbon-to-nitrogen (C:N) ratio had a direct impact on the bacterial community composition and diversity, and pH had a marked impact on the fungal community composition and diversity. Furthermore, succession stage and plant diversity indirectly impacted the composition and diversity of soil bacterial and fungal communities via soil properties. Overall, it can be concluded that soil intrinsic properties and plant diversity might jointly drive the changes in soil microbial community composition and diversity during secondary succession of subtropical coniferous forests.
Collapse
|
11
|
Kim D, Chae N, Kim M, Nam S, Kim E, Lee H. Soil water content as a critical factor for stable bacterial community structure and degradative activity in maritime Antarctic soil. J Microbiol 2020; 58:1010-1017. [PMID: 33263894 DOI: 10.1007/s12275-020-0490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
Recent increases in air temperature across the Antarctic Peninsula may prolong the thawing period and directly affect the soil temperature (Ts) and volumetric soil water content (SWC) in maritime tundra. Under an 8°C soil warming scenario, two customized microcosm systems with maritime Antarctic soils were incubated to investigate the differential influence of SWC on the bacterial community and degradation activity of humic substances (HS), the largest constituent of soil organic carbon and a key component of the terrestrial ecosystem. When the microcosm soil (KS1-4Feb) was incubated for 90 days (T = 90) at a constant SWC of ~32%, the initial HS content (167.0 mg/g of dried soil) decreased to 156.0 mg (approximately 6.6% loss, p < 0.05). However, when another microcosm soil (KS1-4Apr) was incubated with SWCs that gradually decreased from 37% to 9% for T = 90, HS degradation was undetected. The low HS degradative activity persisted, even after the SWC was restored to 30% with water supply for an additional T = 30. Overall bacterial community structure remained relatively stable at a constant SWC setting (KS1-4Feb). In contrast, we saw marked shifts in the bacterial community structure with the changing SWC regimen (KS1-4Apr), suggesting that the soil bacterial communities are vulnerable to drying and re-wetting conditions. These microcosm experiments provide new information regarding the effects of constant SWC and higher Ts on bacterial communities for HS degradation in maritime Antarctic tundra soil.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Namyi Chae
- Institutes of Life Sciences and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sungjin Nam
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| |
Collapse
|
12
|
Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wüst PK, Bunk B, Huang S, Regan KM, Berner D, Boeddinghaus RS, Marhan S, Prati D, Kandeler E, Overmann J, Friedrich MW. Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Front Microbiol 2020; 11:1391. [PMID: 32695081 PMCID: PMC7338559 DOI: 10.3389/fmicb.2020.01391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023] Open
Abstract
Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent β-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture – the most important environmental variable – had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that – despite considerable oscillation in space and time – the abundant and resident OTUs provide a community backbone that supports much higher β-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.
Collapse
Affiliation(s)
- Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benjamin Hofner
- Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franz-Sebastian Krah
- Biodiversity Conservation, Institute for Ecology, Evolution and Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pia K Wüst
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sixing Huang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kathleen M Regan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Doreen Berner
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Runa S Boeddinghaus
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Roesch LFW, Dobbler PT, Pylro VS, Kolaczkowski B, Drew JC, Triplett EW. pime
: A package for discovery of novel differences among microbial communities. Mol Ecol Resour 2019; 20:415-428. [DOI: 10.1111/1755-0998.13116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Luiz Fernando W. Roesch
- Interdisciplinary Research Center on Biotechnology‐CIP‐Biotec Universidade Federal do Pampa São Gabriel Brazil
| | - Priscila T. Dobbler
- Interdisciplinary Research Center on Biotechnology‐CIP‐Biotec Universidade Federal do Pampa São Gabriel Brazil
| | - Victor S. Pylro
- Microbial Ecology and Bioinformatics Laboratory Department of Biology Universidade Federal de Lavras Lavras Brazil
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science Institute of Food and Agricultural Sciences University of Florida Gainesville FL USA
| | - Jennifer C. Drew
- Department of Microbiology and Cell Science Institute of Food and Agricultural Sciences University of Florida Gainesville FL USA
| | - Eric W. Triplett
- Department of Microbiology and Cell Science Institute of Food and Agricultural Sciences University of Florida Gainesville FL USA
| |
Collapse
|