1
|
Raghav S, Hitaishi P, Giri RP, Mukherjee A, Sharma VK, Ghosh SK. Selective assembly and insertion of ubiquicidin antimicrobial peptide in lipid monolayers. J Mater Chem B 2024; 12:11731-11745. [PMID: 39434705 DOI: 10.1039/d4tb01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface. Such a monolayer mimics one of the leaflets of a lipid bilayer. The surface pressure-area isotherm exhibits the strongest interaction with a negatively charged lipid, 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG). The weakest affinity was towards the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Another zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), shows an intermediate affinity. This affinity was quantified by analyzing alterations in the effective mean molecular area of the lipid, the in-plane compressional modulus of the assembly, and the electrostatic potential induced by the presence of peptides. The precise organization of the peptide around the lipid monolayer at a sub-nanometre length scale was revealed using synchrotron-based X-ray reflectivity measurements from the air-water interface. Information about the selective interaction of the peptide with lipids and their varied orientation at the lipid-water interface could be useful in understanding the selectivity of AMP in developing new antibiotics.
Collapse
Affiliation(s)
- Sonam Raghav
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Veerendra K Sharma
- Homi Bhabha National Institute, Mumbai, 400094, India.
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
2
|
Hadjicharalambous A, Newman H, Lewis N, Rowland C, Bournakas N, Stanway SJ, Dawson M, Skynner MJ, Beswick P. Investigating Penetration and Antimicrobial Activity of Vector-Bicycle Conjugates. ACS Infect Dis 2024; 10:2381-2389. [PMID: 38865197 PMCID: PMC11249977 DOI: 10.1021/acsinfecdis.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria. The conjugation of membrane active peptides offers an avenue for outer membrane penetration. Here, we investigate which physicochemical properties of a specific membrane active peptide (MAP), derived from ixosin-B, could be tweaked to enhance the penetration of conjugates by generating multiple MAP-Bicycle conjugate variants. We demonstrate that charge and hydrophobicity are important factors, which enhance penetration and, therefore, antimicrobial potency. Interestingly, we show that induction of secondary structure, but not a change in amphipathicity, is vital for effective penetration of the Gram-negative outer membrane. These results offer insights into the ways vectors could be designed to deliver Bicycle molecules (and other cargos) through biological membranes.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QN, U.K.
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Hector Newman
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nick Lewis
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Catherine Rowland
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nikolaos Bournakas
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Steven J. Stanway
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael Dawson
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael J. Skynner
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Paul Beswick
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| |
Collapse
|
3
|
Mitra S, Chandersekhar B, Li Y, Coopershlyak M, Mahoney ME, Evans B, Koenig R, Hall SCL, Klösgen B, Heinrich F, Deslouches B, Tristram-Nagle S. Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes. SOFT MATTER 2024; 20:4088-4101. [PMID: 38712559 PMCID: PMC11109824 DOI: 10.1039/d4sm00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt β-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Bhairavi Chandersekhar
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Yunshu Li
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Mark Coopershlyak
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Margot E Mahoney
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Brandt Evans
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rachel Koenig
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Stephen C L Hall
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Beate Klösgen
- University of Southern Denmark, Dept. Physics, Chemistry & Pharmacy, PhyLife, Campusvej 55, Odense M5230, Denmark
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Efodili E, Knight A, Mirza M, Briones C, Lee IH. Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184256. [PMID: 37989398 DOI: 10.1016/j.bbamem.2023.184256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/08/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Vesicular trafficking facilitates material transport between membrane-bound organelles. Membrane protein cargos are trafficked for relocation, recycling, and degradation during various physiological processes. In vitro fusion studies utilized synthetic lipid membranes to study the molecular mechanisms of vesicular trafficking and to develop synthetic materials mimicking the biological membrane trafficking. Various fusogenic conditions which can induce vesicular fusion have been used to establish synthetic systems that can mimic biological systems. Despite these efforts, the mechanisms underlying vesicular trafficking of membrane proteins remain limited and robust in vitro methods that can construct synthetic trafficking systems for membrane proteins between large membranes (>1 μm2) are unavailable. Here, we provide data to show the spontaneous transfer of small membrane-bound peptides (∼4 kD) between a supported lipid bilayer (SLB) and giant unilamellar vesicles (GUVs). We found that the contact between the SLB and GUVs led to the occasional but notable transfer of membrane-bound peptides in a physiological saline buffer condition (pH 7.4, 150 mM NaCl). Quantitative and dynamic time-lapse analyses suggested that the observed exchange occurred through the formation of hemi-fusion stalks between the SLB and GUVs. Larger protein cargos with a size of ∼77 kD could not be transferred between the SLB and GUVs, suggesting that the larger-sized cargos limited diffusion across the hemi-fusion stalk, which was predicted to have a highly curved structure. Compositional study showed Ni-chelated lipid head group was the essential component catalyzing the process. Our system serves as an example synthetic platform that enables the investigation of small-peptide trafficking between synthetic membranes and reveals hemi-fused lipid bridge formation as a mechanism of peptide transfer.
Collapse
Affiliation(s)
- Emanuela Efodili
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, USA
| | - Ashlynn Knight
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Maryem Mirza
- College of humanities and social sciences, Montclair State University, Montclair, NJ 07043, USA
| | - Cedric Briones
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, USA
| | - Il-Hyung Lee
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, USA.
| |
Collapse
|
5
|
Lozada C, Gonzalez S, Agniel R, Hindie M, Manciocchi L, Mazzanti L, Ha-Duong T, Santoro F, Carotenuto A, Ballet S, Lubin-Germain N. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Bioorg Chem 2023; 139:106731. [PMID: 37480815 DOI: 10.1016/j.bioorg.2023.106731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Over the past decades, many cell-penetrating peptides (CPP) have been studied for their capacity to cross cellular membranes, mostly in order to improve cellular uptake of therapeutic agents. Even though hydrophobic and anionic CPPs have been described, many of them are polycationic, due to the presence of several arginine (Arg) residues. Noteworthy, however, the presence of aromatic amino acids such as tryptophan (Trp) within CPPs seems to play an important role to reach high membranotropic activity. RW9 (RRWWRRWRR) is a designed CPP derived from the polyarginine R9 presenting both features. In general, when interacting with membranes, CPPs adopt an optimal conformation for membrane interactions - an amphipathic helical secondary structure in the case of RW9. Herein, we assumed that the incorporation of a locally constrained amino acid in the peptide sequence could improve the membranotropic activity of RW9, by facilitating its structuration upon contact with a membrane, while leaving a certain plasticity. Therefore, two cyclized Trp derivatives (Tcc and Aia) were synthesized to be incorporated in RW9 as surrogates of Trp residues. Thus, a series of peptides containing these building blocks has been synthesized by varying the type, position, and number of modifications. The membranotropic activity of the RW9 analogs was studied by spectrofluorescence titration of the peptides in presence of liposomes (DMPG), allowing to calculate partition coefficients (Kp). Our results indicate that the partitioning of the modified peptides depends on the type, the number and the position of the modification, with the best sequence being [Aia4]RW9. Interestingly, both NMR analysis and molecular dynamic (MD) simulations indicate that this analog presents an extended conformation similar to the native RW9, but with a much-reduced structural flexibility. Finally, cell internalization properties were also confirmed by confocal microscopy.
