1
|
Han X, Zhang A, Meng Z, Wang Q, Liu S, Wang Y, Tan J, Guo L, Li F. Bioinformatics analysis based on extracted ingredients combined with network pharmacology, molecular docking and molecular dynamics simulation to explore the mechanism of Jinbei oral liquid in the therapy of idiopathic pulmonary fibrosis. Heliyon 2024; 10:e38173. [PMID: 39364246 PMCID: PMC11447332 DOI: 10.1016/j.heliyon.2024.e38173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Objective Jinbei oral liquid (JBOL), which is derived from a traditional hospital preparation, is frequently utilized to treat idiopathic pulmonary fibrosis (IPF) and has shown efficacy in clinical therapy. However, there are now several obstacles facing the mechanism inquiry, including target proteins, active components, and the binding affinity between crucial compounds and target proteins. To gain additional insight into the mechanisms underlying JBOL in anti-IPF, this study used bioinformation technologies, including network pharmacology, molecular docking, and molecular dynamic simulation, with a substantial amount of data based on realistic constituents. Methods Using network pharmacology, we loaded 118 realistic compounds into the SwissTargetPrediction and SwissADME databases and screened the active compounds and target proteins. IPF-related targets were collected from the OMIM, DisGeNET, and GeneCards databases, and the network of IPF-active constituents was built with Cytoscape 3.10.1. The GO and KEGG pathway enrichment analyses were carried out using Metascape, and the protein-protein interaction (PPI) network was constructed to screen the key targets with the STRING database. Finally, the reciprocal affinity between the active molecules and the crucial targets was assessed through the use of molecular docking and molecular dynamics simulation. Results A total of 122 targets and 34 tested active compounds were summarized in this investigation. Among these, kaempferol, apigenin, baicalein were present in high degree. PPI networks topological analysis identified eight key target proteins. AGE-RAGE, EGFR, and PI3K-Akt signaling pathways were found to be regulated during the phases of cell senescence, inflammatory response, autophagy, and immunological response in anti-IPF of JBOL. It was verified by molecular docking and molecular dynamics simulation that the combining way and binding energy between active ingredients and selected targets. Conclusions This work forecasts the prospective core ingredients, targets, and signal pathways of JBOL in anti-IPF, which has confirmed the multiple targets and pathways of JBOL in anti-IPF and provided the first comprehensive assessment with bioinformatic approaches. With empirical backing and an innovative approach to the molecular mechanism, JBOL is being considered as a potential new medication.
Collapse
Affiliation(s)
- Xinru Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Aijun Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Zhaoqing Meng
- Institute of Chinese Materia Medica, Shandong Hongji-tang Pharmaceutical Group Co., Ltd., Jinan, China
| | - Qian Wang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Song Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunjia Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxin Tan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lubo Guo
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Mukunda DC, Basha S, D'Souza MG, Chandra S, Ameera K, Stanley W, Mazumder N, Mahato KK. Label-free visualization of unfolding and crosslinking mediated protein aggregation in nonenzymatically glycated proteins. Analyst 2024; 149:4029-4040. [PMID: 38963259 DOI: 10.1039/d4an00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nonenzymatic glycation (NEG) unfolds and crosslinks proteins, resulting in aggregation. Label-free evaluation of such structural changes, without disturbing molecular integrity, would be beneficial for understanding the fundamental mechanisms of protein aggregation. The current study demonstrates the assessment of NEG-induced protein aggregation by combining autofluorescence (AF) spectroscopy and imaging. The methylglyoxal (MG) induced protein unfolding and the formation of cross-linking advanced glycation end-products (AGEs) leading to aggregation were evaluated using deep-UV-induced-autofluorescence (dUV-AF) spectroscopy in proteins with distinct structural characteristics. Since the AGEs formed on proteins are fluorescent, the study demonstrated the possibility of autofluorescence imaging of NEG-induced protein aggregates. Autofluorescence spectroscopy can potentially reveal molecular alterations such as protein unfolding and cross-linking. In contrast, AGE-based autofluorescence imaging offers a means to visually explore the structural arrangement of aggregates, regardless of whether they are amyloid or non-amyloid in nature.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - K Ameera
