1
|
Iyer RS, Needham SR, Galdadas I, Davis BM, Roberts SK, Man RCH, Zanetti-Domingues LC, Clarke DT, Fruhwirth GO, Parker PJ, Rolfe DJ, Gervasio FL, Martin-Fernandez ML. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15:2130. [PMID: 38503739 PMCID: PMC10951324 DOI: 10.1038/s41467-024-46284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.
Collapse
Affiliation(s)
- R Sumanth Iyer
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
- Immunocore Limited, 92 Park Drive, Milton Park, Abingdon, UK
| | - Sarah R Needham
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- ISPSO, University of Geneva, Geneva, Switzerland
| | - Benjamin M Davis
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Selene K Roberts
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Rico C H Man
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | | | - David T Clarke
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Daniel J Rolfe
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.
| | - Francesco L Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- ISPSO, University of Geneva, Geneva, Switzerland.
- Chemistry Department, University College London, London, UK.
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
2
|
Jackson V, Hermann J, Tynan CJ, Rolfe DJ, Corey RA, Duncan AL, Noriega M, Chu A, Kalli AC, Jones EY, Sansom MSP, Martin-Fernandez ML, Seiradake E, Chavent M. The guidance and adhesion protein FLRT2 dimerizes in cis via dual small-X 3-small transmembrane motifs. Structure 2022; 30:1354-1365.e5. [PMID: 35700726 DOI: 10.1016/j.str.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Fibronectin Leucine-rich Repeat Transmembrane (FLRT 1-3) proteins are a family of broadly expressed single-spanning transmembrane receptors that play key roles in development. Their extracellular domains mediate homotypic cell-cell adhesion and heterotypic protein interactions with other receptors to regulate cell adhesion and guidance. These in trans FLRT interactions determine the formation of signaling complexes of varying complexity and function. Whether FLRTs also interact at the surface of the same cell, in cis, remains unknown. Here, molecular dynamics simulations reveal two dimerization motifs in the FLRT2 transmembrane helix. Single particle tracking experiments show that these Small-X3-Small motifs synergize with a third dimerization motif encoded in the extracellular domain to permit the cis association and co-diffusion patterns of FLRT2 receptors on cells. These results may point to a competitive switching mechanism between in cis and in trans interactions, which suggests that homotypic FLRT interaction mirrors the functionalities of classic adhesion molecules.
Collapse
Affiliation(s)
- Verity Jackson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Julia Hermann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Campus, Didcot, OX11 0FA, UK
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Campus, Didcot, OX11 0FA, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Maxime Noriega
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Amy Chu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, LS2 9NL, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Harwell Campus, Didcot, OX11 0FA, UK.
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.
| | - Matthieu Chavent
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France.
| |
Collapse
|
3
|
Forouhan M, Lim WF, Zanetti-Domingues LC, Tynan CJ, Roberts TC, Malik B, Manzano R, Speciale AA, Ellerington R, Garcia-Guerra A, Fratta P, Sorarú G, Greensmith L, Pennuto M, Wood MJA, Rinaldi C. AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathol 2022; 143:713-731. [PMID: 35522298 PMCID: PMC9107400 DOI: 10.1007/s00401-022-02428-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-β pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.
Collapse
Affiliation(s)
- Mitra Forouhan
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Christopher J Tynan
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Bilal Malik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alfina A Speciale
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Ruth Ellerington
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Antonio Garcia-Guerra
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Gianni Sorarú
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Pennuto
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Benfenati A. upU-Net Approaches for Background Emission Removal in Fluorescence Microscopy. J Imaging 2022; 8:142. [PMID: 35621906 PMCID: PMC9146274 DOI: 10.3390/jimaging8050142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
The physical process underlying microscopy imaging suffers from several issues: some of them include the blurring effect due to the Point Spread Function, the presence of Gaussian or Poisson noise, or even a mixture of these two types of perturbation. Among them, auto-fluorescence presents other artifacts in the registered image, and such fluorescence may be an important obstacle in correctly recognizing objects and organisms in the image. For example, particle tracking may suffer from the presence of this kind of perturbation. The objective of this work is to employ Deep Learning techniques, in the form of U-Nets like architectures, for background emission removal. Such fluorescence is modeled by Perlin noise, which reveals to be a suitable candidate for simulating such a phenomenon. The proposed architecture succeeds in removing the fluorescence, and at the same time, it acts as a denoiser for both Gaussian and Poisson noise. The performance of this approach is furthermore assessed on actual microscopy images and by employing the restored images for particle recognition.