Collapse
Affiliation(s)
- Camille Lozada
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France; Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Rémy Agniel
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Mathilde Hindie
- ERRMECe, Institut des Matériaux I-MAT (FD4122), CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Luca Manciocchi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Liuba Mazzanti
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tap Ha-Duong
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nadège Lubin-Germain
- CNRS, BioCIS, CY Cergy-Paris Université, 95000 Neuville sur Oise, France; CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France.
| |
Collapse
|
6
|
Leibe R, Fritsch-Decker S, Gussmann F, Wagbo AM, Wadhwani P, Diabaté S, Wenzel W, Ulrich AS, Weiss C. Key Role of Choline Head Groups in Large Unilamellar Phospholipid Vesicles for the Interaction with and Rupture by Silica Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207593. [PMID: 37098631 DOI: 10.1002/smll.202207593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.
Collapse
Affiliation(s)
- Regina Leibe
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Susanne Fritsch-Decker
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Gussmann
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ane Marit Wagbo
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Silvia Diabaté
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), KIT, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Ferreira AR, Ferreira M, Nunes C, Reis S, Teixeira C, Gomes P, Gameiro P. The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles. MEMBRANES 2023; 13:138. [PMID: 36837642 PMCID: PMC9966869 DOI: 10.3390/membranes13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cláudia Nunes
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cátia Teixeira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
9
|
The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. Int J Mol Sci 2022; 23:ijms232012392. [PMID: 36293249 PMCID: PMC9603936 DOI: 10.3390/ijms232012392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Since penicillin was discovered, antibiotics have been critical in the fight against infections. However, antibiotic misuse has led to drug resistance, which now constitutes a serious health problem. In this context, antimicrobial peptides (AMPs) constitute a natural group of short proteins, varying in structure and length, that act against certain types of bacterial pathogens. The antimicrobial peptide 1018-K6 (VRLIVKVRIWRR- NH2) has significant bactericidal and antibiofilm activity against Listeria monocytogenes isolates, and against different strains and serotypes of Salmonella. Here, the mechanism of action of 1018-K6 was explored further to understand the peptide-membrane interactions relevant to its activity, and to define their determinants. We combined studies with model synthetic membranes (liposomes) and model biological membranes, assessing the absorption maximum and the quenching of 1018-K6 fluorescence in aqueous and lipid environments, the self-quenching of carboxyfluorescein, as well as performing lipid sedimentation assays. The data obtained reflect the differential interactions of the 1018-K6 peptide with eukaryotic and prokaryotic membranes, and the specific interactions and mechanisms of action in the three prokaryotic species studied: Salmonella Typhimurium2GN, Escherichia coli3GN, and Staphylococcus aureus3GP. The AMP 1018-K6 is a candidate to prevent (food preservation) or treat (antibiotic use) infections caused by certain pathogenic bacteria, especially some that are resistant to current antibiotics.
Collapse
|
10
|
Shi S, Markl AM, Lu Z, Liu R, Hoernke M. Interplay of Fusion, Leakage, and Electrostatic Lipid Clustering: Membrane Perturbations by a Hydrophobic Antimicrobial Polycation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2379-2391. [PMID: 35148117 DOI: 10.1021/acs.langmuir.1c03445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane active compounds are able to induce various types of membrane perturbations. Natural or biomimetic candidates for antimicrobial treatment or drug delivery scenarios are mostly designed and tested for their ability to induce membrane permeabilization, also termed leakage. Furthermore, the interaction of these usually cationic amphiphiles with negatively charged vesicles often causes colloidal instability leading to vesicle aggregation or/and vesicle fusion. We show the interplay of these modes of membrane perturbation in mixed phosphatidyl glycerol (PG)/phosphatidyl ethanolamine (PE) by the statistical copolymer MM:CO comprising, both, charged and hydrophobic subunits. MM:CO is a representative of partially hydrophobic, highly active, but less selective antimicrobial polycations. Cryo-electron microscopy indicates vesicle fusion rather than vesicle aggregation upon the addition of MM:CO to negatively charged PG/PE (1:1) vesicles. In a combination of fluorescence-based leakage and fusion assays, there is support for membrane permeabilization and pronounced vesicle fusion activity as distinct effects. To this end, membrane fusion and aggregation were prevented by including lipids with polyethylene glycol attached to their head groups (PEG-lipids). The leakage activity of MM:CO is very similar in the absence and presence of PEG-lipids. Vesicle aggregation and fusion however are largely suppressed. This strongly suggests that MM:CO induces leakage by asymmetric packing stress because of hydrophobically driven interactions which could lead to leakage. As a further membrane perturbation effect, MM:CO causes lipid clustering in model vesicles. We address potential artifacts and misinterpretations of experiments characterizing leakage and fusion. Additional to the leakage activity, the pronounced fusogenic activity of the polymer and potentially of many other similar compounds likely has implications for antimicrobial activity and beyond.
Collapse
Affiliation(s)
- Shuai Shi
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, 79104 Freiburg i.Br., Germany
| | - Anja Madleine Markl
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, 79104 Freiburg i.Br., Germany
| | - Ziyi Lu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität, 79104 Freiburg i.Br., Germany
| |
Collapse
|
11
|
Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022; 23:545. [PMID: 35008974 PMCID: PMC8745555 DOI: 10.3390/ijms23010545] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy;
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| |
Collapse
|
12
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
13
|
Lozada C, Barlow TMA, Gonzalez S, Lubin-Germain N, Ballet S. Identification and Characteristics of Fusion Peptides Derived From Enveloped Viruses. Front Chem 2021; 9:689006. [PMID: 34497798 PMCID: PMC8419435 DOI: 10.3389/fchem.2021.689006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Membrane fusion events allow enveloped viruses to enter and infect cells. The study of these processes has led to the identification of a number of proteins that mediate this process. These proteins are classified according to their structure, which vary according to the viral genealogy. To date, three classes of fusion proteins have been defined, but current evidence points to the existence of additional classes. Despite their structural differences, viral fusion processes follow a common mechanism through which they exert their actions. Additional studies of the viral fusion proteins have demonstrated the key role of specific proteinogenic subsequences within these proteins, termed fusion peptides. Such peptides are able to interact and insert into membranes for which they hold interest from a pharmacological or therapeutic viewpoint. Here, the different characteristics of fusion peptides derived from viral fusion proteins are described. These criteria are useful to identify new fusion peptides. Moreover, this review describes the requirements of synthetic fusion peptides derived from fusion proteins to induce fusion by themselves. Several sequences of the viral glycoproteins E1 and E2 of HCV were, for example, identified to be able to induce fusion, which are reviewed here.