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Weena Stanley
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
D-Ribose-Induced Glycation and Its Attenuation by the Aqueous Extract of Nigella sativa Seeds. Medicina (B Aires) 2022; 58:medicina58121816. [PMID: 36557018 PMCID: PMC9788360 DOI: 10.3390/medicina58121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Glycation and oxidative stress are the major contributing factors responsible for diabetes and its secondary complications. Aminoguanidine, a hydrazine derivative, is the only approved drug that reduces glycation with its known side effects. As a result, research into medicinal plants with antioxidant and antiglycation properties is beneficial in treating diabetes and its consequences. This investigation aimed to examine the efficacy of the aqueous extract of Nigella sativa seeds against the D-ribose-induced glycation system. Materials and Methods: The suppression of α-amylase and α-glucosidase enzymes were used to assess the antidiabetic capacity. UV-Visible, fluorescence, and FTIR spectroscopy were used to characterize the Nigella sativa seed extract and its efficacy in preventing glycation. The inhibition of albumin glycation, fluorescent advanced glycation end products (AGEs) formation, thiol oxidation, and amyloid formation were used to evaluate the extracts' antiglycation activity. In addition, the extent of glycoxidative DNA damage was analyzed using agarose gel electrophoresis. Results: The IC50 for the extract in the α-amylase and α-glucosidase enzyme inhibition assays were approximately 1.39 ± 0.016 and 1.01 ± 0.022 mg/mL, respectively. Throughout the investigation, it was found that the aqueous extract of Nigella sativa seeds (NSAE) inhibited the level of ketoamine, exerted a considerable drop in fluorescence intensity, and reduced carbonyl production and thiol modification when added to the D-ribose-induced glycation system. In addition, a reduction in the BSA-cross amyloid formation was seen in the Congo red, thioflavin T assay, and electrophoretic techniques. NSAE also exhibited a strong capability for DNA damage protection. Conclusion: It can be concluded that Nigella sativa could be used as a natural antidiabetic, antiglycation treatment and a cost-effective and environmentally friendly source of powerful bioactive chemicals.
Collapse
|
4
|
Sarmah S, Goswami A, Kumar Belwal V, Singha Roy A. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action. Food Res Int 2022; 157:111358. [DOI: 10.1016/j.foodres.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
5
|
Sharma G, Bhattacharya R, Krishna S, Alomar SY, Alkhuriji AF, Warepam M, Kumari K, Rahaman H, Singh LR. Structural and Functional Characterization of Covalently Modified Proteins Formed By a Glycating Agent, Glyoxal. ACS OMEGA 2021; 6:20887-20894. [PMID: 34423196 PMCID: PMC8374913 DOI: 10.1021/acsomega.1c02300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 06/03/2023]
Abstract
Glycation, the main consequence of hyperglycemia, is one of the major perpetrators of diabetes and several other conditions, including coronary and neurodegenerative complications. Such a hyperglycemic condition is represented by a large increase in levels of various glycation end products including glyoxal, methylglyoxal, and carboxymethyl-lysine among others. These glycation end products are known to play a crucial role in diabetic complications due to their ability to covalently modify important proteins and enzymes, specifically at lysine residues (a process termed as glycation), making them non-functional. Previous studies have largely paid attention on characterization and identification of these reactive glycating agents. Structural and functional consequences of proteins affected by glycation have not yet been critically investigated. We have made a systematic investigation on the early conformational changes and functional alterations brought about by a glycating agent, glyoxal, on different proteins. We found that the early event in glycation includes an increase in hydrodynamic diameter, followed by minor structural alterations sufficient to impair enzyme activity. The study indicates the importance of glyoxal-induced early structural alteration of proteins toward the pathophysiology of hyperglycemia/diabetes and associated conditions.
Collapse
Affiliation(s)
- Gurumayum
Suraj Sharma
- Department
of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110095, India
| | - Reshmee Bhattacharya
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Snigdha Krishna
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Suliman Y. Alomar
- Doping
Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afrah F. Alkhuriji
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11495, Saudi Arabia
| | - Marina Warepam
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | - Kritika Kumari
- Dr.
