1
|
Sawasato K, Dowhan W, Bogdanov M. Its own architect: Flipping cardiolipin synthase. SCIENCE ADVANCES 2025; 11:eads0244. [PMID: 39752486 PMCID: PMC11698083 DOI: 10.1126/sciadv.ads0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of Escherichia coli is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown. We engineered a conditionally lethal phosphatidylethanolamine (PE)-deficient mutant in which the presence of cardiolipin (CL) on the periplasmic leaflet of the IM is essential for viability, revealing a mechanism that provides CL on the desired leaflet of the IM. CL synthase (ClsA) flips its catalytic cytoplasmic domain upon depletion of PE to supply nonbilayer-prone CL in the periplasmic leaflet of the IM for cell viability. In the presence of a physiological amount of PE, osmotic down-shock induces a topological inversion of ClsA, establishing the biological relevance of membrane protein reorientations in wild-type cells. These findings support a flippase-less mechanism for maintaining membrane lipid asymmetry in biogenic membranes by self-organization of a lipid-synthesizing enzyme.
Collapse
Affiliation(s)
- Katsuhiro Sawasato
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Moller E, Britt M, Zhou F, Yang H, Anshkin A, Ernst R, Sukharev S, Matthies D. Polymer-extracted structure of the mechanosensitive channel MscS reveals the role of protein-lipid interactions in the gating cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576751. [PMID: 38328078 PMCID: PMC10849555 DOI: 10.1101/2024.01.22.576751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane protein structure determination is not only technically challenging but is further complicated by the removal or displacement of lipids, which can result in non-native conformations or a strong preference for certain states at the exclusion of others. This is especially applicable to mechanosensitive channels (MSC's) that evolved to gate in response to subtle changes in membrane tension transmitted through the lipid bilayer. E. coli MscS, a model bacterial system, is an ancestral member of the large family of MSCs found across all phyla of walled organisms. As a tension sensor, MscS is very sensitive and highly adaptive; it readily opens under super-threshold tension and closes under no tension, but under lower tensions, it slowly inactivates and can only recover when tension is released. However, existing cryo-EM structures do not explain the entire functional gating cycle of open, closed, and inactivated states. A central question in the field has been the assignment of the frequently observed non-conductive conformation to either a closed or inactivated state. Here, we present a 3 Å MscS structure in native nanodiscs obtained with Glyco-DIBMA polymer extraction, eliminating the lipid removal step that is common to all previous structures. Besides the protein in the non-conductive conformation, we observe well-resolved densities of four endogenous phospholipid molecules intercalating between the lipid-facing and pore-lining helices in preferred orientations. Mutations of positively charged residues coordinating these lipids inhibit MscS inactivation, whereas removal of a negative charge near the lipid-filled crevice increases inactivation. The functional data allows us to assign this class of structures to the inactivated state. This structure reveals preserved lipids in their native locations, and the functional effects of their destabilization illustrate a novel inactivation mechanism based on an uncoupling of the peripheral tension-sensing helices from the gate.
Collapse
|
3
|
Britt M, Sawasato K, Moller E, Kidd G, Bogdanov M, Sukharev S. On the lipid dependence of bacterial mechanosensitive channel gating in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576706. [PMID: 38328048 PMCID: PMC10849563 DOI: 10.1101/2024.01.22.576706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
For bacterial mechanosensitive channels acting as turgor-adjusting osmolyte release valves, membrane tension is the primary stimulus driving opening transitions. Because tension is transmitted through the surrounding lipid bilayer, it is possible that the presence or absence of different lipid species may influence the function of these channels. In this work, we characterize the lipid dependence of chromosome-encoded MscS and MscL in E. coli strains with genetically altered lipid composition. We use two previously generated strains that lack one or two major lipid species (PE, PG, or CL) and engineer a third strain that is highly enriched in CL due to the presence of hyperactive cardiolipin synthase ClsA. We characterize the functional behavior of these channels using patch-clamp and quantify the relative tension midpoints, closing rates, inactivation depth, and the rate of recovery back to the closed state. We also measure the osmotic survival of lipid-deficient strains, which characterizes the functional consequences of lipid-mediated channel function at the cell level. We find that the opening and closing behavior of MscS and MscL tolerate the absence of specific lipid species remarkably well. The lack of cardiolipin (CL), however, reduces the active MscS population relative to MscL and decreases the closing rate, slightly increasing the propensity of MscS toward inactivation and slowing the recovery process. The data points to the robustness of the osmolyte release system and the importance of cardiolipin for the adaptive behavior of MscS.