Collapse
Affiliation(s)
- Camille Lozada
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas M. A. Barlow
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Cell-Penetrating Peptides and Transportan. Pharmaceutics 2021; 13:pharmaceutics13070987. [PMID: 34210007 PMCID: PMC8308968 DOI: 10.3390/pharmaceutics13070987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
In the most recent 25–30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
Collapse
|
15
|
Mink C, Strandberg E, Wadhwani P, Melo MN, Reichert J, Wacker I, Castanho MARB, Ulrich AS. Overlapping Properties of the Short Membrane-Active Peptide BP100 With (i) Polycationic TAT and (ii) α-helical Magainin Family Peptides. Front Cell Infect Microbiol 2021; 11:609542. [PMID: 33981626 PMCID: PMC8107365 DOI: 10.3389/fcimb.2021.609542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic α-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic α-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membrane-based activity as magainin-like peptides and may have a similar mechanism of action.
Collapse
Affiliation(s)
- Christian Mink
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| | - Manuel N Melo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Irene Wacker
- Cryo EM, Centre for Advanced Materials, Universität Heidelberg, Heidelberg, Germany
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anne S Ulrich
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), KIT, Karlsruhe, Germany
| |
Collapse
|
16
|
Shi S, Quarta N, Zhang H, Lu Z, Hof M, Šachl R, Liu R, Hoernke M. Hidden complexity in membrane permeabilization behavior of antimicrobial polycations. Phys Chem Chem Phys 2021; 23:1475-1488. [DOI: 10.1039/d0cp05651k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are diverse membrane permeabilization behaviors of antimicrobial polycations in zwitterionic or charged vesicles; different mechanisms may occur over time.
Collapse
Affiliation(s)
- Shuai Shi
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
| | - Ndjali Quarta
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
- Department of Chemistry, Biochemistry
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Ziyi Lu
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Maria Hoernke
- Chemistry and Pharmacy
- Albert-Ludwigs-Universität
- 79104 Freiburg i.Br
- Germany
| |
Collapse
|
17
|
Formulation, Characterization and Evaluation against SH-SY5Y Cells of New Tacrine and Tacrine-MAP Loaded with Lipid Nanoparticles. NANOMATERIALS 2020; 10:nano10102089. [PMID: 33096919 PMCID: PMC7589787 DOI: 10.3390/nano10102089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Tacrine (TAC) was the first FDA approved drug for the treatment of Alzheimer's disease, resulting in increased memory and enhanced cognitive symptoms in patients. However, long-term therapy presents poor patient compliance associated with undesired side effects such as nausea, vomiting and hepatoxicity. To improve its therapeutic efficacy and decrease toxicity, the use of nanoparticles could be applied as a possible solution to delivery TAC. In this context, a project has been designed to develop a new nanostructured lipid carrier (NLC) as a delivery system for TAC and conjugate TAC and model amphipathic peptide (MAP) to decrease TAC limitations. Different formulations loaded with TAC and TAC + MAP were prepared using a combination of Compritol 888 ATO as the solid lipid and Transcutol HP as the liquid lipid component. Physical characterization was evaluated in terms of particle size, surface charge, encapsulation efficiency and in vitro drug release studies. Particle size distributions within the nanometer range were obtained with encapsulation efficiencies of 72.4% for the TAC and 85.6% for the TAC + MAP conjugate. Furthermore, cytotoxicity of all NLC formulations was determined against neuroblastoma cell line SH-SY5Y. The optimized TAC delivery system revealed low toxicity suggesting this could be a potential carrier system to deliver TAC. However, TAC + MAP conjugated even encapsulated in the NLC system demonstrated toxicity against the SH-SY5Y cell line.
Collapse
|
18
|
Cancelarich NL, Wilke N, Fanani MAL, Moreira DC, Pérez LO, Alves Barbosa E, Plácido A, Socodato R, Portugal CC, Relvas JB, de la Torre BG, Albericio F, Basso NG, Leite JR, Marani MM. Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog Pleurodema somuncurense. JOURNAL OF NATURAL PRODUCTS 2020; 83:972-984. [PMID: 32134261 DOI: 10.1021/acs.jnatprod.9b00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The skin glands of amphibian species hold a major component of their innate immunity, namely a unique set of antimicrobial peptides (AMPs). Although most of them have common characteristics, differences in AMP sequences allow a huge repertoire of biological activity with varying degrees of efficacy. We present the first study of the AMPs from Pleurodema somuncurence (Anura: Leptodactylidae: Leiuperinae). Among the 11 identified mature peptides, three presented antimicrobial activity. Somuncurin-1 (FIIWPLRYRK), somuncurin-2 (FILKRSYPQYY), and thaulin-3 (NLVGSLLGGILKK) inhibited Escherichia coli growth. Somuncurin-1 also showed antimicrobial activity against Staphylococcus aureus. Biophysical membrane model studies revealed that this peptide had a greater permeation effect in prokaryotic-like membranes and capacity to restructure liposomes, suggesting fusogenic activity, which could lead to cell aggregation and disruption of cell morphology. This study contributes to the characterization of peptides with new sequences to enrich the databases for the design of therapeutic agents. Furthermore, it highlights the importance of investing in nature conservation and the power of genetic description as a strategy to identify new compounds.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPEEC-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Natalia Wilke
- Departamento de Quı́mica Biológica Ranwel Caputto, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Centro de Investigaciones en Quı́mica Biológica de Córdoba, CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Marı A L Fanani
- Departamento de Quı́mica Biológica Ranwel Caputto, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Centro de Investigaciones en Quı́mica Biológica de Córdoba, CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Daniel C Moreira
- Área de Morfologia, Faculdade de Medicina, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Luis O Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPCSH-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - Eder Alves Barbosa
- Laboratório de Espectrometria de Massa, EMBRAPA Recursos Genéticos e Biotecnologia, Brası́lia 70770-917, Brazil
- Laboratório de Sı́ntese e Análise de Biomoléculas, Instituto de Quı́mica, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciéncias da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IDEAus-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| | - José R Leite
- Área de Morfologia, Faculdade de Medicina, Universidade de Brası́lia, Brası́lia 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (IPEEC-CONICET), Bv. Almirante Brown 2915, Puerto Madryn U9120ACD, Argentina