B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Hamidur Rahaman
- Department
of Biotechnology, Manipur University, Imphal, Manipur 795003, India
| | | |
Collapse
|
6
|
Lu Y, Jiang H, Zhang H, Li R, Zhang Q, Luo D, Cai X, Li M. Serum oxidized low density lipoprotein serves as a mediator for the inverse relationship between serum d-ribose and cognitive performance in type 2 diabetic patients. Free Radic Biol Med 2021; 171:91-98. [PMID: 33989757 DOI: 10.1016/j.freeradbiomed.2021.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Chronic hyperglycemia, proinflammatory state, and oxidative stress are implicated in the etiology of mild cognitive impairment (MCI) in type 2 diabetes mellitus (T2DM) patients. However, roles and mechanisms of the diabetes-related dys-regulation of serum d-ribose in the pathogenesis remain unclear. This study was to assess: 1) changes of serum d-ribose in T2DM patients with or without MCI compared with healthy controls; and 2) associations of serum d-ribose with key biomarkers of ribosylation [advanced glycation end products (AGEs) and receptor for advanced glycation end products (RAGE)], inflammation (IL-6 and NF-κB) and oxidative stress [oxidized low density lipoproteins (ox-LDL), advanced oxidation protein products (AOPP), total thiol, and non-protein thiol)]. A cross-sectional study was conducted with 1564 initial participants including 362 T2DM patients. Based on their fasting blood glucose concentrations and Montreal cognitive assessment (MoCA) scores, we selected 89 participants and divided them into three groups: 27 healthy controls, 26 T2DM patients with normal cognition, 36 T2DM patients with MCI. All participants were gone through standard anthropometric tests and biochemical examinations of serum clinical profiles and concentrations of d-ribose, AGE, RAGE, IL-6, NF-κB, ox-LDL, AOPP, total thiol, and non-protein thiol. Serum concentrations of d-ribose, ox-LDL, and AOPP were greater (P < 0.05) in the T2DM-MCI patients than that in the T2DM or controls. Serum d-ribose exhibited a positive correlation (P < 0.05) with serum AGEs, RAGE, ox-LDL, and fasting blood glucose, but a negative correlation (P < 0.05) with MoCA score. This negative relationship remained (P < 0.05) after adjusting various covariates, and was found to be mediated (P < 0.05) by serum ox-LDL. In conclusion, our results reveal serum ox-LDL as a potential mediator for the inverse relationship between the elevation of serum d-ribose concentration and the decline of cognitive performance in the T2DM-MCI patients.
Collapse
Affiliation(s)
- Yanhui Lu
- School of Nursing, Peking University, Beijing, China
| | - Hua Jiang
- School of Nursing, Peking University, Beijing, China
| | - Huijing Zhang
- School of Nursing, Peking University, Beijing, China
| | - Ruxue Li
- School of Nursing, Peking University, Beijing, China
| | - Qi Zhang
- School of Nursing, Peking University, Beijing, China
| | - Dan Luo
- School of Nursing, Peking University, Beijing, China
| | - Xue Cai
- School of Nursing, Peking University, Beijing, China
| | - Mingzi Li
- School of Nursing, Peking University, Beijing, China.
| |
Collapse
|
7
|
Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Int J Mol Sci 2021; 22:ijms22126609. [PMID: 34205510 PMCID: PMC8235188 DOI: 10.3390/ijms22126609] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process.
