1
|
Coating Materials to Increase the Stability of Liposomes. Polymers (Basel) 2023; 15:polym15030782. [PMID: 36772080 PMCID: PMC10004256 DOI: 10.3390/polym15030782] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Liposomes carry various compounds with applications in pharmaceutical, food, and cosmetic fields, and the administration route is especially parenteral, oral, or transdermal. Liposomes are used to preserve and release the internal components, thus maintaining the properties of the compounds, the stability and shelf life of the encapsulated products, and their functional benefits. The main problem in obtaining liposomes at the industrial level is their low stability due to fragile phospholipid membranes. To increase the stability of liposomes, phospholipid bilayers have been modified or different coating materials have been developed and studied, both for liposomes with applications in the pharmaceutical field and liposomes in the food field. In the cosmetic field, liposomes need no additional coating because the liposomal formulation is intended to have a fast penetration into the skin. The aim of this review is to provide current knowledge regarding physical and chemical factors that influence stability, coating materials for liposomes with applications in the pharmaceutical and food fields to increase the stability of liposomes containing various sensitive compounds, and absorption of the liposomes and commercial liposomal products obtained through various technologies available on the market.
Collapse
|
2
|
Surface Functionalization of Piperine-Loaded Liposomes with Sophorolipids Improves Drug Loading and Stability. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5272592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The potency of plant bioactives may decline drastically upon exposure to harsh external environments including gastrointestinal conditions. The protective role played by liposomes contributes to desirable properties including increased stability, slow/controlled release, improved bioactivity, and enhanced bioavailability of the encapsulated bioactives. Also, the incorporation of plant bioactives encapsulated liposomes in food matrices has resulted in augmented sensory attributes and improved quality of the foods further exhibiting the aptness of liposomal applications in food. Excitingly, new opportunities that circumvent the major shortfalls of utilizing liposomal formulations in the food industry have arisen paving the way to yield food products with high quality.
Collapse
|
4
|
Pruchnik H, Gliszczyńska A, Włoch A. Evaluation of the Physico-Chemical Properties of Liposomes Assembled from Bioconjugates of Anisic Acid with Phosphatidylcholine. Int J Mol Sci 2021; 22:13146. [PMID: 34884953 PMCID: PMC8658227 DOI: 10.3390/ijms222313146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work was the evaluation of the physico-chemical properties of a new type of liposomes that are composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine. In particular, the impact of modified anisic acid phospholipids on the thermotropic parameters of liposomes was determined, which is crucial for using them as potential carriers of active substances in cancer therapies. Their properties were determined using three biophysical methods, namely differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Moreover, temperature studies of liposomes composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine provided information about the phase transition, fluidity regarding chain order, hydration and dynamics. The DSC results show that the main phase transition peak for conjugates of anisic acid with phosphatidylcholine molecules was broadened and shifted to a lower temperature in a concentration- and structure-dependent manner. The ATR-FTIR results and the results of measurements conducted using fluorescent probes located at different regions in the lipid bilayer are in line with DSC. The results show that the new bioconjugates with phosphatidylcholine have a significant impact on the physico-chemical properties of a membrane and cause a decrease in the temperature of the main phase transition. The consequence of this is greater fluidity of the lipid bilayer.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
5
|
Yuan H, Jiang A, Fang H, Chen Y, Guo Z. Optical properties of natural small molecules and their applications in imaging and nanomedicine. Adv Drug Deliv Rev 2021; 179:113917. [PMID: 34384827 DOI: 10.1016/j.addr.2021.113917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Natural small molecules derived from plants have fascinated scientists for centuries due to their practical applications in various fields, especially in nanomedicine. Some of the natural molecules were found to show intrinsic optical features such as fluorescence emission and photosensitization, which could be beneficial to provide spatial temporal information and help tracking the drugs in biological systems. Much efforts have been devoted to the investigation of optical properties and practical applications of natural molecules. In this review, optical properties of natural small molecules and their applications in fluorescence imaging, and theranostics will be summarized. First, we will introduce natural small molecules with different fluorescence emission, ranging from blue to near infrared emission. Second, imaging applications in biological samples will be covered. Third, we will discuss the applications of theranostic nanomedicines or drug delivering systems containing fluorescent natural molecules acting as imaging agents or photosensitizers. Finally, future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Ao Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