| |
Collapse
|
19
|
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-Derived Peptides Selectively Interact with the Anionic Phospholipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:397-408. [PMID: 31793791 DOI: 10.1021/acs.langmuir.9b03243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ubiquicidin (UBI)/ribosomal protein S30 (RS30) is an intracellular protein with antimicrobial activities against various pathogens. UBI (29-41) and UBI (31-38) are two crucial peptides derived from Ubiquicidin, which have shown potential as infection imaging probes. Here, we report the interactions of UBI-derived peptides with anionic and zwitterionic phospholipid membranes. Our isothermal titration calorimetry results show that both peptides selectively interact with the anionic phospholipid membrane (a model bacterial membrane) and reside mainly on the membrane surface. The interaction of UBI-derived peptides with the anionic phospholipid membrane is exothermic and driven by both enthalpy (ΔH) and entropy (ΔS), with the entropic term TΔS being greater than ΔH. This large entropic term can be a result of the aggregation of the anionic vesicles, which is confirmed by dynamic light scattering (DLS) measurements. DLS data show that vesicle aggregation is enhanced with increasing peptide-to-lipid molar ratios (P/L) and is found to be more pronounced in the case of UBI (29-41). DLS results are found to be consistent with independent transmission measurements. To study the effects of UBI-derived peptides on the microscopic dynamics of the model bacterial membrane, quasielastic neutron scattering (QENS) measurements have been carried out. The QENS results show that both peptides restrict the lateral motion of the lipid within the leaflet. UBI (29-41) acts as a stronger stiffening agent, hindering the lateral diffusion of lipids more efficiently than UBI (31-38). To our knowledge, this is the first report illustrating the mechanism of interaction of UBI-derived peptides with model membranes. This study also has implications for the improvement and design of antimicrobial peptide-based infection imaging probes.
Collapse
Affiliation(s)
| | | | - Archana Mukherjee
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - V Garcia Sakai
- ISIS Facility, Science and Technology Facilities Council , Rutherford Appleton Laboratory , Didcot OX11 0QX , U.K
| | - Ashutosh Dash
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| | - Mukesh Kumar
- Homi Bhabha National Institute , Anushaktinagar , Mumbai 400094 , India
| |
Collapse
|
20
|
Neundorf I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:93-109. [PMID: 30980355 DOI: 10.1007/978-981-13-3588-4_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides are both classes of membrane-active peptides sharing similar physicochemical properties. Both kinds of peptides have attracted much attention owing to their specific features. AMPs disrupt cell membranes of bacteria and display urgently needed antibiotic substances with alternative modes of action. Since the multidrug resistance of bacterial pathogens is a more and more raising concern, AMPs have gained much interest during the past years. On the other side, CPPs enter eukaryotic cells without substantially affecting the plasma membrane. They can be used as drug delivery platforms and have proven their usefulness in various applications. However, although both groups of peptides are quite similar, their intrinsic activity is often different, and responsible factors are still in discussion. The aim of this chapter is to summarize and shed light on recent findings and concepts dealing with differences and similarities of AMPs and CPPs and to understand these different functions.
Collapse
Affiliation(s)
- Ines Neundorf
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Sanborn JR, Chen X, Yao YC, Hammons JA, Tunuguntla RH, Zhang Y, Newcomb CC, Soltis JA, De Yoreo JJ, Van Buuren A, Parikh AN, Noy A. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803355. [PMID: 30368926 DOI: 10.1002/adma.201803355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Biological membranes provide a fascinating example of a separation system that is multifunctional, tunable, precise, and efficient. Biomimetic membranes, which mimic the architecture of cellular membranes, have the potential to deliver significant improvements in specificity and permeability. Here, a fully synthetic biomimetic membrane is reported that incorporates ultra-efficient 1.5 nm diameter carbon nanotube porin (CNTPs) channels in a block-copolymer matrix. It is demonstrated that CNTPs maintain high proton and water permeability in these membranes. CNTPs can also mimic the behavior of biological gap junctions by forming bridges between vesicular compartments that allow transport of small molecules.
Collapse
Affiliation(s)
- Jeremy R Sanborn
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- University of California Davis, Davis, CA, 95616, USA
| | - Xi Chen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Joshua A Hammons
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ramya H Tunuguntla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Christina C Newcomb
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jennifer A Soltis
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony Van Buuren
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Atul N Parikh
- University of California Davis, Davis, CA, 95616, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
22
|
Sinha S, Harioudh MK, Dewangan RP, Ng WJ, Ghosh JK, Bhattacharjya S. Cell-Selective Pore Forming Antimicrobial Peptides of the Prodomain of Human Furin: A Conserved Aromatic/Cationic Sequence Mapping, Membrane Disruption, and Atomic-Resolution Structure and Dynamics. ACS OMEGA 2018; 3:14650-14664. [PMID: 30555984 PMCID: PMC6289565 DOI: 10.1021/acsomega.8b01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Antimicrobial peptides are promising molecules in uprising consequences of drug-resistant bacteria. The prodomain of furin, a serine protease, expressed in all vertebrates including humans, is known to be important for physiological functions. Here, potent antimicrobial peptides were mapped by extensive analyses of overlapping peptide fragments of the prodomain of human furin. Two peptides, YR26 and YR23, were active against bacterial cells including MRSA-resistant Staphylococcus aureus and Staphylococcus epidermis 51625. Peptides were largely devoid of hemolytic and cytotoxic activity. Bacterial cell killing occurred as a result of the disruption of the permeability barrier of the lipopolysaccharide (LPS)-outer membrane and fragmentation of LPS into small micelles. Furthermore, antibacterial peptides specifically interacted with the negatively charged lipids causing membrane leakage and fusion. The YR26 peptide in sodium dodecyl sulfate micelles demonstrated a long-helix-turn-short-helix structure exhibiting restricted backbone motions. The cell-selective activity of the furin peptides and their unique mode of action on membranes have a significant potential for the development of therapeutics.
