1
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
2
|
Wang J, Zhang S, Kong J, Chang J. Pecan secondary metabolites influenced the population of Zeuzera coffeae by affecting the structure and function of the larval gut microbiota. Front Microbiol 2024; 15:1379488. [PMID: 38680914 PMCID: PMC11045946 DOI: 10.3389/fmicb.2024.1379488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junqia Kong
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
3
|
Šigutová H, Pyszko P, Šigut M, Czajová K, Kostovčík M, Kolařík M, Hařovská D, Drozd P. Concentration-dependent effect of plant secondary metabolites on bacterial and fungal microbiomes in caterpillar guts. Microbiol Spectr 2024; 12:e0299423. [PMID: 37991377 PMCID: PMC10783044 DOI: 10.1128/spectrum.02994-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The caterpillar gut is an excellent model system for studying host-microbiome interactions, as it represents an extreme environment for microbial life that usually has low diversity and considerable variability in community composition. Our study design combines feeding caterpillars on a natural and artificial diet with controlled levels of plant secondary metabolites and uses metabarcoding and quantitative PCR to simultaneously profile bacterial and fungal assemblages, which has never been performed. Moreover, we focus on multiple caterpillar species and consider diet breadth. Contrary to many previous studies, our study suggested the functional importance of certain microbial taxa, especially bacteria, and confirmed the previously proposed lower importance of fungi for caterpillar holobiont. Our study revealed the lack of differences between monophagous and polyphagous species in the responses of microbial assemblages to plant secondary metabolites, suggesting the limited role of the microbiome in the plasticity of the herbivore diet.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Czajová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Denisa Hařovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
4
|
Gu Y, Ge S, Li J, Ren L, Wang C, Luo Y. Composition and Diversity of the Endobacteria and Ectobacteria of the Invasive Bark Beetle Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) in Newly Colonized Areas. INSECTS 2023; 15:12. [PMID: 38249018 PMCID: PMC10815997 DOI: 10.3390/insects15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) is a new invasive pest beetle in China, which colonized the Shandong province, causing devastating damage. Originating in Europe, it has spread to Oceania, Asia, North and South America. Bacterial associates have been frequently reported to play a vital role in strengthening the ecological adaptations of bark and ambrosia beetles. The environmental adaptability of H. ligniperda may be supported by their associated bacteria. Bacterial communities colonizing different body parts of insects may have different functions. However, little is known about the bacteria associated with H. ligniperda and their potential involvement in facilitating the adaptation and invasion of the beetles into new environments. In this study, we employed high-throughput sequencing technology to analyze the bacterial communities associated with male and female adults of H. ligniperda by comparing those colonizing the elytra, prothorax, and gut. Results showed that the bacterial communities of male and female adults were similar, and the elytra samples had the highest bacterial diversity and richness, followed by the gut, while the prothorax had the lowest. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteriota, while the dominant genera were Serratia, Lactococcus, Rhodococcus, unclassified Enterobacteriaceae, and Gordonia. Among these, Rhodococcus and Gordonia were the specific genera of endobacteria and ectobacteria, respectively. Differences in the distribution of associated bacteria may suggest that they have different ecological functions for H. ligniperda. The results of functional prediction showed that bacteria were enriched in terpenoid backbone biosynthesis, degradation of aromatic compounds, limonene and pinene degradation, neomycin, kanamycin and gentamicin biosynthesis, indicating that they may assist their beetles in synthesizing pheromones, degrading toxic secondary metabolites of host trees, and antagonizing pathogenic fungi. These results help us understand the interaction between H. ligniperda and bacteria and highlight possible contributions to the invasion process.