Collapse
|
8
|
Kumar D, Desa A, Chougle S, Bhatkalkar SG, Sachar S, Selvaa Kumar C, Ali A. Evaluation of the antiglycating potential of thymoquinone and its interaction with BSA. J Biomol Struct Dyn 2021; 40:8455-8463. [PMID: 33908315 DOI: 10.1080/07391102.2021.1912642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TQ) is a bioactive component of medicinal plant, Nigella sativa. It has been identified as promising anti-inflammatory and anti-analgesic properties. In the present study, the TQ has been investigated for physiological interaction as well as binding properties with serum albumin and their thermodynamic parameters at different temperatures. Glycation process was checked with the measurement of fructosamine content, carbonyl content and total advanced glycated end products. The aggregation of amyloid β-structure was measured with Thioflavin-T and the secondary structure of BSA was observed by circular dichroism (CD) in glycated and thermal treated samples. The results indicate that the TQ showed binding interaction (both static and dynamic) with BSA (Kb= 18.31 × 107 M-1 at 293 K) and suppression of glycated products. The glycation-induced and thermal aggregation were prevented and the secondary structure of BSA was maintained. Therefore, these findings suggest that TQ may be used for a therapeutic drug for antiglycation as well as anti-aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Amisha Desa
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Sana Chougle
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | | | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
9
|
Ramlagan P, Rondeau P, Neergheen VS, Bourdon E, Bahorun T. The Prophylactic Activity of Punica granatum L. mesocarp Protects Preadipocytes against Ribosylated BSA-Induced Toxicity. J Am Coll Nutr 2021; 40:502-516. [PMID: 33606612 DOI: 10.1080/07315724.2020.1793701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE It was aimed at comparing the glycating capacities of glucose and ribose in bovine serum albumin (BSA) and anti-glycation activity of pomegranate mesocarp extract (PME). The protective mechanism of PME against ribosylated BSA (BSARIB)-induced toxicity was also investigated. METHODS BSA was incubated with glucose or ribose in the presence or absence of PME for 15 days. In preadipocytes pretreated with PME, cell viability, ROS production, lipid peroxidation and mitochondrial membrane potential were investigated following 1, 6, 12, 18 and 24 h exposure to BSARIB. Nuclear translocation of NFκB was assessed at 1 h and 24 h of BSARIB insult. Accumulation of oxidized proteins, activities of intrinsic antioxidant enzymes and IL-6 secretion were also determined after 24 h exposure to BSARIB. RESULTS Ribose was a harsher glycating agent as compared to glucose and PME showed strong anti-glycation activity by suppressing (P < 0.05) the increase in levels of fluorescent AGEs, Amadori products, protein carbonyl and advanced oxidation protein products (AOPP). In preadipocytes, BSARIB potentiated pro-apoptotic activity by inhibiting the nuclear translocation of NFκB. BSARIB induced a time dependent decrease in cell viability, which was significantly suppressed (P < 0.05) by PME. The extract also significantly reduced (P < 0.05) the time dependent increase in ROS level and associated lipid peroxidation as well as loss in mitochondrial membrane potential caused by BSARIB. PME also counteracted the BSARIB-induced accumulation of oxidized proteins, decrease in intrinsic antioxidant activity and IL-6 over-secretion. CONCLUSIONS PME showed anti-glycation activity and afforded protection against BSARIB-induced toxicity, oxidative stress and inflammation in preadipocytes.
Collapse
Affiliation(s)
- P Ramlagan
- Faculty of Science, Department of Health Sciences, University of Mauritius, Réduit, Mauritius.,Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - P Rondeau
- UMR DÉTROIT-INSERM U1188, Diabète Athérothrombose Thérapies Réunion Océan Indien, Université de La Réunion, Saint-Denis de La Réunion, France
| | - V S Neergheen
- Faculty of Science, Department of Health Sciences, University of Mauritius, Réduit, Mauritius.,Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - E Bourdon
- UMR DÉTROIT-INSERM U1188, Diabète Athérothrombose Thérapies Réunion Océan Indien, Université de La Réunion, Saint-Denis de La Réunion, France
| | - T Bahorun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Mauritius.,Faculty of Science, Department of Biosciences and Ocean Studies, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
10
|
Esackimuthu P, Saraswathi NT. Non enzymatic covalent modification by glycolysis end product converts hemoglobin into its oxidative stress potency state. Biochem Biophys Res Commun 2020; 534:387-394. [PMID: 33261885 DOI: 10.1016/j.bbrc.2020.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
The effect of glycation by Pyruvic acid (PA) on the early and advanced conformational changes in Hemoglobin (Hb) was studied. Multi Spectroscopic measurement revealed that Hb undergoes structural conformational changes and unbound heme upon incubation with PA. These covalent modifications were followed by the reduction of heme centre and these reduction processes initiates its peroxidase-like activity. An extended PA glycation resulted in the appearance of advanced glycation end products fluorescence, with notable changes in compositions of secondary structure. The amyloidogenic state was confirmed by SEM, fluorescence microscope observation. This study reveals an insight to the role of pyruvic acid which increases the oxidative stress due to the heme reduction and diabetic complication.