Collapse
Affiliation(s)
- Alessandro Benfenati
- Environmental and Science Policy Department, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
- Gruppo Nazionale Calcolo Scientifico, Istituto Nazionale di Alta Matematica, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
6
|
Martin-Fernandez ML. Fluorescence Imaging of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14030686. [PMID: 35158954 PMCID: PMC8833717 DOI: 10.3390/cancers14030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related deaths, with a low (<21%) 5-year survival rate. Lung cancer is often driven by the misfunction of molecules on the surface of cells of the epithelium, which orchestrate mechanisms by which these cells grow and proliferate. Beyond common non-specific treatments, such as chemotherapy or radiotherapy, among molecular-specific treatments, a number of small-molecule drugs that block cancer-driven molecular activity have been developed. These drugs initially have significant success in a subset of patients, but these patients systematically develop resistance within approximately one year of therapy. Substantial efforts towards understanding the mechanisms of resistance have focused on the genomics of cancer progression, the response of cells to the drugs, and the cellular changes that allow resistance to develop. Fluorescence microscopy of many flavours has significantly contributed to the last two areas, and is the subject of this review. Abstract Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase. Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and erlotinib are the best studied, and their function more often imaged. TKIs block EGFR activation, inducing apoptosis in cancer cells addicted to EGFR signals. It is not understood why TKIs do not work in tumours driven by EGFR overexpression but do so in tumours bearing classical activating EGFR mutations, although the latter develop resistance in about one year. Fluorescence imaging played a crucial part in research efforts to understand pro-survival mechanisms, including the dysregulation of autophagy and endocytosis, by which cells overcome the intendedly lethal TKI-induced EGFR signalling block. At their core, pro-survival mechanisms are facilitated by TKI-induced changes in the function and conformation of EGFR and its interactors. This review brings together some of the main advances from fluorescence imaging in investigating TKI function and places them in the broader context of the TKI resistance field, highlighting some paradoxes and suggesting some areas where super-resolution and other emerging methods could make a further contribution.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| |
Collapse
|
7
|
McKenna JF. Quantifying the Organization and Dynamics of the Plant Plasma Membrane Across Scales Using Light Microscopy. Methods Mol Biol 2022; 2457:233-251. [PMID: 35349144 DOI: 10.1007/978-1-0716-2132-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant cell surface continuum is composed of the cell wall, plasma membrane, and cytoskeleton. Plasmodesmata are specialized channels in the cell wall allowing intercellular communication and resource distribution. Proteins within these organelles play fundamental roles in development, perception of the external environment, and resource acquisition. Therefore, an understanding of protein dynamics and organization within the membrane and plasmodesmata is of fundamental importance to understanding both how plants develop as well as perceive the myriad of external stimuli they experience and initiate appropriate downstream responses. In this chapter, I will describe protocols for quantifying the dynamics and organization of the plasma membrane and plasmodesmata proteins across scales. The protocols described below allow researchers to determine bulk protein mobility within the membrane using fluorescence recovery after photobleaching (FRAP), imaging, and quantification of nanodomain size (with Airyscan confocal microscopy) and determining the dynamics of these nanodomains at the single particle level using total internal reflection (TIRF) single particle imaging.
Collapse
Affiliation(s)
- Joseph F McKenna
- School of Life Sciences, University of Warwick, Coventry, UK.
- Oxford Brookes University, Gypsy Lane, UK.
| |
Collapse
|
8
|
Laasfeld T, Ehrminger R, Tahk MJ, Veiksina S, Kõlvart KR, Min M, Kopanchuk S, Rinken A. Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. NANOSCALE 2021; 13:2436-2447. [PMID: 33464268 DOI: 10.1039/d0nr06737g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studying mechanisms of receptor-ligand interactions has remained challenging due to several limitations of different measurement methods. Here we present a total internal reflection fluorescence microscopy-based method that maintains the right balance between retaining the receptors in the natural lipid environment, sufficient throughput for ligand screening, high sensitivity, and offering more detailed view into the ligand-binding process. The novel method combines G protein-coupled receptor display in budded baculovirus particles and the immobilization of the particles to a functionalized coverslip. We adapted and validated the functionalized coverslip preparation process to achieve selective immobilization of budded baculovirus particles. The selectivity of budded baculovirus immobilization was validated with budded baculovirus particles displaying either Frizzled 6 receptors labeled with mCherry or neuropeptide Y Y1 receptors. To scale the system for ligand binding assays, we developed both open-source multiwell systems and image analysis software SPOTNIC for flexible assay design. The neuropeptide Y Y1 receptor was used for further receptor-ligand binding studies with high-affinity TAMRA labeled fluorescent ligand UR-MC026. The affinities of the fluorescent ligand and four unlabeled ligands (BIBO3304, UR-MK299, PYY, pNPY) were obtained with the developed method and followed a similar trend with both the parallel measurements with fluorescence anisotropy method and the data published earlier. The novel method could be extended for various advanced assays utilizing multidimensional detection modes, integrating super-resolution methods for single molecule detection and microfluidic devices for kinetic measurements.