Collapse
Affiliation(s)
- Sheetal Sinha
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, Singapore 637551
- Advanced
Environmental Biotechnology Centre, Nanyang Environment and Water
Research Institute, Nanyang Technological
University, 1 Cleantech
Loop, Singapore 637141
- Interdisciplinary Graduate School and Environmental Bio-Innovation Group
(EBiG), School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Munesh Kumar Harioudh
- Molecular
and Structural Biology Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Rikeshwer P. Dewangan
- Molecular
and Structural Biology Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Wun Jern Ng
- Interdisciplinary Graduate School and Environmental Bio-Innovation Group
(EBiG), School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jimut Kanti Ghosh
- Molecular
and Structural Biology Division, CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Surajit Bhattacharjya
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang Drive, Singapore 637551
- E-mail: . Fax: 65-6791-3856
| |
Collapse
|
23
|
Gonzalez S, Gallier F, Kellouche S, Carreiras F, Novellino E, Carotenuto A, Chassaing G, Rovero P, Uziel J, Lubin-Germain N. Studies of membranotropic and fusogenic activity of two putative HCV fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:50-61. [PMID: 30343120 DOI: 10.1016/j.bbamem.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
Over the past decades, membranotropic peptides such as positively charged cell-penetrating peptides (CPPs) or amphipathic antimicrobial peptides (AMPs) have received increasing interest in order to improve therapeutic agent cellular uptake. As far as we are concerned, we were interested in studying HCV fusion peptides as putative anchors. Two peptides, HCV6 and HCV7, were identified and conjugated to a fluorescent tag NBD and tested for their interaction with liposomes as model membranes. DSC and spectrofluorescence analyses demonstrate HCV7 propensity to insert or internalize in vesicles containing anionic lipids DMPG whereas no activity was observed with zwitterionic DMPC. This behavior could be explained by the peptide sequence containing a cationic arginine residue. On the contrary, HCV6 did not exhibit any membranotropic activity but was the only sequence able to induce liposomes' fusion or aggregation monitored by spectrofluorescence and DLS. This two peptides mild activity was related to their inefficient structuration in contact with membrane mimetics, which was demonstrated by CD and NMR experiments. Altogether, our data allowed us to identify two promising membrane-active peptides from E1 and E2 HCV viral proteins, one fusogenic (HCV6) and the other membranotropic (HCV7). The latter was also confirmed by fluorescence microscopy with CHO cells, indicating that HCV7 could cross the plasma membrane via an endocytosis process. Therefore, this study provides new evidences supporting the identification of HCV6 as the HCV fusion peptide as well as insights on a novel membranotropic peptide from the HCV-E2 viral protein.
Collapse
Affiliation(s)
- Simon Gonzalez
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Florian Gallier
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Ettore Novellino
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples 'Federico II', Naples 80131, Italy
| | - Gérard Chassaing
- Sorbonne Universités, UPMC University Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France
| | - Paolo Rovero
- French-Italian Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Jacques Uziel
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, Cergy-Pontoise, France.
| |
Collapse
|
24
|
Hyun S, Lee Y, Jin SM, Cho J, Park J, Hyeon C, Kim KS, Lee Y, Yu J. Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities. ACS CENTRAL SCIENCE 2018; 4:885-893. [PMID: 30062117 PMCID: PMC6062827 DOI: 10.1021/acscentsci.8b00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 05/29/2023]
Abstract
LK-3, an amphipathic dimeric peptide linked by two disulfide bonds, and related isomeric bundles were synthesized, and their cell penetrating abilities were investigated. The measurements using size exclusion chromatography and dynamic light scattering show that LK-3 and its isomers form cell penetrating oligomers. Calculations, performed for various types of peptide isomers, elucidate a strong correlation between the amphipathic character of dimers and cell penetration ability. The results suggest that the amphipathicities of LK-3 and related bundle dimers are responsible for their oligomerization propensities which in turn determine their cell penetrating abilities. The observations made in this study provide detailed information about the mechanism of cell uptake of LK-3 and suggest a plausible insight of the early stage of nanoparticle formation of the cell penetrating amphipathic peptides.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute
of Molecular Biology and Genetics, Seoul
National University, Seoul 08826, Korea
| | - Yuno Lee
- Korea
Institute for Advanced Study, Seoul 02455, Korea
| | - Sun Mi Jin
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| | - Jane Cho
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| | - Jeemin Park
- Neuroscience,
Research Animal Resource Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | | | - Key-Sun Kim
- Neuroscience,
Research Animal Resource Center, Korea Institute
of Science and Technology, Seoul 02792, Korea
| | - Yan Lee
- Department
of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehoon Yu
- Department
of Chemistry and Education, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
25
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
26
|
Kim GC, Ahn JH, Oh JH, Nam S, Hyun S, Yu J, Lee Y. Photoswitching of Cell Penetration of Amphipathic Peptides by Control of α-Helical Conformation. Biomacromolecules 2018; 19:2863-2869. [DOI: 10.1021/acs.biomac.8b00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Wadhwani P, Heidenreich N, Podeyn B, Bürck J, Ulrich AS. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater Sci 2018; 5:817-827. [PMID: 28275774 DOI: 10.1039/c7bm00069c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide-coated nanoparticles are valuable tools for diverse biological applications, such as drug delivery, molecular recognition, and antimicrobial action. The functionalization of pre-fabricated nanoparticles with free peptides in solution is inefficient either due to aggregation of the particles or due to the poor ligand exchange reaction. Here, we present a one-pot synthesis for preparing gold nanoparticles with a homogeneous distribution that are covered in situ with cationic peptides in a site-selective manner via Cys-residue at the N-terminus. Five representative peptides were selected, which are known to perturb cellular membranes and exert their antimicrobial and/or cell penetrating activity by folding into amphiphilic α-helical structures. When tethered to the nanoparticles at a single site, all peptides were found to switch their conformation from unordered state (in aqueous buffers) to their functionally relevant α-helical conformation in the presence of model membranes, as shown by circular dichroism spectroscopy. The conjugated peptides also maintained the same antibacterial activity as in the free form. Most importantly, when tethered to the gold nanoparticles the peptides showed an enormous increase in stability against trypsin digestion compared to the free forms, leading to a dramatic improvement of their lifetimes and activities. These findings suggest that site-selective surface tethering of peptides to gold nanoparticles has several advantages: (i) it does not prevent the peptides from folding into their biologically active conformation, (ii) such conjugation protects the peptides against protease digestion, and (iii) this way it is possible to prepare stable, water soluble antimicrobial nanoparticles as promising antibacterial agents.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Nico Heidenreich
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Benjamin Podeyn
- KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany.