6
|
Plant Alkaloids Inhibit Membrane Fusion Mediated by Calcium and Fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 Fusion Peptides. Biomedicines 2021; 9:biomedicines9101434. [PMID: 34680551 PMCID: PMC8533497 DOI: 10.3390/biomedicines9101434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
To rationalize the antiviral actions of plant alkaloids, the ability of 20 compounds to inhibit calcium-mediated fusion of lipid vesicles composed of phosphatidylglycerol and cholesterol was investigated using the calcein release assay and dynamic light scattering. Piperine, tabersonine, hordenine, lupinine, quinine, and 3-isobutyl-1-methylxanthine demonstrated the most potent effects (inhibition index greater than 50%). The introduction of phosphatidylcholine into the phosphatidylglycerol/cholesterol mixture led to significant changes in quinine, hordenine, and 3-isobutyl-1-methylxanthine efficiency. Comparison of the fusion inhibitory ability of the tested alkaloids, and the results of the measurements of alkaloid-induced alterations in the physical properties of model membranes indicated a potent relationship between a decrease in the cooperativity of the phase transition of lipids and the ability of alkaloids to prevent calcium-mediated vesicle fusion. In order to use this knowledge to combat the novel coronavirus pandemic, the ability of the most effective compounds to suppress membrane fusion induced by fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides was studied using the calcein release assay and confocal fluorescence microscopy. Piperine was shown to inhibit vesicle fusion mediated by both coronavirus peptides. Moreover, piperine was shown to significantly reduce the titer of SARS-CoV2 progeny in vitro in Vero cells when used in non-toxic concentrations.
Collapse
|
7
|
Zhang W, Zheng Q, Song M, Xiao J, Cao Y, Huang Q, Ho CT, Lu M. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food Funct 2021; 12:8867-8881. [PMID: 34528635 DOI: 10.1039/d1fo01971f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the major naturally occurring alkaloid in pepper with a pungent taste, piperine is known for its beneficial biological functions and therapeutic effects. In this work, the bioavailability and biological activities of piperine were presented and discussed. Novel delivery systems for enhancing the bioavailability of piperine were also reviewed. This study could provide a better understanding of the physiological and biochemical aspects of piperine to be further developed in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Weiyun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Guineo-Alvarado J, Quilaqueo M, Hermosilla J, González S, Medina C, Rolleri A, Lim LT, Rubilar M. Degree of crosslinking in β-cyclodextrin-based nanosponges and their effect on piperine encapsulation. Food Chem 2020; 340:128132. [PMID: 33011468 DOI: 10.1016/j.foodchem.2020.128132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Piperine (PIP) is an alkaloid which is potent as a therapeutic agent. However, its applications are restricted by its poor water solubility. Nanosponges (NS) derived from polymers are versatile carriers for poor water-soluble substances. The aim of this work was to synthesize β-cyclodextrin NS, by microwave-assisted fusion, for the encapsulation of PIP. Different formulations of NS were synthesized by varying the molar ratio of β-cyclodextrin:diphenyl carbonate (β-CD:DPC; 1:2, 1:6 and 1:10). NS specimens derived from 1:2, 1:6 and 1:10 β-CD:DPC molar ratios exhibited degree of substitution values of 0.345, 0.629 and 0.878, respectively. The crystallinity of NS was enhanced by increasing diphenyl carbonate concentration. A high degree of crosslinking in the NS increased the loading efficiency due to increased surface area available for bioactive inclusion. This study demonstrated the feasibility of synthesizing NS derived from β-cyclodextrin of high crystallinity for the encapsulation of PIP at high loading capacity.
Collapse
Affiliation(s)
- Juan Guineo-Alvarado
- Master of Engineering Sciences with Specialization in Biotechnology, Universidad de La Frontera, Temuco, Chile
| | - Marcela Quilaqueo
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Jeyson Hermosilla
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Sofía González
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Camila Medina
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | - Aldo Rolleri
- