1
|
Sahu S, Ghosh S, Sinha SK, Datta S, Sengupta N. Thermal Sensitivity of the Enzymatic Activity of β-Glucosidase: Simulations Lend Mechanistic Insights into Experimental Observations. Biochemistry 2023; 62:3440-3452. [PMID: 37997958 DOI: 10.1021/acs.biochem.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A crucial prerequisite for industrial applications of enzymes is the maintenance of specific activity across wide thermal ranges. β-Glucosidase (EC 3.2.1.21) is an essential enzyme for converting cellulose in biomass to glucose. While the reaction mechanisms of β-glucosidases from various thermal ranges (hyperthermophilic, thermophilic, and mesophilic) are similar, the factors underlying their thermal sensitivity remain obscure. The work presented here aims to unravel the molecular mechanisms underlying the thermal sensitivity of the enzymatic activity of the β-glucosidase BglB from the bacterium Paenibacillus polymyxa. Experiments reveal a maximum enzymatic activity at 315 K, with a marked decrease in the activity below and above this temperature. Employing in silico simulations, we identified the crucial role of the active site tunnel residues in the thermal sensitivity. Specific tunnel residues were identified via energetic decomposition and protein-substrate hydrogen bond analyses. The experimentally observed trends in specific activity with temperature coincide with variations in overall binding free energy changes, showcasing a predominantly electrostatic effect that is consistent with enhanced catalytic pocket-substrate hydrogen bonding (HB) at Topt. The entropic advantage owing to the HB substate reorganization was found to facilitate better substrate binding at 315 K. This study elicits molecular-level insights into the associative mechanisms between thermally enabled fluctuations and enzymatic activity. Crucial differences emerge between molecular mechanisms involving the actual substrate (cellobiose) and a commonly employed chemical analogue. We posit that leveraging the role of fluctuations may reveal unexpected insights into enzyme behavior and offer novel paradigms for enzyme engineering.
Collapse
Affiliation(s)
- Sneha Sahu
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sayani Ghosh
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sushant K Sinha
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Supratim Datta
- Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Ghosh B, Layek S, Bhattacharyya D, Sengupta N. Base pair compositional variability influences DNA structural stability and tunes hydration thermodynamics and dynamics. J Chem Phys 2023; 159:095101. [PMID: 37655772 DOI: 10.1063/5.0154977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
DNA deformability and differential hydration are crucial determinants of biological processes ranging from genetic material packaging to gene expression; their associative details, however, remain inadequately understood. Herein, we report investigations of the dynamic and thermodynamic responses of the local hydration of a variety of base pair sequences. Leveraging in silico sampling and our in-house analyses, we first report the local conformational propensity of sequences that are either predisposed toward the canonical A- or B-conformations or are restrained to potential transitory pathways. It is observed that the transition from the unrestrained A-form to the B-form leads to lengthwise structural deformation. The insertion of intermittent -(CG)- base pairs in otherwise homogeneous -(AT)- sequences bears dynamical consequences for the vicinal hydration layer. Calculation of the excess (pair) entropy suggests substantially higher values of hydration water surrounding A conformations over the B- conformations. Applying the Rosenfeld approximation, we project that the diffusivity of water molecules proximal to canonical B conformation is least for the minor groove of the canonical B-conformation. We determine that structure, composition, and conformation specific groove dimension together influence the local hydration characteristics and, therefore, are expected to be important determinants of biological processes.
Collapse
Affiliation(s)
- Brataraj Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sarbajit Layek
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Ghosh B, Sengupta N. The protein hydration layer in high glucose concentration: Dynamical responses in folded and intrinsically disordered dimeric states. Biochem Biophys Res Commun 2021; 577:124-129. [PMID: 34509724 DOI: 10.1016/j.bbrc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
This exposition reveals the effect of glucose as a molecular crowder on the solvent environment in proximity of the protein surface in putative folded (Ubiquitin) and intrinsically disordered (dimeric Amyloid beta) states. Atomistic simulations reveal markedly higher structural perturbation in the disordered systems due to crowding effects, while the folded state retains overall structural fidelity. Key hydrophobic contacts in the disordered dimer are lost. However, glucose induced crowding results in elevated hydration on surfaces of both protein systems. Despite evident differences in their structural responses, the hydration layer of both the folded and disordered states display a distinct enhancement in lifetimes of mean residence and rotational relaxation under the hyperglycemic conditions. The results are crucial in the light of emergent co-solvent induced biological phenomena in crowded media.
