1
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Hsieh MH, Huang PT, Liou HH, Liang PH, Chen PM, Holt SA, Yu IF, James M, Shiau YS, Lee MT, Lin TL, Lou KL. The Penetration Depth for Hanatoxin Partitioning into the Membrane Hydrocarbon Core Measured with Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9036-9046. [PMID: 29986585 DOI: 10.1021/acs.langmuir.8b01076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hanatoxin (HaTx) from spider venom works as an inhibitor of Kv2.1 channels, most likely by interacting with the voltage sensor (VS). However, the way in which this water-soluble peptide modifies the gating remains poorly understood as the VS is deeply embedded within the bilayer, although it would change its position depending on the membrane potential. To determine whether HaTx can indeed bind to the VS, the depth at which HaTx penetrates into the POPC membranes was measured with neutron reflectivity. Our results successfully demonstrate that HaTx penetrates into the membrane hydrocarbon core (∼9 Å from the membrane surface), not lying on the membrane-water interface as reported for another voltage sensor toxin (VSTx). This difference in penetration depth suggests that the two toxins fix the voltage sensors at different positions with respect to the membrane normal, thereby explaining their different inhibitory effects on the channels. In particular, results from MD simulations constrained by our penetration data clearly demonstrate an appropriate orientation for HaTx to interact with the membranes, which is in line with the biochemical information derived from stopped-flow analysis through delineation of the toxin-VS binding interface.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| | - Horng-Huei Liou
- Division of Neurology , National Taiwan University Hospital , Taipei 10002 , Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Pei-Ming Chen
- Department of Electrical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Stephen A Holt
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
| | - Isaac Furay Yu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Michael James
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC , New South Wales , Australia
- The Australian Synchrotron , 800 Blackburn Road , Clayton , Victoria 3168 , Australia
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076 , Taiwan
- Department of Physics , National Central University , Jhongli 32001 , Taiwan
| | - Tsang-Lang Lin
- Department of Engineering and System Science , National Tsing-Hua University , Hsinchu 30013 , Taiwan
| | - Kuo-Long Lou
- Membrane Protein Research Core, Center for Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biotechnology , National Taiwan University , Taipei 10672 , Taiwan
- Institute of Biochemistry and Molecular Biology , National Taiwan University , Taipei 10051 , Taiwan
- Graduate Institute of Oral Biology , National Taiwan University , Taipei 10048 , Taiwan
| |
Collapse
|
3
|
Deplazes E. Molecular simulations of venom peptide-membrane interactions: Progress and challenges. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University; Bentley, Perth WA 6102 Australia
| |
Collapse
|
4
|
Hung A, Kuyucak S, Schroeder CI, Kaas Q. Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology 2017; 127:20-31. [PMID: 28778835 DOI: 10.1016/j.neuropharm.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
5
|
Agwa AJ, Henriques ST, Schroeder CI. Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real? Neuropharmacology 2017; 127:32-45. [PMID: 28400258 DOI: 10.1016/j.neuropharm.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Hsieh MH, Shiau YS, Liou HH, Jeng US, Lee MT, Lou KL. Measurement of Hanatoxin-Induced Membrane Thinning with Lamellar X-ray Diffraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2885-2889. [PMID: 28260386 DOI: 10.1021/acs.langmuir.7b00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Membrane perturbation induced by cysteine-rich peptides is a crucial biological phenomenon but scarcely investigated, in particular with effective biophysical-chemical methodologies. Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, works as an inhibitor of drk1 (Kv2.1) channels, most likely by interacting with the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage sensor was proposed to be deeply embedded within the bilayer. To see how HaTx interacts with phospholipid bilayers, we observe the toxin-induced perturbation on POPC/DOPG-membranes through measurements of the change in membrane thickness. Lamellar X-ray diffraction (LXD) was applied on stacked planar bilayers in the near-fully hydrated state. The results provide quantitative evidence for the membrane thinning in a concentration-dependent manner, leading to novel and direct combinatory approaches by discovering how to investigate such a biologically relevant interaction between gating-modifier toxins and phospholipid bilayers.