Collapse
|
4
|
Flegler VJ, Rasmussen T, Böttcher B. How Functional Lipids Affect the Structure and Gating of Mechanosensitive MscS-like Channels. Int J Mol Sci 2022; 23:ijms232315071. [PMID: 36499396 PMCID: PMC9739000 DOI: 10.3390/ijms232315071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.
Collapse
|
5
|
Nakayama Y. Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis. Microorganisms 2021; 9:201. [PMID: 33478007 PMCID: PMC7835871 DOI: 10.3390/microorganisms9010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
After the discovery of Corynebacterium glutamicum from avian feces-contaminated soil, its enigmatic L-glutamate secretion by corynebacterial MscCG-type mechanosensitive channels has been utilized for industrial monosodium glutamate production. Bacterial mechanosensitive channels are activated directly by increased membrane tension upon hypoosmotic downshock; thus; the physiological significance of the corynebacterial L-glutamate secretion has been considered as adjusting turgor pressure by releasing cytoplasmic solutes. In this review, we present information that corynebacterial mechanosensitive channels have been evolutionally specialized as carriers to secrete L-glutamate into the surrounding environment in their habitats rather than osmotic safety valves. The lipid modulation activation of MscCG channels in L-glutamate production can be explained by the "Force-From-Lipids" and "Force-From-Tethers" mechanosensing paradigms and differs significantly from mechanical activation upon hypoosmotic shock. The review also provides information on the search for evidence that C. glutamicum was originally a gut bacterium in the avian host with the aim of understanding the physiological roles of corynebacterial mechanosensing. C. glutamicum is able to secrete L-glutamate by mechanosensitive channels in the gut microbiota and help the host brain function via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; ; Tel.: +61-2-9295-8744
- St Vincent’s Clinical School, Faculty of Medicine, The University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
6
|
Xue F, Cox CD, Bavi N, Rohde PR, Nakayama Y, Martinac B. Membrane stiffness is one of the key determinants of E. coli MscS channel mechanosensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183203. [PMID: 31981589 DOI: 10.1016/j.bbamem.2020.183203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/11/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
Mechanosensitive (MS) channels have an intimate relationship with membrane lipids that underlie their mechanosensitivity. Membrane lipids may influence channel activity by directly interacting with MS channels or by influencing the global properties of the membrane such as elastic area expansion modulus or bending rigidity. Previous work has implicated membrane stiffness as a potential determinant of the mechanosensitivity of E. coli (Ec)MscS. Here we systematically tested this hypothesis using patch fluorometry of azolectin liposomes doped with lipids of increasing elastic area expansion modulus. Increasing dioleoylphosphatidylethanolamine (DOPE) content of azolectin liposomes made it more difficult to activate EcMscS by membrane tension (i.e. increased gating threshold). This effect was exacerbated by stiffer forms of phosphatidylethanolamine such as the branched chain lipid diphytanoylphosphoethanolamine (DPhPE) or the fully saturated lipid distearoyl-sn-glycero-3-phosphoethanolamine (DSPE). Furthermore, a comparison of the branched chain lipid diphytanoylphosphocholine (DPhPC) to the stiffer DPhPE indicated again that it was harder to activate EcMscS in the presence of the stiffer DPhPE. We show that these effects are not due to changes in membrane bending rigidity as the membrane tension threshold of EcMscS in membranes doped with PC18:1 and PC18:3 remained the same, despite a two-fold difference in their bending rigidity. We also show that after prolonged pressure application sudden removal of force in softer membranes caused a rebound reactivation of EcMscS and we discuss the relevance of this phenomenon to bacterial osmoregulation. Collectively, our data suggests that membrane stiffness (elastic area expansion modulus) is one of the key determinants of the mechanosensitivity of EcMscS.