Collapse
Affiliation(s)
- P Esackimuthu
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, 613401, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
11
|
Hu X, Tian J, Li C, Su H, Qin R, Wang Y, Cao X, Yang P. Amyloid-Like Protein Aggregates: A New Class of Bioinspired Materials Merging an Interfacial Anchor with Antifouling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000128. [PMID: 32346929 DOI: 10.1002/adma.202000128] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Surfaces that resist nonspecific protein adsorption in a complex biological milieu are required for a variety of applications. However, few strategies can achieve a robust antifouling coating on a surface in an easy and reliable way, regardless of material type, morphology, and shape. Herein, the preparation of an antifouling coating by one-step aqueous supramolecular assembly of bovine serum albumin (BSA) is reported. Based on fast amyloid-like protein aggregation through the rapid reduction of the intramolecular disulfide bonds of BSA by tris(2-carboxyethyl)phosphine, a dense proteinaceous nanofilm with controllable thickness (≈130 nm) can be covered on virtually arbitrary material surfaces in tens of minutes by a simple dipping or spraying. The nanofilm shows strong stability and adhesion with the underlying substrate, exhibiting excellent resistance to the nonspecific adsorption of a broad-spectrum of contaminants including proteins, serum, cell lysate, cells, and microbes, etc. In vitro and in vivo experiments show that the nanofilm can prevent the adhesion of microorganisms and the formation of biofilm. Compared with native BSA, the proteinaceous nanofilm coating exposes a variety of functional groups on the surface, which have more-stable adhesion with the surface and can maintain the antifouling in harsh conditions including under ultrasound, surfactants, organic solvents, and enzymatic digestion.
Collapse
Affiliation(s)
- Xinyi Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an, 710004, China
| | - Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rongrong Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
12
|
Khan MS, Tabrez S, Al-Okail MS, Shaik GM, Bhat SA, Rehman TM, Husain FM, AlAjmi MF. Non-enzymatic glycation of protein induces cancer cell proliferation and its inhibition by quercetin: Spectroscopic, cytotoxicity and molecular docking studies. J Biomol Struct Dyn 2020; 39:777-786. [PMID: 31960772 DOI: 10.1080/07391102.2020.1715838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylglyoxal (MG) is a potent glycating agent which reacts with proteins to form advanced glycation end products (AGEs). These chemically stable AGEs crosslink with proteins and could lead to amyloid formation that has the role in several diseases including Alzheimer's and Parkinson's. In this piece of work, glycation-induced conformational changes in HSA were observed with quenching of tryptophan fluorescence by 73.8% (41 nm red shift) and loss of hydrophobicity of HSA. CD spectroscopy result reaffirmed secondary structure changes in HSA. Moreover, MG-induced changes in HSA, proceeds to amyloid structure as characterized by an increase in thioflavin (ThT) fluorescence and transmission electron microscopy (TEM) images of HSA aggregates. Quercetin was found to inhibit both AGEs production and amyloid formation. Viability of MCF-7 cells was found to be increased with AGEs treatment, illustrating proliferation of cancer cells. Wound healing assay also revealed increased proliferation and migration of cells in the presence of AGEs. Additionally, molecular docking analyses were performed to demonstrate interactions involved in the stabilization of HSA-quercetin complex. The binding affinities of quercetin were found to be (K d = 105 M -1) much higher compared with MG (K d = 102 M -1). From this study, it is quite clear that quercetin reverses the effect of MG by sterically inhibiting the interaction between HSA and MG. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed S Al-Okail
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sheraz Ahmad Bhat
- Department of Biochemistry, SP College of Sciences, Cluster University of Srinagar, Jammu And Kashmir, India