Collapse
Affiliation(s)
- Meng-Hsuan Hsieh
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Yu-Shuan Shiau
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| | - Horng-Huei Liou
- Division of Neurology, National Taiwan University Hospital , Taipei 10002, Taiwan
- Institute of Pharmacology, National Taiwan University , Taipei 10051, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
| | - Ming-Tao Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan
- Department of Physics, National Central University , Jhongli 32001, Taiwan
| | - Kuo-Long Lou
- Institute of Biotechnology, National Taiwan University , Taipei 10672, Taiwan
- Membrane Protein Research Core, Center for Biotechnology, National Taiwan University , Taipei 10672, Taiwan
| |
Collapse
|
7
|
Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes. Molecules 2017; 22:molecules22030362. [PMID: 28264446 PMCID: PMC6155311 DOI: 10.3390/molecules22030362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Disulfide-rich peptides isolated from the venom of arthropods and marine animals are a rich source of potent and selective modulators of ion channels. This makes these peptides valuable lead molecules for the development of new drugs to treat neurological disorders. Consequently, much effort goes into understanding their mechanism of action. This paper presents an overview of how molecular simulations have been used to study the interactions of disulfide-rich venom peptides with ion channels and membranes. The review is focused on the use of docking, molecular dynamics simulations, and free energy calculations to (i) predict the structure of peptide-channel complexes; (ii) calculate binding free energies including the effect of peptide modifications; and (iii) study the membrane-binding properties of disulfide-rich venom peptides. The review concludes with a summary and outlook.
Collapse
|
8
|
Hanatoxin inserts into phospholipid membranes without pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:917-923. [PMID: 28143758 DOI: 10.1016/j.bbamem.2017.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 11/23/2022]
Abstract
Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, functions as an inhibitor of Kv2.1 channels by interacting with phospholipids prior to affecting the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer. To determine how HaTx interacts with phospholipid bilayers, in this study, we examined the toxin-induced partitioning of liposomal membranes. HPLC-results from high-speed spin-down vesicles with HaTx demonstrated direct binding. Dynamic light scattering (DLS) and leakage assay results further indicated that neither membrane pores nor membrane fragmentations were observed in the presence of HaTx. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Our current study thus describes the interaction pattern of HaTx with vesicle membranes, defining a membrane-partitioning mechanism for peptide insertion involving the membrane hydrocarbon core without pore formation.
Collapse
|
9
|
Gnanasambandam R, Ghatak C, Yasmann A, Nishizawa K, Sachs F, Ladokhin AS, Sukharev SI, Suchyna TM. GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophys J 2017; 112:31-45. [PMID: 28076814 PMCID: PMC5231890 DOI: 10.1016/j.bpj.2016.11.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/12/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (MSCs). It has six lysine residues that have been proposed to affect membrane binding. We synthesized six analogs with single lysine-to-glutamate substitutions and tested them against Piezo1 channels in outside-out patches and independently measured lipid binding. Four analogs had ∼20% lower efficacy than the wild-type (WT) peptide. The equilibrium constants calculated from the rates of inhibition and washout did not correlate with the changes in inhibition. The lipid association strength of the WT GsMTx4 and the analogs was determined by tryptophan autofluorescence quenching and isothermal calorimetry with membrane vesicles and showed no significant differences in binding energy. Tryptophan fluorescence-quenching assays showed that both WT and analog peptides bound superficially near the lipid-water interface, although analogs penetrated deeper. Peptide-lipid association, as a function of lipid surface pressure, was investigated in Langmuir monolayers. The peptides occupied a large fraction of the expanded monolayer area, but that fraction was reduced by peptide expulsion as the pressure approached the monolayer-bilayer equivalence pressure. Analogs with compromised efficacy had pressure-area isotherms with steeper slopes in this region, suggesting tighter peptide association. The pressure-dependent redistribution of peptide between "deep" and "shallow" binding modes was supported by molecular dynamics (MD) simulations of the peptide-monolayer system under different area constraints. These data suggest a model placing GsMTx4 at the membrane surface, where it is stabilized by the lysines, and occupying a small fraction of the surface area in unstressed membranes. When applied tension reduces lateral pressure in the lipids, the peptides penetrate deeper acting as "area reservoirs" leading to partial relaxation of the outer monolayer, thereby reducing the effective magnitude of stimulus acting on the MSC gate.