Collapse
Affiliation(s)
- Tõnis Laasfeld
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Robin Ehrminger
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia. and Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Maris-Johanna Tahk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Karl Rene Kõlvart
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Mart Min
- Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Sergei Kopanchuk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
9
|
Kinz-Thompson CD, Ray KK, Gonzalez RL. Bayesian Inference: The Comprehensive Approach to Analyzing Single-Molecule Experiments. Annu Rev Biophys 2021; 50:191-208. [PMID: 33534607 DOI: 10.1146/annurev-biophys-082120-103921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biophysics experiments performed at single-molecule resolution provide exceptional insight into the structural details and dynamic behavior of biological systems. However, extracting this information from the corresponding experimental data unequivocally requires applying a biophysical model. In this review, we discuss how to use probability theory to apply these models to single-molecule data. Many current single-molecule data analysis methods apply parts of probability theory, sometimes unknowingly, and thus miss out on the full set of benefits provided by this self-consistent framework. The full application of probability theory involves a process called Bayesian inference that fully accounts for the uncertainties inherent to single-molecule experiments. Additionally, using Bayesian inference provides a scientifically rigorous method of incorporating information from multiple experiments into a single analysis and finding the best biophysical model for an experiment without the risk of overfitting the data. These benefits make the Bayesian approach ideal for analyzing any type of single-molecule experiment.
Collapse
Affiliation(s)
- Colin D Kinz-Thompson
- Department of Chemistry, Columbia University, New York, New York 10027, USA; .,Department of Chemistry, Rutgers University-Newark, Newark, New Jersey 07102, USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, New York 10027, USA;
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York 10027, USA;
| |
Collapse
|
10
|
Martin-Fernandez ML. A brief history of the octopus imaging facility to celebrate its 10th anniversary. J Microsc 2020; 281:3-15. [PMID: 33111321 DOI: 10.1111/jmi.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.
Collapse
Affiliation(s)
- M L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, U.K
| |
Collapse
|
11
|
Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. A small molecule inhibitor of HER3: a proof-of-concept study. Biochem J 2020; 477:3329-3347. [PMID: 32815546 PMCID: PMC7489893 DOI: 10.1042/bcj20200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.
Collapse
Affiliation(s)
- Audrey Colomba
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, U.K
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Shahid Mehmood
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| |
Collapse
|
12
|
Hirsch M, Wareham R, Yoon JW, Rolfe DJ, Zanetti-Domingues LC, Hobson MP, Parker PJ, Martin-Fernandez ML, Singh SS. A global sampler of single particle tracking solutions for single molecule microscopy. PLoS One 2019; 14:e0221865. [PMID: 31658271 PMCID: PMC6816549 DOI: 10.1371/journal.pone.0221865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The dependence on model-fitting to evaluate particle trajectories makes it difficult for single particle tracking (SPT) to resolve the heterogeneous molecular motions typical of cells. We present here a global spatiotemporal sampler for SPT solutions using a Metropolis-Hastings algorithm. The sampler does not find just the most likely solution but also assesses its likelihood and presents alternative solutions. This enables the estimation of the tracking error. Furthermore the algorithm samples the parameters that govern the tracking process and therefore does not require any tweaking by the user. We demonstrate the algorithm on synthetic and single molecule data sets. Metrics for the comparison of SPT are generalised to be applied to a SPT sampler. We illustrate using the example of the diffusion coefficient how the distribution of the tracking solutions can be propagated into a distribution of derived quantities. We also discuss the major challenges that are posed by the realisation of a SPT sampler.
Collapse
Affiliation(s)
- Michael Hirsch
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire, United Kingdom
| | - Richard Wareham
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ji W. Yoon
- Center for Information Security Technology, Korea University, Seoul, South Korea
| | - Daniel J. Rolfe
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire, United Kingdom
| | - Laura C. Zanetti-Domingues
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire, United Kingdom
| | - Michael P. Hobson
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Parker
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot, Oxfordshire, United Kingdom
| | - Sumeetpal S. Singh
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:12857-12862. [PMID: 31182605 PMCID: PMC6601011 DOI: 10.1073/pnas.1819077116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plant plasma-membrane (PM) proteins are involved in several vital processes, such as detection of pathogens, solute transport, and cellular signaling. For these proteins to function effectively there needs to be structure within the PM allowing, for example, proteins in the same signaling cascade to be spatially organized. Here we demonstrate that several proteins with divergent functions are located in clusters of differing size in the membrane using subdiffraction-limited Airyscan confocal microscopy. Single particle tracking reveals that these proteins move at different rates within the membrane. Actin and microtubule cytoskeletons appear to significantly regulate the mobility of one of these proteins (the pathogen receptor FLS2) and we further demonstrate that the cell wall is critical for the regulation of cluster size by quantifying single particle dynamics of proteins with key roles in morphogenesis (PIN3) and pathogen perception (FLS2). We propose a model in which the cell wall and cytoskeleton are pivotal for regulation of protein cluster size and dynamics, thereby contributing to the formation and functionality of membrane nanodomains.