Collapse
Affiliation(s)
- Feng Xue
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St., Darlinghurst, NSW 2010, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, USA
| | - Paul R Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St., Darlinghurst, NSW 2010, Australia
| | - Yoshitaka Nakayama
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
7
|
Jaggers OB, Ridone P, Martinac B, Baker MAB. Fluorescence microscopy of piezo1 in droplet hydrogel bilayers. Channels (Austin) 2019; 13:102-109. [PMID: 30885080 PMCID: PMC6527062 DOI: 10.1080/19336950.2019.1586046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022] Open
Abstract
Mechanosensitive ion channels are membrane gated pores which are activated by mechanical stimuli. The focus of this study is on Piezo1, a newly discovered, large, mammalian, mechanosensitive ion channel, which has been linked to diseases such as dehydrated hereditary stomatocytosis (Xerocytosis) and lymphatic dysplasia. Here we utilize an established in-vitro artificial bilayer system to interrogate single Piezo1 channel activity. The droplet-hydrogel bilayer (DHB) system uniquely allows the simultaneous recording of electrical activity and fluorescence imaging of labelled protein. We successfully reconstituted fluorescently labelled Piezo1 ion channels in DHBs and verified activity using electrophysiology in the same system. We demonstrate successful insertion and activation of hPiezo1-GFP in bilayers of varying composition. Furthermore, we compare the Piezo1 bilayer reconstitution with measurements of insertion and activation of KcsA channels to reproduce the channel conductances reported in the literature. Together, our results showcase the use of DHBs for future experiments allowing simultaneous measurements of ion channel gating while visualising the channel proteins using fluorescence.
Collapse
Affiliation(s)
- Oskar B. Jaggers
- School of Biotechnology and Biomolecular Science, UNSW, Kensington, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Pietro Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW, Kensington, Australia
| |
Collapse
|
8
|
Nakayama Y, Hashimoto KI, Sawada Y, Sokabe M, Kawasaki H, Martinac B. Corynebacterium glutamicum mechanosensitive channels: towards unpuzzling "glutamate efflux" for amino acid production. Biophys Rev 2018; 10:1359-1369. [PMID: 30209745 PMCID: PMC6233337 DOI: 10.1007/s12551-018-0452-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Corynebacterium glutamicum has been utilized for industrial amino acid production, especially for monosodium glutamate (MSG), the food-additive for the "UMAMI" category of taste sensation, which is one of the five human basic tastes. Glutamate export from these cells is facilitated by the opening of mechanosensitive channels in the cell membrane within the bacterial cell envelope following specific treatments, such as biotin limitation, addition of Tween 40 or penicillin. A long-unsolved puzzle still remains how and why C. glutamicum mechanosensitive channels are activated by these treatments to export glutamate. Unlike mechanosensitive channels in other bacteria, these channels are not simply osmotic safety valves that prevent these bacteria from bursting upon a hypo-osmotic shock. They also function as metabolic valves to continuously release glutamate as components of a pump-and-leak mechanism regulating the cellular turgor pressure. Recent studies have demonstrated that the opening of the mechanosensitive channel, MscCG, mainly facilitates the efflux of glutamate and not of other amino acids and that the "force-from-lipids" gating mechanism of channels also applies to the MscCG channel. The bacterial types of mechanosensitive channels are found in cell-walled organisms from bacteria to land plants, where their physiological functions have been specialized beyond their basic function in bacterial osmoregulation. In the case of the C. glutamicum MscCG channels, they have evolved to function as specialized glutamate exporters.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.