Collapse
Affiliation(s)
- Brataraj Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India.
| |
Collapse
|
4
|
Chatterjee P, Le T, Bui HTD, Cho MK, Ham S. Atomic Level Investigations of Early Aggregation of Tau43 in Water I. Conformational Propensity of Monomeric Tau43. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prathit Chatterjee
- Department of Chemistry The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa‐ro 47‐Gil 100, Yongsan‐Ku Seoul 04310 Korea
| | - Thi‐Diem Le
- Department of Chemistry The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa‐ro 47‐Gil 100, Yongsan‐Ku Seoul 04310 Korea
| | - Huong T. D. Bui
- Department of Chemistry The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa‐ro 47‐Gil 100, Yongsan‐Ku Seoul 04310 Korea
| | - Myung Keun Cho
- Department of Chemistry The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa‐ro 47‐Gil 100, Yongsan‐Ku Seoul 04310 Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Gwanak‐ro 1, Gwanak‐ku Seoul 08826 Korea
| | - Sihyun Ham
- Department of Chemistry The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa‐ro 47‐Gil 100, Yongsan‐Ku Seoul 04310 Korea
| |
Collapse
|
5
|
Azadi S, Tafazzoli-Shadpour M, Omidvar R. Steered Molecular Dynamics Simulation Study of Quantified Effects of Point Mutation Induced by Breast Cancer on Mechanical Behavior of E-Cadherin. Mol Biol 2018. [DOI: 10.1134/s0026893318050047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
7
|
Bohórquez HJ, Suárez CF, Patarroyo ME. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Sci Rep 2017; 7:7717. [PMID: 28798365 PMCID: PMC5552740 DOI: 10.1038/s41598-017-08041-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn ↔ Asp, Phe ↔ Tyr, Lys ↔ Arg, Gln ↔ Glu, Ile ↔ Val, Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{R}$$\end{document}R¯ = 0.85) between thirty amino acid mutability scales and the mutational inertia (IX), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions.
Collapse
Affiliation(s)
- Hugo J Bohórquez
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.
| | - Carlos F Suárez
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.,Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogotá DC, Colombia.,Universidad del Rosario, Bogotá DC, Colombia
| | - Manuel E Patarroyo
- Bio-mathematics, Fundación Instituto de Inmunología de Colombia, FIDIC, Cra. 50 No. 26-00, Of. 102, Bogotá DC, 111321160, Cundinamarca, Colombia.,Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
8
|
Chatterjee P, Sengupta N. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 12:1139-50. [PMID: 26876051 DOI: 10.1039/c6mb00017g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigate, using atomistic molecular dynamics simulations, the association of surface hydration accompanying local unfolding in the mesophilic protein Yfh1 under a series of thermal conditions spanning its cold and heat denaturation temperatures. The results are benchmarked against the thermally stable protein, Ubq, and behavior at the maximum stability temperature. Local unfolding in Yfh1, predominantly in the beta sheet regions, is in qualitative agreement with recent solution NMR studies; the corresponding Ubq unfolding is not observed. Interestingly, all domains, except for the beta sheet domains of Yfh1, show increased effective surface hydrophobicity with increase in temperature, as reflected by the density fluctuations of the hydration layer. Velocity autocorrelation functions (VACF) of oxygen atoms of water within the hydration layers and the corresponding vibrational density of states (VDOS) are used to characterize alteration in dynamical behavior accompanying the temperature dependent local unfolding. Enhanced caging effects accompanying transverse oscillations of the water molecules are found to occur with the increase in temperature preferentially for the beta sheet domains of Yfh1. Helical domains of both proteins exhibit similar trends in VDOS with changes in temperature. This work demonstrates the existence of key signatures of the local onset of protein thermal denaturation in solvent dynamical behavior.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
9
|
Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Overk C, Gonzalez T, Trejo M, Spencer B, Kosberg K, Masliah E. Molecular determinants of α-synuclein mutants' oligomerization and membrane interactions. ACS Chem Neurosci 2015; 6:403-16. [PMID: 25561023 DOI: 10.1021/cn500332w] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is associated with the formation of toxic α-synuclein oligomers that can penetrate the cell membrane. Familial forms of PD are caused by the point mutations A53T, A30P, E46K, and H50Q. Artificial point mutations E35K and E57K also increase oligomerization and pore formation. We generated structural conformations of α-synuclein and the above-mentioned mutants using molecular dynamics. We elucidated four main regions in these conformers contacting the membrane and found that the region including residues 39-45 (Zone2) may have maximum membrane penetration. E57K mutant had the highest rate of interaction with the membrane, followed by A53T, E46K, and E35K mutants and wild type (wt) α-synuclein. The mutant A30P had the smallest percentage of conformers that contact the membrane by Zone 2 than all other mutants and wt α-synuclein. These results were confirmed experimentally in vitro. We identified the key amino acids that can interact with the membrane (Y38, E62, and N65 (first hydrophilic layer); E104, E105, and D115 (second hydrophilic layer), and V15 and V26 (central hydrophobic layer)) and the residues that are involved in the interprotein contacts (L38, V48, V49, Q62, and T64). Understanding the molecular interactions of α-synuclein mutants is important for the design of compounds blocking the formation of toxic oligomers.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Yuriy Sharikov
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Jerry P. Greenberg
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Wolf Wrasidlo
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Cassia Overk
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Tania Gonzalez
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Margarita Trejo
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Brian Spencer
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Kori Kosberg