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), 1Institute of Biological Interfaces (IBG-2) P.O.B. 3640, D 76021 Karlsruhe, Germany. and KIT, 2Institute of Organic Chemistry & CFN, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci Rep 2017; 7:13153. [PMID: 29030606 PMCID: PMC5640672 DOI: 10.1038/s41598-017-12599-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical membranolytic peptides from frog skin with known synergistic antimicrobial activity. By systematically mutating residues in the two peptides it was possible to identify the ones crucial for the synergy, as monitored by biological assays, fluorescence vesicle leakage, and solid-state 15N-NMR. Electrostatic interactions between anionic groups in MAG2 and cationic residues in PGLa enhance synergy but are not necessary for the synergistic effect. Instead, two Gly residues (7 and 11) in a so-called GxxxG motif in PGLa are necessary for synergy. Replacing either of them with Ala or another hydrophobic residue completely abolishes synergy according to all three methods used. The designer-made peptide MSI-103, which has a similar sequence as PGLa, shows no synergy with MAG2, but by introducing two Gly mutations it was possible to make it synergistic. A molecular model is proposed for the functionally active PGLa-MAG2 complex, consisting of a membrane-spanning antiparallel PGLa dimer that is stabilized by intimate Gly-Gly contacts, and where each PGLa monomer is in contact with one MAG2 molecule at its C-terminus.
Collapse
|
29
|
Human-derived fusogenic peptides for the intracellular delivery of proteins. J Control Release 2017; 255:1-11. [DOI: 10.1016/j.jconrel.2017.03.398] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022]
|
30
|
Das S, Pal U, Chatterjee M, Pramanik SK, Banerji B, Maiti NC. Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses. J Phys Chem A 2016; 120:9829-9840. [PMID: 27973793 DOI: 10.1021/acs.jpca.6b10017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Supriya Das
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uttam Pal
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Moumita Chatterjee
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sumit Kumar Pramanik
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Biswadip Banerji
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Nakul C. Maiti
- Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
31
|
Phospholipid/Polydiacetylene Vesicle-Based Colorimetric Assay for High-Throughput Screening of Bacteriocins and Halocins. Appl Biochem Biotechnol 2016; 182:142-154. [PMID: 27844338 DOI: 10.1007/s12010-016-2316-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
The colorimetric assay is phospholipid/polydiacetylene vesicle-based assay used for the detection of membrane-acting peptides. Bacteriocins and halocins are antimicrobial peptides known to kill target cells by membrane disruption. Therefore, the assay was applied for high-throughput (HTP) screening of bacteriocins and halocins produced by lactic acid bacteria and haloarchaea, respectively. The assay consisted of vesicles which were synthesized using four different phospholipids: dipalmitoylphosphatydilcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphoethanolamine (DMPE) and dimyristoylphosphatidylglycerol (DMPG) in combination with diacetylene monomer 10,12-tricosadiy noic acid (TRCDA). These vesicles demonstrated blue colour at 640 nm and turned pink/red after interaction with nisin. DMPE/TRCDA vesicles showed pink colour with the highest colorimetric response (CR %) after treatment with nisin and, therefore, selected for the screening of bacteriocins and halocins. The colour of the vesicles was changed within 5 min in the presence of 5 μM nisin suggesting the sensitivity of assay. The assay was applied on 54 strains of lactic acid bacteria (LAB) and 53 haloarchaea for screening of bacteriocins and halocins, respectively. Out of these strains, three strains of LAB and five strains of haloarchaea were found to be bacteriocin and halocin non-producer, respectively. The other strains demonstrated the presence of bacteriocins and halocins. The colorimetric assay was found to be rapid, specific and reliable for HTP screening of antimicrobial peptides such as bacteriocins and halocins from producer strains isolated from various natural resources.
Collapse
|
32
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
33
|
Prada YA, Guzmán F, Rondón P, Escobar P, Ortíz C, Sierra DA, Torres R, Mejía-Ospino E. A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob Proteins 2016; 8:134-40. [DOI: 10.1007/s12602-016-9219-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Zamora-Carreras H, Strandberg E, Mühlhäuser P, Bürck J, Wadhwani P, Jiménez MÁ, Bruix M, Ulrich AS. Alanine scan and (2)H NMR analysis of the membrane-active peptide BP100 point to a distinct carpet mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1328-38. [PMID: 26975251 DOI: 10.1016/j.bbamem.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced. In most cases, a reduction in hydrophobicity led to a decrease in hemolysis, and some peptide analogues had an improved therapeutic index. Circular dichroism showed that BP100 folds as an amphiphilic α-helix in a bilayer. Its alignment was determined from (2)H NMR in oriented membranes of different composition. The azimuthal rotation angle was the same under all conditions, but the average helix tilt angle and the dynamical behavior of the peptide varied in a systematic manner. In POPC/POPG bilayers, with a negative spontaneous curvature, the peptide was found to lie flat on the bilayer surface, and with little wobble. In DMPC/DMPG, with a positive spontaneous curvature, BP100 at higher concentrations became tilted obliquely into the membrane, with the uncharged C-terminus inserted more deeply into the lipid bilayer, experiencing significant fluctuations in tilt angle. In DMPC/DMPG/lyso-MPC, with a pronounced positive spontaneous curvature, the helix tilted even further and became even more mobile. The 11-mer BP100 is obviously too short to form transmembrane pores. We conclude that BP100 operates via a carpet mechanism, whereby the C-terminus gets inserted into the hydrophobic core of the bilayer, which leads to membrane perturbation and induces transient permeability.
Collapse
Affiliation(s)
| | - Erik Strandberg
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Philipp Mühlhäuser
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany
| | - M Ángeles Jiménez
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Marta Bruix
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Anne S Ulrich
- Karlsruhe Institute for Technology (KIT), Institute for Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
35
|
Carvajal-Rondanelli P, Aróstica M, Marshall SH, Albericio F, Álvarez CA, Ojeda C, Aguilar LF, Guzmán F. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria. Amino Acids 2016; 48:1445-56. [DOI: 10.1007/s00726-016-2198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
|
36
|
Kauffman WB, Fuselier T, He J, Wimley WC. Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. Trends Biochem Sci 2015; 40:749-764. [PMID: 26545486 DOI: 10.1016/j.tibs.2015.10.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
Abstract
The permeability barrier imposed by cellular membranes limits the access of exogenous compounds to the interior of cells. Researchers and patients alike would benefit from efficient methods for intracellular delivery of a wide range of membrane-impermeant molecules, including biochemically active small molecules, imaging agents, peptides, peptide nucleic acids, proteins, RNA, DNA, and nanoparticles. There has been a sustained effort to exploit cell penetrating peptides (CPPs) for the delivery of such useful cargoes in vitro and in vivo because of their biocompatibility, ease of synthesis, and controllable physical chemistry. Here, we discuss the many mechanisms by which CPPs can function, and describe a taxonomy of mechanisms that could be help organize future efforts in the field.