| | - Ken-Ichi Hashimoto
- Department of Green and Sustainable Chemistry, Tokyo Denki University, 5 Asahi-cho, Senju, Adachi-ku, Tokyo, 120-8551, Japan
| | - Yasuyuki Sawada
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hisashi Kawasaki
- Department of Green and Sustainable Chemistry, Tokyo Denki University, 5 Asahi-cho, Senju, Adachi-ku, Tokyo, 120-8551, Japan
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| |
Collapse
|
9
|
Ridone P, Grage SL, Patkunarajah A, Battle AR, Ulrich AS, Martinac B. "Force-from-lipids" gating of mechanosensitive channels modulated by PUFAs. J Mech Behav Biomed Mater 2017; 79:158-167. [PMID: 29304430 DOI: 10.1016/j.jmbbm.2017.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
The level of fatty acid saturation in phospholipids is a crucial determinant of the biophysical properties of the lipid bilayer. Integral membrane proteins are sensitive to changes of their bilayer environment such that their activities and localization can be profoundly affected. When incorporated into phospholipids of mammalian cells, poly-unsaturated fatty acids (PUFAs) determine the mechanical properties of the bilayer thereby affecting several membrane-associated functions such as endo- and exo-cytosis and ion channel/membrane receptor signalling cascades. In order to understand how membrane tension is propagated through poly-unsaturated bilayers, we characterized the effect of lipid saturation on liposome reconstituted MscS and MscL, the two bacterial mechanosensitive ion channels that have for many years served as models of ion- channel-mediated mechanotransduction. The combination of NMR and patch clamp experiments in this study demonstrate that bilayer thinning is the main responsible factor for the modulation of the MscL threshold of activation while a change in transbilayer pressure profile is indicated as the main factor behind the observed modulation of the MscS kinetics. Together, our data offer a novel insight into how the structural shape differences between the two types of mechanosensitive channels determine their differential modulation by poly-unsaturated phospholipids and thus lay the foundation for future functional studies of eukaryotic ion channels involved in the physiology of mechanosensory transduction processes in mammalian cells. SUMMARY Mechanosensitive channels MscL and MscS are differentially modulated by poly-unsaturated fatty acids in lipid bilayers. MscL becomes sensitized because of increased hydrophobic mismatch while MscS open state is stabilized due to changes in the bilayer lateral pressure profile determined by NMR.
Collapse
Affiliation(s)
- Pietro Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Stephan L Grage
- Institute for Biological Interfaces IBG-2, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrutha Patkunarajah
- School of Medical Sciences, University of New South Wales, Kensington, Sydney 2052, Australia
| | - Andrew R Battle
- Translational Research Institute (TRI) and Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Anne S Ulrich
- Institute for Biological Interfaces IBG-2, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
10
|
Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [DOI: 10.1016/j.pbiomolbio.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Musatov A, Sedlák E. Role of cardiolipin in stability of integral membrane proteins. Biochimie 2017; 142:102-111. [PMID: 28842204 DOI: 10.1016/j.biochi.2017.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific phospholipids such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now.
Collapse
Affiliation(s)
- Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Erik Sedlák
- Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia.
| |
Collapse
|
12
|
Rosholm KR, Baker MAB, Ridone P, Nakayama Y, Rohde PR, Cuello LG, Lee LK, Martinac B. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Sci Rep 2017; 7:45180. [PMID: 28345591 PMCID: PMC5366917 DOI: 10.1038/srep45180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/29/2022] Open
Abstract
The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform.
Collapse
Affiliation(s)
- Kadla R Rosholm
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Matthew A B Baker
- School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Pietro Ridone
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Yoshitaka Nakayama
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Paul R Rohde
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lawrence K Lee
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Boris Martinac
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
13
|
Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M, Hell R, Haswell ES, Millar AH, Sweetlove LJ. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:809-825. [PMID: 27505616 PMCID: PMC5195915 DOI: 10.1111/tpj.13301] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 05/18/2023]
Abstract
Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Grigory Maksaev
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Gregory S Jensen
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Margaret E Wilson
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ruediger Hell
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, D-69120, Heidelberg, Germany
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
14
|
Lee CP, Millar AH. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. TRENDS IN PLANT SCIENCE 2016; 21:662-676. [PMID: 27162080 DOI: 10.1016/j.tplants.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments.