Collapse
Affiliation(s)
- Ying Gu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Jiale Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Chuanzhen Wang
- Yantai Forest Resources Monitoring and Protection Service Center, Yantai 264000, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Wang X, Wang H, Zeng J, Cui Z, Geng S, Song X, Zhang F, Su X, Li H. Distinct gut bacterial composition in Anoplophora glabripennis reared on two host plants. Front Microbiol 2023; 14:1199994. [PMID: 37405158 PMCID: PMC10315502 DOI: 10.3389/fmicb.2023.1199994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae) is an invasive wood borer pest that has caused considerable damage to forests. Gut bacteria are of great importance in the biology and ecology of herbivores, especially in growth and adaptation; however, change in the gut bacterial community of this pest feeding on different hosts is largely unknown. In this study, we investigated the gut bacterial communities of A. glabripennis larvae fed on different preferred hosts, Salix matsudana and Ulmus pumila, using 16S rDNA high-throughput sequencing technology. A total of 15 phyla, 25 classes, 65 orders, 114 families, 188 genera, and 170 species were annotated in the gut of A. glabripennis larvae fed on S. matsudana or U. pumila using a 97% similarity cutoff level. The dominant phyla were Firmicutes and Proteobacteria and the core dominant genera were Enterococcus, Gibbsiella, Citrobacter, Enterobacter, and Klebsiella. There was significantly higher alpha diversity in the U. pumila group than in the S. matsudana group, and principal co-ordinate analysis showed significant differences in gut bacterial communities between the two groups. The genera with significant abundance differences between the two groups were Gibbsiella, Enterobacter, Leuconostoc, Rhodobacter, TM7a, norank, Rhodobacter, and Aurantisolimonas, indicating that the abundance of larval gut bacteria was affected by feeding on different hosts. Further network diagrams showed that the complexity of the network structure and the modularity were higher in the U. pumila group than in the S. matsudana group, suggesting more diverse gut bacteria in the U. pumila group. The dominant role of most gut microbiota was related to fermentation and chemoheterotrophy, and specific OTUs positively correlated with different functions were reported. Our study provides an essential resource for the gut bacteria functional study of A. glabripennis associated with host diet.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Baoding, Hebei, China
| | - Zezhao Cui
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaofei Song
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengjuan Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
6
|
Wang X, Wang H, Su X, Zhang J, Bai J, Zeng J, Li H. Dynamic changes of gut bacterial communities present in larvae of Anoplophora glabripennies collected at different developmental stages. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21978. [PMID: 36377756 DOI: 10.1002/arch.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The Asian long-horned beetle, Anoplophora glabripennies (Motschulsky), is a destructive wood-boring pest that is capable of killing healthy trees. Gut bacteria in the larvae of the wood-boring pest is essential for the fitness of hosts. However, little is known about the structure of the intestinal microbiome of A. glabripennies during larval development. Here, we used Illumina MiSeq high-throughput sequencing technology to analyze the larval intestinal bacterial communities of A. glabripennies at the stages of newly hatched larvae, 1st instar larvae and 4th instar larvae. Significant differences were found in larval gut microbial community structure at different larvae developmental stages. Different dominant genus was detected during larval development. Acinetobacter were dominant in the newly hatched larvae, Enterobacter and Raoultella in the 1st instar larvae, and Enterococcus and Gibbsiella in the 4th instar larvae. The microbial richness in the newly hatched larvae was higher than those in the 1st and 4th instar larvae. Many important functions of the intestinal microbiome were predicted, for example, fermentation and chemoheterotrophy functions that may play an important role in insect growth and development was detected in the bacteria at all tested stages. However, some specific functions are found to be associated with different development stages. Our study provides a theoretical basis for investigating the function of the intestinal symbiosis bacteria of A. glabripennies.