Collapse
Affiliation(s)
| | - Chiranjib Ghatak
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Anthony Yasmann
- Department of Biology, University of Maryland, College Park, Maryland
| | - Kazuhisa Nishizawa
- Clinical Laboratory Science, Teikyo University School of Medical Technology, Tokyo, Japan
| | - Frederick Sachs
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sergei I Sukharev
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas M Suchyna
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York.
| |
Collapse
|
10
|
Deplazes E, Henriques ST, Smith JJ, King GF, Craik DJ, Mark AE, Schroeder CI. Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:872-82. [DOI: 10.1016/j.bbamem.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
|
11
|
Wee CL, Ulmschneider MB, Sansom MSP. Membrane/Toxin Interaction Energetics via Serial Multiscale Molecular Dynamics Simulations. J Chem Theory Comput 2015; 6:966-76. [PMID: 26613320 DOI: 10.1021/ct900652s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Computing free energies of complex biomolecular systems via atomistic (AT) molecular dynamics (MD) simulations remains a challenge due to the need for adequate sampling and convergence. Recent coarse-grained (CG) methodology allows simulations of significantly larger systems (∼10(6) to 10(8) atoms) over longer (μs/ms) time scales. Such CG models appear to be capable of making semiquantitative predictions. However, their ability to reproduce accurate thermodynamic quantities remains uncertain. We have recently used CG MD simulations to compute the potential of mean force (PMF) or free energy profile of a small peptide toxin interacting with a lipid bilayer along a 1D reaction coordinate. The toxin studied was VSTx1 (Voltage Sensor Toxin 1) from spider venom which inhibits the archeabacterial voltage-gated potassium (Kv) channel KvAP by binding to the voltage-sensor (VS) domains. Here, we re-estimate this PMF profile using (i) AT MD simulations with explicit membrane and solvent and (ii) an implicit membrane and solvent (generalized Born; GBIM) model where only the peptide was explicit. We used the CG MD free energy simulations to guide the setup of the corresponding AT MD simulations. The aim was to avoid local minima in the AT simulations which would be difficult over shorter AT time scales. A cross-comparison of the PMF profiles revealed a conserved topology, although there were differences in the magnitude of the free energies. The CG and AT simulations predicted a membrane/water interface free energy well of -27 and -23 kcal/mol, respectively (with respect to water). The GBIM model, however, gave a reduced interfacial free energy well (-12 kcal/mol). In addition, the CG and GBIM models predicted a free energy barrier of +61 and +96 kcal/mol, respectively, for positioning the toxin at the center of the bilayer, which was considerably smaller in the AT simulations (+26 kcal/mol). Thus, we present a framework for serially combining CG and AT simulations to estimate the free energy of peptide/membrane interactions. Such approaches for combining simulations at different levels of granularity will become increasingly important in future studies of complex membrane/protein systems.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Martin B Ulmschneider
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
12
|
Computational Studies of Venom Peptides Targeting Potassium Channels. Toxins (Basel) 2015; 7:5194-211. [PMID: 26633507 PMCID: PMC4690127 DOI: 10.3390/toxins7124877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/20/2015] [Indexed: 01/18/2023] Open
Abstract
Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K+ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone.
Collapse
|
13
|
Tao H, Chen JJ, Xiao YC, Wu YY, Su HB, Li D, Wang HY, Deng MC, Wang MC, Liu ZH, Liang SP. Analysis of the Interaction of Tarantula Toxin Jingzhaotoxin-III (β-TRTX-Cj1α) with the Voltage Sensor of Kv2.1 Uncovers the Molecular Basis for Cross-Activities on Kv2.1 and Nav1.5 Channels. Biochemistry 2013; 52:7439-48. [DOI: 10.1021/bi4006418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Huai Tao
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Department
of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jin J. Chen
- College
of Biology Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu C. Xiao
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Y. Wu
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Hai B Su
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Dan Li
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Heng Y. Wang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mei C. Deng
- Department
of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013, China
| | - Mei C. Wang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhong H. Liu
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Song P. Liang
- Key
Laboratory of Protein Chemistry and Developmental Biology of Ministry
of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
14
|
Gordon D, Chen R, Chung SH. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev 2013; 93:767-802. [PMID: 23589832 PMCID: PMC3768100 DOI: 10.1152/physrev.00035.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field.
Collapse
Affiliation(s)
- Dan Gordon
- Research School of Biology, The Australian National University, Acton, ACT 0200, Australia.
| | | | | |
Collapse
|
15
|
Chen R, Chung SH. Effect of gating modifier toxins on membrane thickness: implications for toxin effect on gramicidin and mechanosensitive channels. Toxins (Basel) 2013; 5:456-71. [PMID: 23435154 PMCID: PMC3640545 DOI: 10.3390/toxins5020456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/17/2023] Open
Abstract
Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.