| | - Tabish M Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Agriculture, Collage of Agriculture, Riyadh, King Saud University, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Khan H, Khan MS, Ahmad S. The in vivo and in vitro approaches for establishing a link between advanced glycation end products and lung cancer. J Cell Biochem 2018; 119:9099-9109. [PMID: 30076739 DOI: 10.1002/jcb.27170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023]
Abstract
Advanced glycation end products (AGEs) are directly related to third aging-associated diseases, such as cardiovascular diseases, arteriosclerosis, and neurodegeneration. Likewise, these irreversible and nonenzymatic products have been reported to be involved in the progression of malignant cancers. In general, aging-associated diseases and the initiation of cancer have been subjects of interest for several years. Few studies on the role of AGEs in cancer have been performed on cell lines. Moreover, past investigations in the field of glycation biology still lack the knowledge of in vivo and in vitro approaches for cancer cells. Accordingly, we aimed to focus on and establish a link between cancer and glycation with respect to all the possible AGEs. In our study, the levels of carboxymethyllysine (CML) increased by 50.94% in an animal model of glycation, whereas in an animal model of cancer, the contents of CML increased by 45.94% compared with their negative controls. Similarly, fluorescent AGEs were also examined and were found to be increased by 65.3% and 58.63% in the animal models of glycation and cancer, respectively, compared with the control subjects. The protein carbonyl contents were also found to be enhanced in the animal models of glycation and cancer. In our study, the levels of reactive oxygen species were also found to be significantly increased in the in vitro model of cancer cells as compared with the controls. Such an initial breakthrough indicated that AGEs were present in the serum of the animal models of cancer and glycation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| |
Collapse
|
14
|
Machahua C, Montes-Worboys A, Llatjos R, Escobar I, Dorca J, Molina-Molina M, Vicens-Zygmunt V. Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis. Respir Res 2016; 17:144. [PMID: 27816054 PMCID: PMC5097848 DOI: 10.1186/s12931-016-0460-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The abnormal epithelial-mesenchymal restorative capacity in idiopathic pulmonary fibrosis (IPF) has been recently associated with an accelerated aging process as a key point for the altered wound healing. The advanced glycation end-products (AGEs) are the consequence of non-enzymatic reactions between lipid and protein with several oxidants in the aging process. The receptor for AGEs (RAGEs) has been implicated in the lung fibrotic process and the alveolar homeostasis. However, this AGE-RAGE aging pathway has been under-explored in IPF. METHODS Lung samples from 16 IPF and 9 control patients were obtained through surgical lung biopsy. Differences in AGEs and RAGE expression between both groups were evaluated by RT-PCR, Western blot and immunohistochemistry. The effect of AGEs on cell viability of primary lung fibrotic fibroblasts and alveolar epithelial cells was assessed. Cell transformation of fibrotic fibroblasts cultured into glycated matrices was evaluated in different experimental conditions. RESULTS Our study demonstrates an increase of AGEs together with a decrease of RAGEs in IPF lungs, compared with control samples. Two specific AGEs involved in aging, pentosidine and Nε-Carboxymethyl lysine, were significantly increased in IPF samples. The immunohistochemistry identified higher staining of AGEs related to extracellular matrix (ECM) proteins and the apical surface of the alveolar epithelial cells (AECs) surrounding fibroblast foci in fibrotic lungs. On the other hand, RAGE location was present at the cell membrane of AECs in control lungs, while it was almost missing in pulmonary fibrotic tissue. In addition, in vitro cultures showed that the effect of AGEs on cell viability was different for AECs and fibrotic fibroblasts. AGEs decreased cell viability in AECs, even at low concentration, while fibroblast viability was less affected. Furthermore, fibroblast to myofibroblast transformation could be enhanced by ECM glycation. CONCLUSIONS All of these findings suggest a possible role of the increased ratio AGEs-RAGEs in IPF, which could be a relevant accelerating aging tissue reaction in the abnormal wound healing of the lung fibrotic process.