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| | - Eliezer Masliah
- San Diego Supercomputer Center, ‡Moores Cancer Center, §Department of Neurosciences, and ∥Department of
Pathology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Cloning, expression and in silico studies of a serine protease from a marine actinomycete (Nocardiopsis sp. NCIM 5124). Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Chatterjee P, Bagchi S, Sengupta N. The non-uniform early structural response of globular proteins to cold denaturing conditions: a case study with Yfh1. J Chem Phys 2014; 141:205103. [PMID: 25429964 DOI: 10.1063/1.4901897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism of cold denaturation in proteins is often incompletely understood due to limitations in accessing the denatured states at extremely low temperatures. Using atomistic molecular dynamics simulations, we have compared early (nanosecond timescale) structural and solvation properties of yeast frataxin (Yfh1) at its temperature of maximum stability, 292 K (Ts), and the experimentally observed temperature of complete unfolding, 268 K (Tc). Within the simulated timescales, discernible "global" level structural loss at Tc is correlated with a distinct increase in surface hydration. However, the hydration and the unfolding events do not occur uniformly over the entire protein surface, but are sensitive to local structural propensity and hydrophobicity. Calculated infrared absorption spectra in the amide-I region of the whole protein show a distinct red shift at Tc in comparison to Ts. Domain specific calculations of IR spectra indicate that the red shift primarily arises from the beta strands. This is commensurate with a marked increase in solvent accessible surface area per residue for the beta-sheets at Tc. Detailed analyses of structure and dynamics of hydration water around the hydrophobic residues of the beta-sheets show a more bulk water like behavior at Tc due to preferential disruption of the hydrophobic effects around these domains. Our results indicate that in this protein, the surface exposed beta-sheet domains are more susceptible to cold denaturing conditions, in qualitative agreement with solution NMR experimental results.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
12
|
Jose JC, Khatua P, Bansal N, Sengupta N, Bandyopadhyay S. Microscopic Hydration Properties of the Aβ1–42 Peptide Monomer and the Globular Protein Ubiquitin: A Comparative Molecular Dynamics Study. J Phys Chem B 2014; 118:11591-604. [DOI: 10.1021/jp505629q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Prabir Khatua
- Molecular
Modeling
Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Nupur Bansal
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Neelanjana Sengupta
- Physical Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhaba Road, Pune 411008, India
| | - Sanjoy Bandyopadhyay
- Molecular
Modeling
Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
13
|
Coskuner O, Wise-Scira O. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics. ACS Chem Neurosci 2013; 4:1101-13. [PMID: 23607785 DOI: 10.1021/cn400041j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The A53T genetic missense mutation of the wild-type α-synuclein (αS) protein was initially identified in Greek and Italian families with familial Parkinson's disease. Detailed understanding of the structures and the changes induced in the wild-type αS structure by the A53T mutation, as well as establishing the direct relationships between the rapid conformational changes and free energy landscapes of these intrinsically disordered fibrillogenic proteins, helps to enhance our fundamental knowledge and to gain insights into the pathogenic mechanism of Parkinson's disease. We employed extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations to determine the secondary and tertiary structural properties as well as the conformational free energy surfaces of the wild-type and A53T mutant-type αS proteins in an aqueous solution medium using both implicit and explicit water models. The confined aqueous volume effect in the simulations of disordered proteins using an explicit model for water is addressed for a model disordered protein. We also assessed the stabilities of the residual secondary structure component interconversions in αS based on free energy calculations at the atomic level with dynamics using our recently developed theoretical strategy. To the best of our knowledge, this study presents the first detailed comparison of the structural properties linked directly to the conformational free energy landscapes of the monomeric wild-type and A53T mutant-type α-synuclein proteins in an aqueous solution environment. Results demonstrate that the β-sheet structure is significantly more altered than the helical structure upon A53T mutation of the monomeric wild-type αS protein in aqueous solution. The β-sheet content close to the mutation site in the N-terminal region is more abundant while the non-amyloid-β component (NAC) and C-terminal regions show a decrease in β-sheet abundance upon A53T mutation. Obtained results utilizing our new theoretical strategy show that the residual secondary structure conversion stabilities resulting in α-helix formation are not significantly affected by the mutation. Interestingly, the residual secondary structure conversion stabilities show that secondary structure conversions resulting in β-sheet formation are influenced by the A53T mutation and the most stable residual transition yielding β-sheet occurs directly from the coil structure. Long-range interactions detected between the NAC region and the N- or C-terminal regions of the wild-type αS disappear upon A53T mutation. The A53T mutant-type αS structures are thermodynamically more stable than those of the wild-type αS protein structures in aqueous solution. Overall, the higher propensity of the A53T mutant-type αS protein to aggregate in comparison to the wild-type αS protein is related to the increased β-sheet formation and lack of strong intramolecular long-range interactions in the N-terminal region in comparison to its wild-type form. The specific residual secondary structure component stabilities reported herein provide information helpful for designing and synthesizing small organic molecules that can block the β-sheet forming residues, which are reactive toward aggregation.