Collapse
Affiliation(s)
- Rong Chen
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
16
|
Binding of hanatoxin to the voltage sensor of Kv2.1. Toxins (Basel) 2012; 4:1552-64. [PMID: 23250329 PMCID: PMC3528262 DOI: 10.3390/toxins4121552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
Hanatoxin 1 (HaTx1) is a polypeptide toxin isolated from spider venoms. HaTx1 inhibits the voltage-gated potassium channel kv2.1 potently with nanomolar affinities. Its receptor site has been shown to contain the S3b-S4a paddle of the voltage sensor (VS). Here, the binding of HaTx1 to the VSs of human Kv2.1 in the open and resting states are examined using a molecular docking method and molecular dynamics. Molecular docking calculations predict two distinct binding modes for the VS in the resting state. In the two binding modes, the toxin binds the S3b-S4a from S2 and S3 helices, or from S1 and S4 helices. Both modes are found to be stable when embedded in a lipid bilayer. Only the mode in which the toxin binds the S3b-S4a paddle from S2 and S3 helices is consistent with mutagenesis experiments, and considered to be correct. The toxin is then docked to the VS in the open state, and the toxin-VS interactions are found to be less favorable. Computational mutagenesis calculations performed on F278R and E281K mutant VSs show that the mutations may reduce toxin binding affinity by weakening the non-bonded interactions between the toxin and the VS. Overall, our calculations reproduce a wide range of experimental data, and suggest that HaTx1 binds to the S3b-S4a paddle of Kv2.1 from S2 and S3 helices.
Collapse
|
17
|
Molecular determinants for the tarantula toxin jingzhaotoxin-I interacting with potassium channel Kv2.1. Toxicon 2012; 63:129-36. [PMID: 23246579 DOI: 10.1016/j.toxicon.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
With high binding affinity and distinct pharmacological functions, animal toxins are powerful ligands to investigate the structure-function relationships of voltage-gated ion channels. Jingzhaotoxin-I (JZTX-I) is an important neurotoxin from the tarantula Chilobrachys jingzhao venom that inhibits both sodium and potassium channels. In our previous work, JZTX-I, as a gating modifier, is able to inhibit activation of the potassium channel subtype Kv2.1. However, its binding site on Kv2.1 remains unknown. In this study, using Ala-scanning mutagenesis strategy, we demonstrated that four residues (I273, F274, E277, and K280) in S3b-S4 motif contributed to the formation of JZTX-I binding site. The mutations I273A, F274A, E277A, and K280A reduced toxin binding affinity by 6-, 10-, 8-, and 7-fold, respectively. Taken together with our previous data that JZTX-I accelerated channel deactivation, these results suggest that JZTX-I inhibits Kv2.1 activation by docking onto the voltage sensor paddle and trapping the voltage sensor in the closed state.
Collapse
|
18
|
Wee CL, Gavaghan D, Sansom MSP. Interactions between a voltage sensor and a toxin via multiscale simulations. Biophys J 2010; 98:1558-65. [PMID: 20409475 PMCID: PMC2856169 DOI: 10.1016/j.bpj.2009.12.4321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 02/07/2023] Open
Abstract
Gating-modifier toxins inhibit voltage-gated ion channels by binding the voltage sensors (VS) and altering the energetics of voltage-dependent gating. These toxins are thought to gain access to the VS via the membrane (i.e., by partitioning from water into the membrane before binding the VS). We used serial multiscale molecular-dynamics (MD) simulations, via a combination of coarse-grained (CG) and atomistic (AT) simulations, to study how the toxin VSTx1, which inhibits the archeabacterial voltage-gated potassium channel KvAP, interacts with an isolated membrane-embedded VS domain. In the CG simulations, VSTx1, which was initially located in water, partitioned into the headgroup/water interface of the lipid bilayer before binding the VS. The CG configurations were used to generate AT representations of the system, which were subjected to AT-MD to further evaluate the stability of the complex and refine the predicted VS/toxin interface. VSTx1 interacted with a binding site on the VS formed by the C-terminus of S1, the S1-S2 linker, and the N-terminus of S4. The predicted VS/toxin interactions are suggestive of toxin-mediated perturbations of the interaction between the VS and the pore domain of Kv channels, and of the membrane. Our simulations support a membrane-access mechanism of inhibition of Kv channels by VS toxins. Overall, the results show that serial multiscale MD simulations may be used to model a two-stage process of protein-bilayer and protein-protein interactions within a membrane.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