Collapse
|
14
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
15
|
Zanetti-Domingues LC, Korovesis D, Needham SR, Tynan CJ, Sagawa S, Roberts SK, Kuzmanic A, Ortiz-Zapater E, Jain P, Roovers RC, Lajevardipour A, van Bergen En Henegouwen PMP, Santis G, Clayton AHA, Clarke DT, Gervasio FL, Shan Y, Shaw DE, Rolfe DJ, Parker PJ, Martin-Fernandez ML. The architecture of EGFR's basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nat Commun 2018; 9:4325. [PMID: 30337523 PMCID: PMC6193980 DOI: 10.1038/s41467-018-06632-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Our current understanding of epidermal growth factor receptor (EGFR) autoinhibition is based on X-ray structural data of monomer and dimer receptor fragments and does not explain how mutations achieve ligand-independent phosphorylation. Using a repertoire of imaging technologies and simulations we reveal an extracellular head-to-head interaction through which ligand-free receptor polymer chains of various lengths assemble. The architecture of the head-to-head interaction prevents kinase-mediated dimerisation. The latter, afforded by mutation or intracellular treatments, splits the autoinhibited head-to-head polymers to form stalk-to-stalk flexible non-extended dimers structurally coupled across the plasma membrane to active asymmetric tyrosine kinase dimers, and extended dimers coupled to inactive symmetric kinase dimers. Contrary to the previously proposed main autoinhibitory function of the inactive symmetric kinase dimer, our data suggest that only dysregulated species bear populations of symmetric and asymmetric kinase dimers that coexist in equilibrium at the plasma membrane under the modulation of the C-terminal domain.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | | | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Antonija Kuzmanic
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Elena Ortiz-Zapater
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Purvi Jain
- Division of Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Rob C Roovers
- Merus, LSI, Yalelaan 62, 3584 CM, Utrecht, The Netherlands
| | - Alireza Lajevardipour
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - George Santis
- Peter Gore Department of Immunobiology, School of Immunology & Microbial Sciences, Kings College London, London, SE1 9RT, UK
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Francesco L Gervasio
- Department of Chemistry, Faculty of Maths & Physical Sciences, University College London, London, WC1H 0AJ, UK
| | - Yibing Shan
- D. E. Shaw Research, New York, NY, 10036, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY, 10036, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW 1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford, OX11 0QX, UK.
| |
Collapse
|
16
|
Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I, Ross R, AlQallaf D, Roberts APE, Balls A, Curd A, Hughes RE, Martin H, Needham SR, Zanetti-Domingues LC, Sadigh Y, Peacock TP, Tang AA, Gibson N, Kyle H, Platt GW, Ingram N, Taylor T, Coletta LP, Manfield I, Knowles M, Bell S, Esteves F, Maqbool A, Prasad RK, Drinkhill M, Bon RS, Patel V, Goodchild SA, Martin-Fernandez M, Owens RJ, Nettleship JE, Webb ME, Harrison M, Lippiat JD, Ponnambalam S, Peckham M, Smith A, Ferrigno PK, Johnson M, McPherson MJ, Tomlinson DC. Affimer proteins are versatile and renewable affinity reagents. eLife 2017; 6:e24903. [PMID: 28654419 PMCID: PMC5487212 DOI: 10.7554/elife.24903] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.
Collapse
Affiliation(s)
- Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert Bedford
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie J Heseltine
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Gina Smith
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Imeshi Wijetunga
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Ross
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Danah AlQallaf
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Alexander Balls
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Alistair Curd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ruth E Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Martin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | | | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Naomi Gibson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Kyle
- Avacta Life Sciences, Wetherby, United Kingdom
| | | | - Nicola Ingram
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Louise P Coletta
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Iain Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Margaret Knowles
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Sandra Bell
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Filomena Esteves
- Leeds Institute of Cancer Studies and Pathology, University of Leeds, Leeds, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Raj K Prasad
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin S Bon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Ray J Owens
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joanne E Nettleship
- Oxford Protein Production Facility UK, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Michael E Webb
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Michael Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Sreenivasan Ponnambalam
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Michael J McPherson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Darren Charles Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Lee DW, Hsu HL, Bacon KB, Daniel S. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics. PLoS One 2016; 11:e0163437. [PMID: 27695072 PMCID: PMC5047597 DOI: 10.1371/journal.pone.0163437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance.
Collapse
Affiliation(s)
- Donald W. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kaitlyn B. Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
18
|
Wilson RS, Yang L, Dun A, Smyth AM, Duncan RR, Rickman C, Lu W. Automated single particle detection and tracking for large microscopy datasets. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160225. [PMID: 27293801 PMCID: PMC4892463 DOI: 10.1098/rsos.160225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.
Collapse
Affiliation(s)
- Rhodri S. Wilson
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| | - Lei Yang
- OmniVision Technologies, Co., Ltd, 4275 Burton Drive, Santa Clara, CA 95054, USA
| | - Alison Dun
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| | - Annya M. Smyth
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| | - Rory R. Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| | - Colin Rickman
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| | - Weiping Lu
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
- Edinburgh Super-Resolution Imaging Consortium, www.esric.org
| |
Collapse
|
19
|
Smal I, Meijering E. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy. Med Image Anal 2015; 24:163-189. [PMID: 26176413 DOI: 10.1016/j.media.2015.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/29/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
Abstract
Biological studies of intracellular dynamic processes commonly require motion analysis of large numbers of particles in live-cell time-lapse fluorescence microscopy imaging data. Many particle tracking methods have been developed in the past years as a first step toward fully automating this task and enabling high-throughput data processing. Two crucial aspects of any particle tracking method are the detection of relevant particles in the image frames and their linking or association from frame to frame to reconstruct the trajectories. The performance of detection techniques as well as specific combinations of detection and linking techniques for particle tracking have been extensively evaluated in recent studies. Comprehensive evaluations of linking techniques per se, on the other hand, are lacking in the literature. Here we present the results of a quantitative comparison of data association techniques for solving the linking problem in biological particle tracking applications. Nine multiframe and two more traditional two-frame techniques are evaluated as a function of the level of missing and spurious detections in various scenarios. The results indicate that linking techniques are generally more negatively affected by missing detections than by spurious detections. If misdetections can be avoided, there appears to be no need to use sophisticated multiframe linking techniques. However, in the practically likely case of imperfect detections, the latter are a safer choice. Our study provides users and developers with novel information to select the right linking technique for their applications, given a detection technique of known quality.