Collapse
Affiliation(s)
- Orkid Coskuner
- Department of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle,
San Antonio, Texas 78249, United States
| | - Olivia Wise-Scira
- Department of Chemistry and ‡Neurosciences Institute, The University of Texas at San Antonio, One UTSA Circle,
San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Ye W, Wang W, Jiang C, Yu Q, Chen H. Molecular dynamics simulations of amyloid fibrils: an in silico approach. Acta Biochim Biophys Sin (Shanghai) 2013; 45:503-8. [PMID: 23532062 DOI: 10.1093/abbs/gmt026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid fibrils play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, and the prion-related transmissible spongiform encephalopathies. The mechanism of fibril formation and protein aggregation is still hotly debated and remains an important open question in order to develop therapeutic method of these diseases. However, traditional molecular biological and crystallographic experiments could hardly observe atomic details and aggregation process. Molecular dynamics (MD) simulations could provide explanations for experimental results and detailed pathway of protein aggregation. In this review, we focus on the applications of MD simulations on several amyloidogenic protein systems. Furthermore, MD simulations could help us to understand the mechanism of amyloid aggregation and how to design the inhibitors.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
15
|
Jose JC, Sengupta N. Molecular dynamics simulation studies of the structural response of an isolated Aβ1–42 monomer localized in the vicinity of the hydrophilic TiO2 surface. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:487-94. [DOI: 10.1007/s00249-013-0900-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/21/2013] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
|
16
|
Wise-Scira O, Aloglu AK, Dunn A, Sakallioglu IT, Coskuner O. Structures and free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins with dynamics. ACS Chem Neurosci 2013; 4:486-97. [PMID: 23374072 DOI: 10.1021/cn300198q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genetic missense A30P mutation of the wild-type α-synuclein protein results in the replacement of the 30th amino acid residue from alanine (Ala) to proline (Pro) and was initially found in the members of a German family who developed Parkinson's disease. Even though the structures of these proteins have been measured before, detailed understanding about the structures and their relationships with free energy landscapes is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. We report the secondary and tertiary structures and conformational free energy landscapes of the wild-type and A30P mutant-type α-synuclein proteins in an aqueous solution environment via extensive parallel tempering molecular dynamics simulations along with thermodynamic calculations. In addition, we present the residual secondary structure component transition stabilities at the atomic level with dynamics in terms of free energy change calculations using a new strategy that we reported most recently. Our studies yield new interesting results; for instance, we find that the A30P mutation has local as well as long-range effects on the structural properties of the wild-type α-synuclein protein. The helical content at Ala18-Gly31 is less prominent in comparison to the wild-type α-synuclein protein. The β-sheet structure abundance decreases in the N-terminal region upon A30P mutation of the wild-type α-synuclein, whereas the NAC and C-terminal regions possess larger tendencies for β-sheet structure formation. Long-range intramolecular protein interactions are less abundant upon A30P mutation, especially between the NAC and C-terminal regions, which is linked to the less compact and less stable structures of the A30P mutant-type rather than the wild-type α-synuclein protein. Results including the usage of our new strategy for secondary structure transition stabilities show that the A30P mutant-type α-synuclein tendency toward aggregation is higher than the wild-type α-synuclein but we also find that the C-terminal and NAC regions of the A30P mutant-type α-synuclein are reactive toward fibrillzation and aggregation based on atomic level studies with dynamics in an aqueous solution environment. Therefore, we propose that small molecules or drugs blocking the specific residues, which we report herein, located in the NAC- and C-terminal regions of the A30P mutant-type α-synuclein protein might help to reduce the toxicity of the A30P mutant-type α-synuclein protein.
Collapse
|