19
|
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field. Biophys J 2008; 95:1729-44. [PMID: 18487312 DOI: 10.1529/biophysj.108.130658] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this article, we present the results of the molecular dynamics simulations of amphiphilic helix peptides of 13 amino-acid residues, placed at the lipid-water interface of dipalmitoylphosphatidylcholine bilayers. The peptides are identical with, or are derivatives of, the N-terminal segment of the S4 helix of voltage-dependent K channel KvAP, containing four voltage-sensing arginine residues (R1-R4). Upon changing the direction of the externally applied electric field, the tilt angle of the wild-type peptide changes relative to the lipid-water interface, with the N-terminus heading up with an outward electric field. These movements were not observed using an octane membrane in place of the dipalmitoylphosphatidylcholine membrane, and were markedly suppressed by 1), substituting Phe located one residue before the first arginine (R1) with a hydrophilic residue (Ser, Thr); or 2), changing the periodicity rule of Rs from at-every-third to at-every-fourth position; or 3), replacing R1 with a lysine residue (K). These and other findings suggest that the voltage-dependent movement requires deep positioning of Rs when the resting (inward) electric field is present. Later, we performed simulations of the voltage sensor domain (S1-S4) of Kv1.2 channel. In simulations with a strong electric field (0.1 V/nm or above) and positional restraints on the S1 and S2 helices, S4 movement was observed consisting of displacement along the S4 helix axis and a screwlike axial rotation. Gating-charge-carrying Rs were observed to make serial interactions with E183 in S1 and E226 in S2, in the outer water crevice. A 30-ns-backward simulation started from the open-state model gave rise to a structure similar to the recent resting-state model, with S4 moving vertically approximately 6.7 A. The energy landscape around the movement of S4 appears very ragged due to salt bridges formed between gating-charge-carrying residues and negatively charged residues of S1, S2, and S3 helices. Overall, features of S3 and S4 movements are consistent with the recent helical-screw model. Both forward and backward simulations show the presence of at least two stable intermediate structures in which R2 and R3 form salt bridges with E183 or E226, respectively. These structures are the candidates for the states postulated in previous gating kinetic models, such as the Zagotta-Hoshi-Aldrich model, to account for more than one transition step per subunit for activation.
Collapse
|
20
|
Wee CL, Sansom MSP, Reich S, Akhmatskaya E. Improved Sampling for Simulations of Interfacial Membrane Proteins: Application of Generalized Shadow Hybrid Monte Carlo to a Peptide Toxin/Bilayer System. J Phys Chem B 2008; 112:5710-7. [DOI: 10.1021/jp076712u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kuznetsova AY, Deth RC. A model for modulation of neuronal synchronization by D4 dopamine receptor-mediated phospholipid methylation. J Comput Neurosci 2007; 24:314-29. [PMID: 17929154 DOI: 10.1007/s10827-007-0057-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 08/29/2007] [Accepted: 09/24/2007] [Indexed: 12/16/2022]
Abstract
We describe a new molecular mechanism of dopamine-induced membrane protein modulation that can tune neuronal oscillation frequency to attention-related gamma rhythm. This mechanism is based on the unique ability of D4 dopamine receptors (D4R) to carry out phospholipid methylation (PLM) that may affect the kinetics of ion channels. We show that by deceasing the inertia of the delayed rectifier potassium channel, a transition to 40 Hz oscillations can be achieved. Decreased potassium channel inertia shortens spike duration and decreases the interspike interval via its influence on the calcium-dependent potassium current. This mechanism leads to a transition to attention-related gamma oscillations in a pyramidal cell-interneuron network. The higher frequency and better synchronization is observed with PLM affecting pyramidal neurons only, and recurrent excitation between pyramidal neurons is important for synchronization. Thus dopamine-stimulated methylation of membrane phospholipids may be an important mechanism for modulating firing activity, while impaired methylation can contribute to disorders of attention.