Collapse
Affiliation(s)
- Ihor Smal
- Biomedical Imaging Group Rotterdam, Erasmus MC-University Medical Center Rotterdam, Departments of Medical Informatics and Radiology, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands.
| | - Erik Meijering
- Biomedical Imaging Group Rotterdam, Erasmus MC-University Medical Center Rotterdam, Departments of Medical Informatics and Radiology, P.O. Box 2040, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|
20
|
Webb SED, Hirsch M, Needham SR, Coles BC, Scherer KM, Roberts SK, Zanetti-Domingues LC, Tynan CJ, Martin-Fernandez ML, Rolfe DJ. Nanometric molecular separation measurements by single molecule photobleaching. Methods 2015; 88:76-80. [PMID: 25980369 DOI: 10.1016/j.ymeth.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Although considerable progress has been made in imaging distances in cells below the diffraction limit using FRET and super-resolution microscopy, methods for determining the separation of macromolecules in the 10-50 nm range have been elusive. We have developed fluorophore localisation imaging with photobleaching (FLImP), based on the quantised bleaching of individual protein-bound dye molecules, to quantitate the molecular separations in oligomers and nanoscale clusters. We demonstrate the benefits of using our method in studying the nanometric organisation of the epidermal growth factor receptor in cells.
Collapse
Affiliation(s)
- Stephen E D Webb
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Benjamin C Coles
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Kathrin M Scherer
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
21
|
Zanetti-Domingues LC, Hirsch M, Tynan CJ, Rolfe DJ, Boyadzhiev TV, Scherer KM, Clarke DT, Martin-Fernandez ML, Needham SR. Determining the geometry of oligomers of the human epidermal growth factor family on cells with 7 nm resolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:139-52. [PMID: 25900721 DOI: 10.1016/j.pbiomolbio.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Dimerisation, oligomerisation, and clustering of receptor molecules are important for control of the signalling process. There has been a lack of suitable methods for the study and quantification of these processes in cells. Here we describe a protocol for a method that we have named "fluorophore localisation imaging with photobleaching" (FLImP), which uses single molecule localisation and single-step photobleaching to determine the separation of two fluorophores with a resolution of 7 nm or better. We describe the procedures required for the collection of FLImP data, and point out some of the pitfalls that must be avoided for the collection of high resolution data. We also present recent data obtained using FLImP, showing that the intracellular domain of the Epidermal Growth Factor Receptor is not required in the basal state for the receptor to form ordered inactive oligomers in the plasma membrane.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Teodor V Boyadzhiev
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Kathrin M Scherer
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, United Kingdom.
| |
Collapse
|
22
|
Coban O, Zanetti-Dominguez LC, Matthews DR, Rolfe DJ, Weitsman G, Barber PR, Barbeau J, Devauges V, Kampmeier F, Winn M, Vojnovic B, Parker PJ, Lidke KA, Lidke DS, Ameer-Beg SM, Martin-Fernandez ML, Ng T. Effect of phosphorylation on EGFR dimer stability probed by single-molecule dynamics and FRET/FLIM. Biophys J 2015; 108:1013-26. [PMID: 25762314 PMCID: PMC4375452 DOI: 10.1016/j.bpj.2015.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell's proliferation potential.
Collapse
Affiliation(s)
- Oana Coban
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK.
| | - Laura C Zanetti-Dominguez
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK
| | - Daniel J Rolfe
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK
| | - Paul R Barber
- Gray Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK
| | - Florian Kampmeier
- Division of Imaging Sciences, King's College London, The Rayne Institute, St. Thomas Hospital, London, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK
| | - Borivoj Vojnovic
- Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK; Gray Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Peter J Parker
- Division of Cancer Studies, King's College London, London, UK; Cancer Research UK, London Research Institute, London, UK
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK; Division of Cancer Studies, King's College London, London, UK
| | - Marisa L Martin-Fernandez
- Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, King's College London, London, UK; Randall Division of Cellular and Molecular Biophysics, King's College London, London, UK; Division of Cancer Studies, King's College London, London, UK
| |
Collapse
|
23
|
Godinez WJ, Rohr K. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:415-432. [PMID: 25252280 DOI: 10.1109/tmi.2014.2359541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.