Collapse
Affiliation(s)
- Chun Pong Lee
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| |
Collapse
|
15
|
The impact of the C-terminal domain on the gating properties of MscCG from Corynebacterium glutamicum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:130-8. [PMID: 26494188 DOI: 10.1016/j.bbamem.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022]
Abstract
The mechanosensitive (MS) channel MscCG from the soil bacterium Corynebacterium glutamicum functions as a major glutamate exporter. MscCG belongs to a subfamily of the bacterial MscS-like channels, which play an important role in osmoregulation. To understand the structural and functional features of MscCG, we investigated the role of the carboxyl-terminal domain, whose relevance for the channel gating has been unknown. The chimeric channel MscS-(C-MscCG), which is a fusion protein between the carboxyl terminal domain of MscCG and the MscS channel, was examined by the patch clamp technique. We found that the chimeric channel exhibited MS channel activity in Escherichia coli spheroplasts characterized by a lower activation threshold and slow closing compared to MscS. The chimeric channel MscS-(C-MscCG) was successfully reconstituted into azolectin liposomes and exhibited gating hysteresis in a voltage-dependent manner, especially at high pipette voltages. Moreover, the channel remained open after releasing pipette pressure at membrane potentials physiologically relevant for C. glutamicum. This contribution to the gating hysteresis of the C-terminal domain of MscCG confers to the channel gating properties highly suitable for release of intracellular solutes.
Collapse
|
16
|
Luévano-Martínez LA, Kowaltowski AJ. Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch Biochem Biophys 2015; 585:90-97. [PMID: 26391924 DOI: 10.1016/j.abb.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylglycerol and phospholipids derived from it are widely distributed throughout the three domains of life. Cardiolipin is the best characterized of these phospholipids, and plays a key role in the response to environmental variations. Phosphatidylglycerol-derived phospholipids confer cell membranes with a wide range of responses, including changes in surface charge, fluidity, flexibility, morphology, biosynthesis and remodeling, that adapt the cell to these situations. Furthermore, the synthesis and remodeling of these phospholipids is finely regulated, highlighting the importance of these lipids in cell homeostasis and responses during stressful situations. In this article, we review the most important roles of these anionic phospholipids across domains, focusing on the biophysical basis by which these phospholipids are used in stress responses.
Collapse
Affiliation(s)
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Martinac B, Battle AR. Biophysics of Mechanotransduction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:499-501. [PMID: 26315755 DOI: 10.1007/s00249-015-1070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia,
| | | |
Collapse
|
18
|
Negative and positive temperature dependence of potassium leak in MscS mutants: Implications for understanding thermosensitive channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1678-86. [PMID: 25958301 DOI: 10.1016/j.bbamem.2015.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/30/2023]
Abstract
Bacterial mechanosensitive channel of small conductance (MscS) is a protein, whose activity is modulated by membrane tension, voltage and cytoplasmic crowding. MscS is a homoheptamer and each monomer consists of three transmembrane helices (TM1-3). Hydrophobic pore of the channel is made of TM3s surrounded by peripheral TM1/2s. MscS gating is a complex process, which involves opening and inactivation in response to the increase of membrane tension. A number of MscS mutants were isolated. Among them mutants affecting gating have been found including gain-of-function (GOF) and loss-of-function (LOF) that open at lower or at higher thresholds, respectively. Previously, using an in vivo screen we isolated multiple MscS mutants that leak potassium and some of them were GOF or LOF. Here we show that for a subset of these mutants K+ leak is negatively (NTD) or positively (PTD) temperature dependent. We show that temperature reliance of these mutants does not depend on how MS gating is affected by a particular mutation. Instead, we argue that NTD or PTD leak is due to the opposite allosteric coupling of the structures that determine the temperature dependence to the channel gate. In PTD mutants an increased hydration of the pore vestibule is directly coupled to the increase in the channel conductance. In NTD mutants, at higher temperatures an increased hydration of peripheral structures leads to complete separation of TM3 and a pore collapse.
Collapse
|
19
|
Battle AR, Ridone P, Bavi N, Nakayama Y, Nikolaev YA, Martinac B. Lipid-protein interactions: Lessons learned from stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1744-56. [PMID: 25922225 DOI: 10.1016/j.bbamem.2015.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- A R Battle
- Menzies Health Institute Queensland and School of Pharmacy, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - P Ridone
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Y Nakayama
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Y A Nikolaev
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| |
Collapse
|