Collapse
Affiliation(s)
- Carlos Machahua
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
| | - Ana Montes-Worboys
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Roger Llatjos
- Department of Pathology, University Hospital of Bellvitge, Barcelona, Spain
| | - Ignacio Escobar
- Department of Thoracic Surgery, University Hospital of Bellvitge, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Maria Molina-Molina
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Vanesa Vicens-Zygmunt
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge, Barcelona, Spain
| |
Collapse
|
15
|
Sirangelo I, Vella FM, Irace G, Manco G, Iannuzzi C. Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Front Mol Biosci 2016; 3:55. [PMID: 27695694 PMCID: PMC5026054 DOI: 10.3389/fmolb.2016.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
Superoxide dismutase 1 (SOD1) has been implicated with familial amyotrophic lateral sclerosis (fALS) through accumulation of protein amyloid aggregates in motor neurons of patients. Amyloid aggregates and protein inclusions are a common pathological feature of many neurological disorders in which protein aggregation seems to be directly related to neurotoxicity. Although, extensive studies performed on the aggregation process of several amyloidogenic proteins in vitro allowed the identification of many physiological factors involved, the molecular mechanisms underlying the formation of amyloid aggregates in vivo and in pathological conditions are still poorly understood. Post-translational modifications are known to affect protein structure and function and, recently, much attention has been devoted to the role played by non-enzymatic glycation in stimulating amyloid aggregation and cellular toxicity. In particular, glycation seems to have a determining role both in sporadic and familial forms of ALS and SOD1 has been shown to be glycated in vivo The aim of this study was to investigate the role of glycation on the amyloid aggregation process of both wild-type SOD1 and its ALS-related mutant G93A. To this aim, the glycation kinetics of both native and demetalated SOD have been followed using two different glycating agents, i.e., D-ribose and methylglyoxal. The effect of glycation on the structure and the amyloid aggregation propensity of native and ApoSOD has been also investigated using a combination of biophysical and biochemical techniques. In addition, the effect of SOD glycated species on cellular toxicity and reactive oxygen species (ROS) production has been evaluated in different cellular models. The results provided by this study contribute to clarify the role of glycation in amyloid aggregation and suggest a direct implication of glycation in the pathology of fALS.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Filomena M Vella
- Institute of Agro-environmental and Forest Biology, Italian National Research Council Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, Italian National Research Council Naples, Italy
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of NaplesNaples, Italy; Institute of Protein Biochemistry, Italian National Research CouncilNaples, Italy
| |
Collapse
|
16
|
Awasthi S, Sankaranarayanan K, Saraswathi NT. Advanced glycation end products induce differential structural modifications and fibrillation of albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:60-67. [PMID: 27037764 DOI: 10.1016/j.saa.2016.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/11/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| | - Kamatchi Sankaranarayanan
- DST-INSPIRE Faculty, Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India.
| |
Collapse
|
17
|
Aggregation as a consequence of glycation: insight into the pathogenesis of arthritis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:523-34. [PMID: 27017355 DOI: 10.1007/s00249-016-1119-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Advanced glycation end products (AGEs) as a result of Maillard reaction are currently at the heart of the pathogenesis of several diseases and hence are the objective of numerous investigations. Glycation of proteins has been an implication in long-term complications. Collagen is the most abundant protein in the human body. The purpose of this study was to monitor and characterize the oligomeric aggregates and AGEs of human collagen on addition of glyoxal using ultraviolet, fluorescence, circular dichroism (CD) spectroscopy, docking studies, ITC, and microscopy. Collagen was incubated for varying time periods up to 21 days with three different concentrations (5, 20, and 40 mM) of glyoxal. Collagen exists as molten globule at day 6, evident from native-like secondary structure, altered tryptophan, and high ANS fluorescence due to surface-exposed hydrophobic residues. Glycated collagen as AGEs and aggregates was observed at day 18 and 21, respectively. Formation of AGE and aggregates were confirmed by UV and fluorescence spectroscopy. The obtained AGEs were characterized with respect to the extent of side chain modifications (lysine and arginine) forming the Schiff base, the carboxymethyl lysine, and carbonyl content. Non-tryptophan fluorescence for AGEs was also monitored as the emission peak at 400 and 440 nm, respectively. SEM and TEM confirmed the oligomeric nature of aggregates. Glyoxal at 40 mM shows maximum alterations in protein structure followed by 20 and 5 mM concentration. In the present paper, we propose that a high concentration of glyoxal for a prolonged time results in the formation of harmful aggregates and AGEs.