Collapse
|
24
|
Lauer FM, Kaemmerer E, Meckel T. Single molecule microscopy in 3D cell cultures and tissues. Adv Drug Deliv Rev 2014; 79-80:79-94. [PMID: 25453259 DOI: 10.1016/j.addr.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/20/2014] [Accepted: 10/03/2014] [Indexed: 12/19/2022]
Abstract
From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.
Collapse
Affiliation(s)
- Florian M Lauer
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | - Elke Kaemmerer
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany; Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, 4059 QLD, Brisbane, Australia
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany.
| |
Collapse
|
25
|
Kiuchi T, Ortiz-Zapater E, Monypenny J, Matthews DR, Nguyen LK, Barbeau J, Coban O, Lawler K, Burford B, Rolfe DJ, de Rinaldis E, Dafou D, Simpson MA, Woodman N, Pinder S, Gillett CE, Devauges V, Poland SP, Fruhwirth G, Marra P, Boersma YL, Plückthun A, Gullick WJ, Yarden Y, Santis G, Winn M, Kholodenko BN, Martin-Fernandez ML, Parker P, Tutt A, Ameer-Beg SM, Ng T. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 2014; 7:ra78. [PMID: 25140053 DOI: 10.1126/scisignal.2005157] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Collapse
Affiliation(s)
- Tai Kiuchi
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - James Monypenny
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Oana Coban
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Katherine Lawler
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Brian Burford
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel J Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dimitra Dafou
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael A Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Natalie Woodman
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Pinder
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Cheryl E Gillett
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Simon P Poland
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ykelien L Boersma
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - William J Gullick
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Santis
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Daresbury Laboratory, Science and Technology Facilities Council, Research Complex at Warrington, Warrington WA4 4AD, UK
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Peter Parker
- Division of Cancer Studies, King's College London, London SE1 1UL, UK. Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK. UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Imaging single chiral nanoparticles in turbid media using circular-polarization optical coherence microscopy. Sci Rep 2014; 4:4979. [PMID: 24828009 PMCID: PMC4021320 DOI: 10.1038/srep04979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 04/25/2014] [Indexed: 12/23/2022] Open
Abstract
Optical coherence tomography (OCT) is a widely used structural imaging method. However, it has limited use in molecular imaging due to the lack of an effective contrast mechanism. Gold nanoparticles have been widely used as molecular probes for optical microcopy based on Surface Plasmon Resonance (SPR). Unfortunately, the SPR enhanced backscattering from nanoparticles is still relatively weak compared with the background signal from microscopic structures in biological tissues when imaged with OCT. Consequently, it is extremely challenging to perform OCT imaging of conventional nanoparticles in thick tissues with sensitivity comparable to that of fluorescence imaging. We have discovered and demonstrated a novel approach towards remarkable contrast enhancement, which is achieved by the use of a circular-polarization optical coherence microscopy system and 3-dimensional chiral nanostructures as contrast agents. By detecting the circular intensity differential depolarization (CIDD), we successfully acquired high quality images of single chiral nanoparticles underneath a 1-mm-thick tissue -mimicking phantom.
Collapse
|
27
|
Burgess AW, Henis YI, Hynes NE, Jovin T, Levitzki A, Pinkas-Kramarski R, Yarden Y. EGF receptor family: twisting targets for improved cancer therapies. Growth Factors 2014; 32:74-81. [PMID: 24641597 DOI: 10.3109/08977194.2014.896355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) undergoes a conformational change in response to ligand binding. The ligand-induced changes in cell surface aggregation and mobility have a profound effect on the function of all the family members. Ligand also activates the EGFR intracellular kinase, stimulating proliferation and cell survival. The EGFR family are often activated, overexpressed or mutated in cancer cells and therapeutic drugs (including antibodies) can slow the progress of some cancers. This article provides a brief, annotated summary of the presentations and discussion which occurred at the Epidermal Growth Factor Receptor - Future Directions Conference held in Jerusalem in November 2013.
Collapse
Affiliation(s)
- Antony W Burgess
- The Walter & Eliza Hall Institute of Medical Research, Burgess Lab Structural Biology , Parkville , Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Langhans M, Meckel T. Single-molecule detection and tracking in plants. PROTOPLASMA 2014; 251:277-91. [PMID: 24385216 DOI: 10.1007/s00709-013-0601-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Combining optical properties with a limited choice of fluorophores turns single-molecule imaging in plants into a challenging task. This explains why the technique, despite its success in the field of animal cell biology, is far from being routinely applied in plant cell research. The same challenges, however, also apply to the application of single-molecule microscopy to any intact tissue or multicellular 3D cell culture. As recent and upcoming progress in fluorescence microscopy will permit single-molecule detection in the context of multicellular systems, plant tissue imaging will experience a huge benefit from this progress. In this review, we address every step of a single-molecule experiment, highlight the critical aspects of each and elaborate on optimizations and developments required for improvements. We relate each step to recent achievements, which have so far been conducted exclusively on the root epidermis of Arabidopsis thaliana seedlings with inclined illumination and show examples of single-molecule measurements using different cells or illumination schemes.
