4
|
Maes SL, Dietrich J, Midolo G, Schwieger S, Kummu M, Vandvik V, Aerts R, Althuizen IHJ, Biasi C, Björk RG, Böhner H, Carbognani M, Chiari G, Christiansen CT, Clemmensen KE, Cooper EJ, Cornelissen JHC, Elberling B, Faubert P, Fetcher N, Forte TGW, Gaudard J, Gavazov K, Guan Z, Guðmundsson J, Gya R, Hallin S, Hansen BB, Haugum SV, He JS, Hicks Pries C, Hovenden MJ, Jalava M, Jónsdóttir IS, Juhanson J, Jung JY, Kaarlejärvi E, Kwon MJ, Lamprecht RE, Le Moullec M, Lee H, Marushchak ME, Michelsen A, Munir TM, Myrsky EM, Nielsen CS, Nyberg M, Olofsson J, Óskarsson H, Parker TC, Pedersen EP, Petit Bon M, Petraglia A, Raundrup K, Ravn NMR, Rinnan R, Rodenhizer H, Ryde I, Schmidt NM, Schuur EAG, Sjögersten S, Stark S, Strack M, Tang J, Tolvanen A, Töpper JP, Väisänen MK, van Logtestijn RSP, Voigt C, Walz J, Weedon JT, Yang Y, Ylänne H, Björkman MP, Sarneel JM, Dorrepaal E. Environmental drivers of increased ecosystem respiration in a warming tundra. Nature 2024; 629:105-113. [PMID: 38632407 PMCID: PMC11062900 DOI: 10.1038/s41586-024-07274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5-7. This hampers the accuracy of global land carbon-climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9-2.0 °C] in air and 0.4 °C [CI 0.2-0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22-38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
Collapse
Affiliation(s)
- S L Maes
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden.
- Forest Ecology and Management Group (FORECOMAN), Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.
| | - J Dietrich
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
| | - G Midolo
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| | - S Schwieger
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - M Kummu
- Water and development research group, Aalto University, Espoo, Finland
| | - V Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - R Aerts
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - I H J Althuizen
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
- NORCE Climate and Environment, Norwegian Research Centre AS, Bergen, Norway
| | - C Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - R G Björk
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - H Böhner
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway, Tromsø, Norway
| | - M Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - G Chiari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - C T Christiansen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - K E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E J Cooper
- Department of Arctic and Marine Biology, UiT-the Arctic University of Norway, Tromsø, Norway
| | - J H C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - B Elberling
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - P Faubert
- Carbone Boréal, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - N Fetcher
- Institute for Environmental Science and Sustainability, Wilkes University, Wilkes-Barre, PA, USA
| | - T G W Forte
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - J Gaudard
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - K Gavazov
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Lausanne, Switzerland
| | - Z Guan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - J Guðmundsson
- Agricultural University of Iceland, Reykjavik, Iceland
| | - R Gya
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - S Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - B B Hansen
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
- Gjærevoll Centre for Biodiversity Foresight Analyses & Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - S V Haugum
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- The Heathland Centre, Alver, Norway
| | - J-S He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - C Hicks Pries
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - M J Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Australian Mountain Research Facility, Canberra, Australian Capital Territory, Australia
| | - M Jalava
- Water and development research group, Aalto University, Espoo, Finland
| | - I S Jónsdóttir
- Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - J Juhanson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Y Jung
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - E Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - M J Kwon
- Korea Polar Research Institute, Incheon, Korea
- Institute of Soil Science, Universität Hamburg, Hamburg, Germany
| | - R E Lamprecht
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - M Le Moullec
- Gjærevoll Centre for Biodiversity Foresight Analyses & Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - H Lee
- NORCE, Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - M E Marushchak
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - A Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - T M Munir
- Department of Geography, University of Calgary, Calgary, Alberta, Canada
| | - E M Myrsky
- Arctic Centre, University of Lapland, Rovaniemi, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - C S Nielsen
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- SEGES Innovation P/S, Aarhus, Denmark
| | - M Nyberg
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - J Olofsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - H Óskarsson
- Agricultural University of Iceland, Reykjavik, Iceland
| | - T C Parker
- Ecological Sciences, The James Hutton Institute, Aberdeen, UK
| | - E P Pedersen
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Petit Bon
- Department of Wildland Resources, Quinney College of Natural Resources and Ecology Center, Utah State University, Logan, UT, USA
- Department of Arctic Biology, University Centre in Svalbard, Longyearbyen, Norway
| | - A Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - K Raundrup
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - N M R Ravn
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - R Rinnan
- Center for Volatile Interactions, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Rodenhizer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - I Ryde
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - N M Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - E A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - S Sjögersten
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - S Stark
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | - M Strack
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - J Tang
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - A Tolvanen
- Natural Resources Institute Finland, Helsinki, Finland
| | - J P Töpper
- Norwegian Institute for Nature Research, Bergen, Norway
| | - M K Väisänen
- Arctic Centre, University of Lapland, Rovaniemi, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - R S P van Logtestijn
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - C Voigt
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Soil Science, Universität Hamburg, Hamburg, Germany
| | - J Walz
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
| | - J T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - Y Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - H Ylänne
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - M P Björkman
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - J M Sarneel
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - E Dorrepaal
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden
| |
Collapse
|