Collapse
Affiliation(s)
- XueFei Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - HuaLing Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - XiaoYu Su
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - Jie Zhang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JiaWei Bai
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JianYong Zeng
- College of Forestry, Hebei Agricultural University, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei, China
| | - HuiPing Li
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| |
Collapse
|
7
|
Zhang L, Zhuang T, Hu M, Liu S, Wu D, Ji B. Gut microbiota contributes to lignocellulose deconstruction and nitrogen fixation of the larva of Apriona swainsoni. Front Physiol 2022; 13:1072893. [PMID: 36620205 PMCID: PMC9816477 DOI: 10.3389/fphys.2022.1072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Apriona swainsoni is a vital forest pest prevalent in China. The larvae of A. swainsoni live solely in the branches of trees and rely entirely on the xylem for nutrition. However, there is still a lack of in-depth research on the gut microbiota's use of almost nitrogen-free wood components to provide bio-organic macromolecular components needed for their growth. Thus, in this study, the metagenome, metaproteome, and metabolome of the A. swainsoni larvae in four gut segments (foregut; midgut; anterior hindgut; posterior hindgut) were analyzed by the multi-omics combined technology, to explore the metabolic utilization mechanism of the corresponding gut microbiota of A. swainsoni. Firstly, we found that the metagenome of different gut segments was not significantly different in general, but there were different combinations of dominant bacteria and genes in different gut segments, and the metaproteome and metabolome of four gut segments were significantly different in general. Secondly, the multi-omics results showed that there were significant gradient differences in the contents of cellulose and hemicellulose in different segments of A. swainsoni, and the expression of corresponding metabolic proteins was the highest in the midgut, suggesting the metabolic characteristics of these lignocellulose components in A. swainsoni gut segments. Finally, we found that the C/N ratio of woody food was significantly lower than that of frass, and metagenomic results showed that nitrogen fixation genes mainly existed in the foregut and two hindgut segments. The expression of the key nitrogen fixing gene nifH occurred in two hindgut parts, indicating the feature of nitrogen fixation of A. swainsoni. In conclusion, our results provide direct evidence that the larvae of A. swainsoni can adapt to the relatively harsh niche conditions through the highly organized gut microbiome in four gut segments, and may play a major role in their growth.
Collapse
Affiliation(s)
- Lei Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shuwen Liu
- The Administration Bureau of Dr. Sun Yat-sen’s Mausoleum, Nanjing, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Baozhong Ji
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Tan M, Wu H, Yan S, Jiang D. Evaluating the Toxic Effects of Tannic Acid Treatment on Hyphantria cunea Larvae. INSECTS 2022; 13:872. [PMID: 36292820 PMCID: PMC9604457 DOI: 10.3390/insects13100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To increase the development potential of botanical pesticides, it is necessary to expand the toxicology research on plant secondary metabolites. Herein, the Hyphantria cunea larvae were exposed to tannic acid concentrations consistent with those found in larch needles, and, subsequently, the growth and nutrient utilization, oxidative damage, and detoxification abilities in the larval midgut, as well as the changes in the gut microbiome, were analyzed. Our results revealed that tannic acid treatment significantly increased the mortality of H. cunea larvae and inhibited larval growth and food utilization. The contents of malondialdehyde and hydrogen peroxide in the larval midgut were significantly elevated in the treatment group, along with a significant decrease in the activities of antioxidant enzymes and detoxifying enzymes. However, the non-enzymatic antioxidants showed a significant increase in the tannic acid-treated larvae. From gut microbiome analysis in the treatment group, the abundance of gut microbiota related to toxin degradation and nutrient metabolism was significantly reduced, and the enrichment analysis also suggested that all pathways related to nutritional and detoxification metabolism were substantially inhibited. Taken together, tannic acid exerts toxic effects on H. cunea larvae at multiple levels and is a potential botanical pesticide for the control of H. cunea larvae.
Collapse
Affiliation(s)
- Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Fu S, Deng Y, Zou K, Zhang S, Liu X, Liang Y. Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:982771. [PMID: 36035669 PMCID: PMC9410704 DOI: 10.3389/fpls.2022.982771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
Altitude affects plant growth and metabolism, but the effect of altitude on plant endophytic microorganisms is still unclear. In this study, we selected 16 Ginkgo biloba trees to study the response of leaves' endophytes to flavonoids and altitude (from 530 m to 1,310 m). HPLC results showed that flavonoids in Ginkgo biloba leaves increased by more than 150% with attitude rising from 530 m to 1,310 m, which revealed a positive correlation with altitude. Ginkgo biloba might regulate the increased flavonoids in leaves to resist the increasing light intensity. 16S rDNA sequencing results showed that the endophytic bacterial communities of Ginkgo biloba at different altitudes significantly differed. Ginkgo leaf endophytes' alpha diversity decreased with increasing flavonoids content and altitude. The increased flavonoids might increase the environmental pressure on endophytes and affect the endophytic community in Ginkgo biloba leaves. The bacterial network in Ginkgo biloba leaves became more complex with increasing altitude, which might be one of the strategies of leaf endophytes to cope with increasing flavonoids. Metagenomes results predicted with PICRUSt showed that the abundance of flavonoid biosynthesis and photosynthesis genes were significantly decreased with the increase of flavonoid contents. High flavonoid content in leaves appeared to inhibit microbial flavonoid synthesis. Our findings indicate that altitude can modulate microbial community structure through regulating plant metabolites, which is important to uncovering the interaction of microbes, host and the environment.