Collapse
Affiliation(s)
- Markus Langhans
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | | |
Collapse
|
29
|
Orevi T, Lerner E, Rahamim G, Amir D, Haas E. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics. Methods Mol Biol 2014; 1076:113-169. [PMID: 24108626 DOI: 10.1007/978-1-62703-649-8_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most proteins are nanomachines that are selected to execute specific functions and therefore should have some degree of flexibility. The driving force that excites specific motions of domains and smaller chain elements is the thermal fluctuations of the solvent bath which are channeled to selected modes of motions by the structural constraints. Consequently characterization of the ensembles of conformers of proteins and their dynamics should be expressed in statistical terms, i.e., determination of probability distributions of the various conformers. This can be achieved by measurements of time-resolved dynamic non-radiative excitation energy transfer (trFRET) within ensembles of site specifically labeled protein molecules. Distributions of intramolecular segmental end-to-end distances and their fast fluctuations can be determined, and fast and slow conformational transitions within selected sections of the molecule can be monitored and analyzed. Both ensemble and single-molecule detection methods can be applied for data collection. In combination with synchronization methods, time-resolved FRET was also used for studies of fast conformational transitions, in particular the folding/unfolding transitions.
Collapse
Affiliation(s)
- Tomer Orevi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
30
|
Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 2013; 8:e74200. [PMID: 24066121 PMCID: PMC3774629 DOI: 10.1371/journal.pone.0074200] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/26/2013] [Indexed: 12/28/2022] Open
Abstract
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Collapse
|
31
|
Needham SR, Hirsch M, Rolfe DJ, Clarke DT, Zanetti-Domingues LC, Wareham R, Martin-Fernandez ML. Measuring EGFR separations on cells with ~10 nm resolution via fluorophore localization imaging with photobleaching. PLoS One 2013; 8:e62331. [PMID: 23650512 PMCID: PMC3641073 DOI: 10.1371/journal.pone.0062331] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/20/2013] [Indexed: 01/17/2023] Open
Abstract
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ~10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ~10 nm resolution while continuously covering the range of ~10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands.
Collapse
Affiliation(s)
- Sarah R. Needham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - David T. Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Richard Wareham
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| |
Collapse
|
32
|
Hirsch M, Wareham RJ, Martin-Fernandez ML, Hobson MP, Rolfe DJ. A stochastic model for electron multiplication charge-coupled devices--from theory to practice. PLoS One 2013; 8:e53671. [PMID: 23382848 PMCID: PMC3561409 DOI: 10.1371/journal.pone.0053671] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022] Open
Abstract
Electron multiplication charge-coupled devices (EMCCD) are widely used for photon counting experiments and measurements of low intensity light sources, and are extensively employed in biological fluorescence imaging applications. These devices have a complex statistical behaviour that is often not fully considered in the analysis of EMCCD data. Robust and optimal analysis of EMCCD images requires an understanding of their noise properties, in particular to exploit fully the advantages of Bayesian and maximum-likelihood analysis techniques, whose value is increasingly recognised in biological imaging for obtaining robust quantitative measurements from challenging data. To improve our own EMCCD analysis and as an effort to aid that of the wider bioimaging community, we present, explain and discuss a detailed physical model for EMCCD noise properties, giving a likelihood function for image counts in each pixel for a given incident intensity, and we explain how to measure the parameters for this model from various calibration images.
Collapse
Affiliation(s)
- Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Site-Specific Labeling of Genetically Encoded Azido Groups for Multicolor, Single-Molecule Fluorescence Imaging of GPCRs. Methods Cell Biol 2013; 117:267-303. [DOI: 10.1016/b978-0-12-408143-7.00015-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
34
|
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. CURRENT TOPICS IN MEMBRANES 2013; 72:89-120. [PMID: 24210428 PMCID: PMC4193470 DOI: 10.1016/b978-0-12-417027-8.00003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion. Several methods can be used to distinguish among the various modes of protein mobility, including fluorescence recovery after photobleaching, single-particle tracking, fluorescence correlation spectroscopy, and variations of these techniques. Here, we present both a brief overview of these methods and examples of their use to elucidate the dynamics of membrane proteins in mammalian cells-first in erythrocytes, then in erythroblasts and other cells in the hematopoietic lineage, and finally in non-hematopoietic cells. This multisystem analysis shows that the cytoskeleton frequently governs modes of membrane protein motion by stably anchoring the proteins through direct-binding interactions, by restricting protein diffusion through steric interactions, or by facilitating directed protein motion. Together, these studies have begun to delineate mechanisms by which membrane protein dynamics influence signaling sequelae and membrane mechanical properties, which, in turn, govern cell function.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Single molecule fluorescence detection and tracking in mammalian cells: the state-of-the-art and future perspectives. Int J Mol Sci 2012. [PMID: 23203092 PMCID: PMC3509608 DOI: 10.3390/ijms131114742] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insights from single-molecule tracking in mammalian cells have the potential to greatly contribute to our understanding of the dynamic behavior of many protein families and networks which are key therapeutic targets of the pharmaceutical industry. This is particularly so at the plasma membrane, where the method has begun to elucidate the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell, including signal transduction, receptor recognition, cell-cell adhesion, etc. However, despite much progress, single-molecule tracking faces challenges in mammalian samples that hinder its general application in the biomedical sciences. Much work has recently focused on improving the methods for fluorescent tagging of target molecules, detection and localization of tagged molecules, which appear as diffraction-limited spots in charge-coupled device (CCD) images, and objectively establishing the correspondence between moving particles in a sequence of image frames to follow their diffusive behavior. In this review we outline the state-of-the-art in the field and discuss the advantages and limitations of the methods available in the context of specific applications, aiming at helping researchers unfamiliar with single molecules methods to plan out their experiments.