Collapse
|
18
|
Iannuzzi C, Carafa V, Altucci L, Irace G, Borriello M, Vinciguerra R, Sirangelo I. Glycation of Wild-Type Apomyoglobin Induces Formation of Highly Cytotoxic Oligomeric Species. J Cell Physiol 2015; 230:2807-20. [PMID: 25846844 DOI: 10.1002/jcp.25011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/01/2015] [Indexed: 01/03/2023]
Abstract
Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Institute of Protein Biochemistry, IBP-CNR, Naples, Italy
| | - Vincenzo Carafa
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Margherita Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Roberto Vinciguerra
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
19
|
Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma. Int J Mol Sci 2015; 16:23405-24. [PMID: 26426012 PMCID: PMC4632706 DOI: 10.3390/ijms161023405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/05/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone and is most prevalent in children and adolescents. OS is frequently associated with pulmonary metastasis, which is the main cause of OS-related mortality. OS has a poor prognosis and is often unresponsive to conventional chemotherapy. In this study, we determined that Nimbolide, a novel anti-cancer therapy, acts by modulating multiple mechanisms in osteosarcoma cells. Nimbolide induces apoptosis by increasing endoplasmic reticulum (ER) stress, mitochondrial dysfunction, accumulation of reactive oxygen species (ROS), and finally, caspase activation. We also determined that Nimbolide inhibits cell migration, which is crucial for metastasis, by reducing the expression of integrin αvβ5. In addition, our results demonstrate that integrin αvβ5 expression is modulated by the PI3K/Akt and NF-κB signaling cascade. Nimbolide has potential as an anti-tumor drug given its multifunctional effects in OS. Collectively, these results help us to understand the mechanisms of action of Nimbolide and will aid in the development of effective therapies for OS.
Collapse
|
20
|
Khan MS, Tabrez S, Rabbani N, Shah A. Oxidative Stress Mediated Cytotoxicity of Glycated Albumin: Comparative Analysis of Glycation by Glucose Metabolites. J Fluoresc 2015; 25:1721-6. [DOI: 10.1007/s10895-015-1658-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023]
|
21
|
Khan MS, Tabrez S, Bhat SA, Rabbani N, Al-Senaidy AM, Bano B. Effect of trifluoroethanol on α-crystallin: folding, aggregation, amyloid, and cytotoxicity analysis. J Mol Recognit 2015; 29:33-40. [DOI: 10.1002/jmr.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Sheraz Ahmed Bhat
- Department of Biochemistry, Faculty of Life Sciences; Aligarh Muslim University; Aligarh India
| | - Nayyar Rabbani
- Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| | | | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences; Aligarh Muslim University; Aligarh India
| |
Collapse
|
22
|
Iannuzzi C, Irace G, Sirangelo I. Differential effects of glycation on protein aggregation and amyloid formation. Front Mol Biosci 2014; 1:9. [PMID: 25988150 PMCID: PMC4428487 DOI: 10.3389/fmolb.2014.00009] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Amyloids are a class of insoluble proteinaceous substances generally composed of linear un-branched fibrils that are formed from misfolded proteins. Conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis are associated with the presence of amyloid aggregates in the affected tissues. The majority of the cases are sporadic, suggesting that several factors must contribute to the onset and progression of these disorders. Among them, in the past 10 years, non-enzymatic glycation of proteins has been reported to stimulate protein aggregation and amyloid deposition. In this review, we analyze the most recent advances in this field suggesting that the effects induced by glycation may not be generalized as strongly depending on the protein structure. Indeed, being a post-translational modification, glycation could differentially affects the aggregation process in promoting, accelerating and/or stabilizing on-pathway and off-pathway species.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli Naples, Italy
| |
Collapse
|