Collapse
Affiliation(s)
- Anna Y Kuznetsova
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier St., Suite D, New Orleans, LA 70112, USA
| | | |
Collapse
|
22
|
Nishizawa M, Nishizawa K. Molecular dynamics simulations of a stretch-activated channel inhibitor GsMTx4 with lipid membranes: two binding modes and effects of lipid structure. Biophys J 2007; 92:4233-43. [PMID: 17384064 PMCID: PMC1877766 DOI: 10.1529/biophysj.106.101071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/12/2007] [Indexed: 11/18/2022] Open
Abstract
Our recent molecular dynamics simulation study of hanatoxin 1 (HaTx1), a gating modifier that binds to the voltage sensor of K(+) channels, has shown that HaTx1 has the ability to interact with carbonyl oxygen atoms of both leaflets of the lipid bilayer membrane and to be located at a deep position within the membrane. Here we performed a similar study of GsMTx4, a stretch-activated channels inhibitor, belonging to the same peptide family as HaTx1. Both toxins have an ellipsoidal shape, a belt of positively charged residues around the periphery, and a hydrophobic protrusion. Results show that, like HaTx1, GsMTx4 can interact with the membrane in two different ways. When all the positively charged residues interact with the outer leaflet lipid, GsMTx4 can assume a shallow binding mode. On the other hand, when the electrostatic interaction brings the positively charged groups of K-8 and K-28 into the vicinity of the carbonyl oxygen atoms of the inner leaflet lipids, the system exhibits a deep binding mode. This deep mode is accompanied by local membrane thinning. For both HaTx1 and GsMTx4, our mean force measurement analyses show that the deep binding mode is energetically favored over the shallow mode when a DPPC (dipalmitoyl-phosphatidylcholine) membrane is used at 310 K. In contrast, when a POPC (palmitooleoyl-phosphatidylcholine) membrane is used at 310 K, the two binding modes exhibited similar stability for both toxins. Similar analyses with DPPC membrane at 330 K led to an intermediary result between the above two results. Therefore, the structure of the lipid acyl chains appears to influence the location and the dynamics of the toxins within biological membranes. We also compared the behavior of an arginine and a lysine residue within the membrane. This is of interest because the arginine residue interaction with the lipid carbonyl oxygen atoms mediates the deep binding mode for HaTx1, whereas the lysine residue plays that role for GsMTx4. The arginine residue generally shows smoother dynamics near the lipid carbonyl oxygen atoms than the lysine residue. This difference between arginine and lysine may partly account for the functional diversity of the members of the toxin family.
Collapse
Affiliation(s)
- Manami Nishizawa
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi, Tokyo 173-8605, Japan
| | | |
Collapse
|
23
|
Huang PT, Shiau YS, Lou KL. The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon 2007; 49:285-92. [PMID: 17113615 DOI: 10.1016/j.toxicon.2006.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gating modifier peptides bind to ion channels and alter the gating process of these molecules. One of the most extensively studied peptides, Hanatoxin (HaTx), isolated from a Chilean tarantula, has been used to characterize the blocking properties of the voltage-gated potassium channel Kv2.1. These studies have provided some insight into the gating mechanism in Kv channels. In this review we will discuss the interaction of HaTx and related spider peptides with Kv channels illustrating the properties of the binding surface of these peptides, their membrane partitioning characteristics, and will provide a working hypothesis for how the peptides inhibit gating of Kv channels. Advanced simulation results support the concept of mutual conformational changes upon peptide binding to the S3b region of the channel which will restrict movement of S4 and compromise coupling of the gating machinery to opening of the pore.
Collapse
Affiliation(s)
- Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taiwan
| | | | | |
Collapse
|
24
|
Bemporad D, Sands ZA, Wee CL, Grottesi A, Sansom MSP. Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers. Biochemistry 2006; 45:11844-55. [PMID: 17002285 DOI: 10.1021/bi061111z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
VSTx1 is a tarantula venom toxin which binds to the archaebacterial voltage-gated potassium channel KvAP. VSTx1 is thought to access the voltage sensor domain of the channel via the lipid bilayer phase. In order to understand its mode of action and implications for the mechanism of channel activation, it is important to characterize the interactions of VSTx1 with lipid bilayers. Molecular dynamics (MD) simulations (for a total simulation time in excess of 0.2 micros) have been used to explore VSTx1 localization and interactions with zwitterionic (POPC) and with anionic (POPE/POPG) lipid bilayers. In particular, three series of MD simulations have been used to explore the net drift of VSTx1 relative to the center of a bilayer, starting from different locations of the toxin. The preferred location of the toxin is at the membrane/water interface. Although there are differences between POPC and POPE/POPG bilayers, in both cases the toxin forms favorable interactions at the interface, maximizing H-bonding to lipid headgroups and to water molecules while retaining interactions with the hydrophobic core of the bilayer. A 30 ns unrestrained simulation reveals dynamic partitioning of VSTx1 into the interface of a POPC bilayer. The preferential location of VSTx1 at the interface is discussed in the context of Kv channel gating models and provides support for a mode of action in which the toxin interacts with the Kv voltage sensor "paddle" formed by the S3 and S4 helices.
Collapse
Affiliation(s)
- Daniele Bemporad
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|