Collapse
|
36
|
Abstract
Recent experimental and theoretical studies of photoluminescence intermittency (PI) or “blinking” exhibited by single core/shell quantum dots and single organic luminophores are reviewed. For quantum dots, a discussion of early models describing the origin of PI in these materials and recent challenges to these models are presented. For organic luminophores the role of electron transfer, proton transfer and other photophysical processes in PI are discussed. Finally, new experimental and data analysis methods are outlined that promise to be instrumental in future discoveries regarding the origin(s) of PI exhibited by single emitters.
Collapse
|
37
|
Zanetti-Domingues LC, Martin-Fernandez ML, Needham SR, Rolfe DJ, Clarke DT. A systematic investigation of differential effects of cell culture substrates on the extent of artifacts in single-molecule tracking. PLoS One 2012; 7:e45655. [PMID: 23049831 PMCID: PMC3458086 DOI: 10.1371/journal.pone.0045655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/20/2012] [Indexed: 01/30/2023] Open
Abstract
Single-molecule techniques are being increasingly applied to biomedical investigation, notwithstanding the numerous challenges they pose in terms of signal-to-noise ratio issues. Non-specific binding of probes to glass substrates, in particular, can produce experimental artifacts due to spurious molecules on glass, which can be particularly deleterious in live-cell tracking experiments. In order to resolve the issue of non-specific probe binding to substrates, we performed systematic testing of a range of available surface coatings, using three different proteins, and then extended our assessment to the ability of these coatings to foster cell growth and retain non-adhesive properties. Linear PEG, a passivating agent commonly used both in immobilized-molecule single-molecule techniques and in tissue engineering, is able to both successfully repel non-specific adhesion of fluorescent probes and to foster cell growth when functionalized with appropriate adhesive peptides. Linear PEG treatment results in a significant reduction of tracking artifacts in EGFR tracking with Affibody ligands on a cell line expressing EGFR-eGFP. The findings reported herein could be beneficial to a large number of experimental situations where single-molecule or single-particle precision is required.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - Sarah R. Needham
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - David T. Clarke
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012. [PMID: 22689944 DOI: 10.1073/pnas.1202040109 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SED, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A 2012; 109:12805-10. [PMID: 22689944 PMCID: PMC3411962 DOI: 10.1073/pnas.1202040109] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Irene Lavagi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gayathri Nageswaran
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Doan-Trung Luu
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen E. D. Webb
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Sebastien Mongrand
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - Christophe Maurel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique, 34060 Montpellier, France
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; and
| | - Jirí Friml
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique, Université Bordeaux Segalen, 33076 Bordeaux, France
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
40
|
Sanderson JM. Resolving the kinetics of lipid, protein and peptide diffusion in membranes. Mol Membr Biol 2012; 29:118-43. [DOI: 10.3109/09687688.2012.678018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Tynan CJ, Clarke DT, Coles BC, Rolfe DJ, Martin-Fernandez ML, Webb SED. Multicolour single molecule imaging in cells with near infra-red dyes. PLoS One 2012; 7:e36265. [PMID: 22558412 PMCID: PMC3338497 DOI: 10.1371/journal.pone.0036265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
Background The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. Conclusions/Significance We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470–1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.
Collapse
Affiliation(s)
- Christopher J. Tynan
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
| | - David T. Clarke
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
| | - Benjamin C. Coles
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
| | - Daniel J. Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
| | - Stephen E. D. Webb
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Webb SED, Zanetti-Domingues L, Coles BC, Rolfe DJ, Wareham RJ, Martin-Fernandez ML. Multicolour single molecule imaging on cells using a supercontinuum source. BIOMEDICAL OPTICS EXPRESS 2012; 3:400-406. [PMID: 22435089 PMCID: PMC3296529 DOI: 10.1364/boe.3.000400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
Multicolour single molecule fluorescence imaging enables the study of multiple proteins in the membranes of living cells. We describe the use of a supercontinuum laser as the excitation source, show its comparability with multiplexed single-wavelength lasers and demonstrate that it can be used to study membrane proteins such as the ErbB receptor family. We discuss the benefits of white-light sources for single molecule fluorescence, in particular their ease of use and the freedom to use the most appropriate dye without being constrained by available laser wavelengths.
Collapse
Affiliation(s)
- Stephen E. D. Webb
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Laura Zanetti-Domingues
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Benjamin C. Coles
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Daniel J. Rolfe
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Richard J. Wareham
- Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB2 1PZ, UK
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| |
Collapse
|