Collapse
Affiliation(s)
- W Berkeley Kauffman
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Taylor Fuselier
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
37
|
Zhang Q, Gao H, He Q. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol Pharm 2015; 12:3105-18. [PMID: 26237247 DOI: 10.1021/acs.molpharmaceut.5b00428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| |
Collapse
|
38
|
Fang Z, Wan LY, Chu LY, Zhang YQ, Wu JF. 'Smart' nanoparticles as drug delivery systems for applications in tumor therapy. Expert Opin Drug Deliv 2015; 12:1943-53. [PMID: 26193970 DOI: 10.1517/17425247.2015.1071352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. AREAS COVERED In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. EXPERT OPINION Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.
Collapse
Affiliation(s)
- Zhi Fang
- a 1 China Three Gorges University, Medical College , Yichang, Hubei 443002, China ;
| | - Lin-Yan Wan
- a 1 China Three Gorges University, Medical College , Yichang, Hubei 443002, China ; .,b 2 China Three Gorges University, Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy , Yichang, Hubei 443002, China
| | - Liang-Yin Chu
- c 3 Sichuan University, School of Chemical Engineering , Chengdu, Sichuan 610065, China.,d 4 Sichuan University, Collaborative Innovation Center for Biomaterials Science and Technology, State Key Laboratory of Polymer Materials Engineering , Chengdu, Sichuan 610065, China
| | - Yan-Qiong Zhang
- a 1 China Three Gorges University, Medical College , Yichang, Hubei 443002, China ;
| | - Jiang-Feng Wu
- a 1 China Three Gorges University, Medical College , Yichang, Hubei 443002, China ; .,b 2 China Three Gorges University, Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy , Yichang, Hubei 443002, China
| |
Collapse
|
39
|
Shebek K, Schantz AB, Sines I, Lauser K, Velegol S, Kumar M. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4496-4502. [PMID: 25845029 DOI: 10.1021/acs.langmuir.5b00015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.
Collapse
Affiliation(s)
- Kevin Shebek
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Allen B Schantz
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ian Sines
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kathleen Lauser
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stephanie Velegol
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Manish Kumar
- †Department of Chemical Engineering and ‡Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Manzo G, Scorciapino MA, Wadhwani P, Bürck J, Montaldo NP, Pintus M, Sanna R, Casu M, Giuliani A, Pirri G, Luca V, Ulrich AS, Rinaldi AC. Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS One 2015; 10:e0116379. [PMID: 25617899 PMCID: PMC4305290 DOI: 10.1371/journal.pone.0116379] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 12/05/2014] [Indexed: 12/11/2022] Open
Abstract
SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β-SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mariano A. Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Nicola Pietro Montaldo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Manuela Pintus
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Roberta Sanna
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mariano Casu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Andrea Giuliani
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | - Giovanna Pirri
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche, “A. Rossi Fanelli”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| |
Collapse
|
41
|
Mohamed MF, Hammac GK, Guptill L, Seleem MN. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs. PLoS One 2014; 9:e116259. [PMID: 25551573 PMCID: PMC4281220 DOI: 10.1371/journal.pone.0116259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP) has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity) and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan) with minimum inhibitory concentration50 (MIC50) of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide) and IK8 “D isoform” demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF)3K (two cell penetrating peptides) were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF)3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin and ciprofloxacin increased 32 and 8 fold, respectively; under similar conditions. Taken together, these results support designing of peptide-based therapeutics for combating MRSP infections, particularly for topical application.
Collapse
Affiliation(s)
- Mohamed F Mohamed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - G Kenitra Hammac
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Lynn Guptill
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
42
|
Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 2014; 20:760-84. [DOI: 10.1002/psc.2672] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Siegmund Reissmann
- Friedrich Schiller University, Biological and Pharmaceutical Faculty; Institute of Biochemistry and Biophysics; Dornburger Strasse 25 07743 Jena Germany
- Jena Bioscience GmbH; Loebstedter Strasse 80 07749 Jena Germany
| |
Collapse
|
43
|
Fanghänel S, Wadhwani P, Strandberg E, Verdurmen WPR, Bürck J, Ehni S, Mykhailiuk PK, Afonin S, Gerthsen D, Komarov IV, Brock R, Ulrich AS. Structure analysis and conformational transitions of the cell penetrating peptide transportan 10 in the membrane-bound state. PLoS One 2014; 9:e99653. [PMID: 24937132 PMCID: PMC4061077 DOI: 10.1371/journal.pone.0099653] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
Structure analysis of the cell-penetrating peptide transportan 10 (TP10) revealed an exemplary range of different conformations in the membrane-bound state. The bipartite peptide (derived N-terminally from galanin and C-terminally from mastoparan) was found to exhibit prominent characteristics of (i) amphiphilic α-helices, (ii) intrinsically disordered peptides, as well as (iii) β-pleated amyloid fibrils, and these conformational states become interconverted as a function of concentration. We used a complementary approach of solid-state (19)F-NMR and circular dichroism in oriented membrane samples to characterize the structural and dynamical behaviour of TP10 in its monomeric and aggregated forms. Nine different positions in the peptide were selectively substituted with either the L- or D-enantiomer of 3-(trifluoromethyl)-bicyclopent-[1.1.1]-1-ylglycine (CF3-Bpg) as a reporter group for (19)F-NMR. Using the L-epimeric analogs, a comprehensive three-dimensional structure analysis was carried out in lipid bilayers at low peptide concentration, where TP10 is monomeric. While the N-terminal region is flexible and intrinsically unstructured within the plane of the lipid bilayer, the C-terminal α-helix is embedded in the membrane with an oblique tilt angle of ∼ 55° and in accordance with its amphiphilic profile. Incorporation of the sterically obstructive D-CF3-Bpg reporter group into the helical region leads to a local unfolding of the membrane-bound peptide. At high concentration, these helix-destabilizing C-terminal substitutions promote aggregation into immobile β-sheets, which resemble amyloid fibrils. On the other hand, the obstructive D-CF3-Bpg substitutions can be accommodated in the flexible N-terminus of TP10 where they do not promote aggregation at high concentration. The cross-talk between the two regions of TP10 thus exerts a delicate balance on its conformational switch, as the presence of the α-helix counteracts the tendency of the unfolded N-terminus to self-assemble into β-pleated fibrils.