Collapse
Affiliation(s)
- Shaodong Fu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Kai Zou
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Shuangfei Zhang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
10
|
Zhang J, Wang HL, Su XY, Wang XF, Yang M, Bai JW, Zeng JY, Li HP. Similar gut bacteria composition in Apriona germari on two preferred host plants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21899. [PMID: 35419869 DOI: 10.1002/arch.21899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Apriona germari is one of the most serious wood-boring pests that cause damage to economic and landscaping trees and has adapted to a wide range of plants as diet. Gut bacteria play an important role in biology and ecology of herbivores, especially in growth and adaptation. To investigate how plant hosts shape A. germari gut microbiota, A. germari larvae were collected from Populus tomentosa and Malus pumilal, and gut microbiomes were sequenced based on 16S rDNA high-throughput sequencing technology. A total of 853,424 high-quality reads were obtained and clustered into 196 operational taxonomic units under a 97% similarity cutoff, which were annotated into 8 phyla, 10 classes, 21 orders, 34 families, 59 genera, and 39 species. Gibbsiella was the most dominant genus of intestinal bacteria, followed by Enterobacter and Acinetobacter. No significant difference was observed in larvae gut bacterial richness and diversity of A. germari collected from two hosts, though alpha diversity showed that the richness of gut bacteria in A. germari larvae collected on P. tomentosa was slightly higher than that in A. germari on M. pumilal, and beta diversity showed little difference between two host plants. The functional abundance analysis of the detected bacteria revealed fermentation, chemoheterotrophy, symbionts, and nitrate relative functions that highly possibly support wood-boring beetles to feed on woody tissues. Our study provided a theoretical basis for investigating the function of intestinal symbiosis bacteria of A. germari.
Collapse
Affiliation(s)
- Jie Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Yu Su
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding, Hebei, China
| | - Xue-Fei Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Miao Yang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Jia-Wei Bai
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Jian-Yong Zeng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Hui-Ping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
11
|
Zhang S, Li Z, Shu J, Xue H, Guo K, Zhou X. Soil-derived bacteria endow Camellia weevil with more ability to resist plant chemical defense. MICROBIOME 2022; 10:97. [PMID: 35752840 PMCID: PMC9233397 DOI: 10.1186/s40168-022-01290-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Herbivorous insects acquire their gut microbiota from diverse sources, and these microorganisms play significant roles in insect hosts' tolerance to plant secondary defensive compounds. Camellia weevil (Curculio chinensis) (CW) is an obligate seed parasite of Camellia oleifera plants. Our previous study linked the CW's gut microbiome to the tolerance of the tea saponin (TS) in C. oleifera seeds. However, the source of these gut microbiomes, the key bacteria involved in TS tolerance, and the degradation functions of these bacteria remain unresolved. RESULTS Our study indicated that CW gut microbiome was more affected by the microbiome from soil than that from fruits. The soil-derived Acinetobacter served as the core bacterial genus, and Acinetobacter sp. was putatively regarded responsible for the saponin-degradation in CW guts. Subsequent experiments using fluorescently labeled cultures verified that the isolate Acinetobacter sp. AS23 can migrate into CW larval guts, and ultimately endow its host with the ability to degrade saponin, thereby allowing CW to subsist as a pest within plant fruits resisting to higher concentration of defensive chemical. CONCLUSIONS The systematic studies of the sources of gut microorganisms, the screening of taxa involved in plant secondary metabolite degradation, and the investigation of bacteria responsible for CW toxicity mitigation provide clarified evidence that the intestinal microorganisms can mediate the tolerance of herbivorous insects against plant toxins. Video Abstract.
Collapse
Affiliation(s)
- Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Zikun Li
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang, Hangzhou, 311400, People's Republic of China.
| | - Huaijun Xue
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kai Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China.
- College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|