Collapse
Affiliation(s)
- Susanne Fanghänel
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and DFG-Center for Functional Nanostructures (CFN), Karlsruhe, Germany
| | - Parvesh Wadhwani
- KIT, Institute of Biological Interfaces (IBG2), Karlsruhe, Germany
| | - Erik Strandberg
- KIT, Institute of Biological Interfaces (IBG2), Karlsruhe, Germany
| | - Wouter P. R. Verdurmen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jochen Bürck
- KIT, Institute of Biological Interfaces (IBG2), Karlsruhe, Germany
| | - Sebastian Ehni
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and DFG-Center for Functional Nanostructures (CFN), Karlsruhe, Germany
| | - Pavel K. Mykhailiuk
- Taras Shevchenko National University of Kyiv, Chemistry Department, Kyiv, Ukraine and Enamine Ltd., Kyiv, Ukraine
| | - Sergii Afonin
- KIT, Institute of Biological Interfaces (IBG2), Karlsruhe, Germany
| | | | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv, Institute of High Technologies, Kyiv, Ukraine
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry and DFG-Center for Functional Nanostructures (CFN), Karlsruhe, Germany
- KIT, Institute of Biological Interfaces (IBG2), Karlsruhe, Germany
| |
Collapse
|
44
|
Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:241-53. [PMID: 24743917 PMCID: PMC4053608 DOI: 10.1007/s00249-014-0958-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Abstract
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.
Collapse
|
45
|
Martinelli AH, Kappaun K, Ligabue-Braun R, Defferrari MS, Piovesan AR, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CG, Follmer C, Verli H, Carlini CR, Pasquali G. Structure–function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta Gen Subj 2014; 1840:935-44. [DOI: 10.1016/j.bbagen.2013.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
46
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
47
|
Gabrys CM, Qiang W, Sun Y, Xie L, Schmick SD, Weliky DP. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures. J Phys Chem A 2013; 117:9848-59. [PMID: 23418890 PMCID: PMC3932798 DOI: 10.1021/jp312845w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and infection. The present study shows that HFPmn_V2E induces much less vesicle fusion than HFPmn. "HFPtr" contained three strands with HFPmn sequence that were chemically cross-linked near their C-termini. HFPtr mimics the trimeric topology of gp41 and induces much more rapid and extensive vesicle fusion than HFPmn. For HFPmn and HFPtr, well-resolved α and β peaks were observed for A6-, L9-, and L12-labeled samples. For each of these samples, there were similar HFP (13)CO to lipid (31)P proximities in the α and β structures, which evidenced comparable membrane locations of the HFP in either structure including insertion into a single membrane leaflet. The data were also consistent with deeper insertion of HFPtr relative to HFPmn in both the α and β structures. The results supported a strong correlation between the membrane insertion depth of the HFP and its fusogenicity. More generally, the results supported membrane location of the HFP as an important determinant of its fusogenicity. The deep insertion of HFPtr in both the α and β structures provides the most relevant membrane location of the FP for HIV gp41-catalyzed membrane fusion because HIV gp41 is natively trimeric. Well-resolved α and β signals were observed in the HFPmn_V2E samples with L9- and L12- but not A6-labeling. The α signals were much more dominant for L9- and L12-labeled HFPmn_V2E than the corresponding HFPmn or HFPtr. The structural model for the less fusogenic HFPmn_V2E includes a shorter helix and less membrane insertion than either HFPmn or HFPtr. This greater helical population and different helical structure and membrane location could result in less membrane perturbation and lower fusogenicity of HFPmn_V2E and suggest that the β sheet fusion peptide is the most functionally relevant structure of HFPmn, HFPtr, and gp41.
Collapse
Affiliation(s)
- Charles M. Gabrys
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Yan Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Li Xie
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - Scott D. Schmick
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
48
|
Wadhwani P, Reichert J, Strandberg E, Bürck J, Misiewicz J, Afonin S, Heidenreich N, Fanghänel S, Mykhailiuk PK, Komarov IV, Ulrich AS. Stereochemical effects on the aggregation and biological properties of the fibril-forming peptide [KIGAKI]3 in membranes. Phys Chem Chem Phys 2013; 15:8962-71. [PMID: 23652359 DOI: 10.1039/c3cp50896j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single D-amino acid substitutions can be used to suppress or slow down the aggregation of peptides into β-sheeted assemblies compared to the respective L-amino acids. Here, we investigate the influence of local stereochemistry in the model peptide [KIGAKI]3-NH2, which is known to form amyloid-like fibrils. To find out whether aggregation plays a role in various biologically relevant functions that involve peptide-lipid interactions, we studied the antimicrobial, hemolytic and fusogenic activities of this amphiphilic membrane-active molecule. The stiff and sterically constrained amino acid CF3-Bpg [3-(trifluoromethyl)-bicyclopent-[1,1,1]-1-ylglycine] was incorporated either as an L- or a D-enantiomer at different hydrophobic positions of the KIGAKI sequence. D-Epimers have a higher aggregation threshold than the L-epimers, yet the aggregation of both was confirmed using electron microscopy and circular dichroism. Solid-state (19)F-NMR analysis showed that the peptide aggregated in native membranes from human erythrocytes and bacterial protoplasts in the same way as in synthetic lipid bilayers. We then monitored the effect of the single L- or D-CF3-Bpg substitutions in KIGAKI on its distinct biological activities, which have to be measured at low peptide concentrations where the aggregation threshold cannot be directly assessed. These functional assays showed that the aggregation propensity of KIGAKI does not play a role in its antimicrobial action, but an increased tendency to aggregate promotes other undesirable effects such as hemolysis and membrane fusion. These results confirm the membranolytic and thereby toxic nature of amyloidogenic peptides, and emphasize the unpredictable role of peptide aggregation in the different assays used to study biological activities.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Moiset G, Cirac AD, Stuart MCA, Marrink SJ, Sengupta D, Poolman B. Dual action of BPC194: a membrane active peptide killing bacterial cells. PLoS One 2013; 8:e61541. [PMID: 23620763 PMCID: PMC3631201 DOI: 10.1371/journal.pone.0061541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/10/2013] [Indexed: 11/30/2022] Open
Abstract
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis.
Collapse
Affiliation(s)
- Gemma Moiset
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Anna D. Cirac
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Institute of Computational Chemistry, University of Girona, Campus Montivili, Girona, Spain
| | - Marc C. A. Stuart
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Durba Sengupta
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- * E-mail: (BP); (DS)
| | - Bert Poolman
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- * E-mail: (BP); (DS)
| |
Collapse
|
50
|
Zhdanov VP, Höök F. Nucleation in mesoscopic systems under transient conditions: peptide-induced pore formation in vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042718. [PMID: 23679460 DOI: 10.1103/physreve.87.042718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 06/02/2023]
Abstract
Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden.
| | | |
Collapse
|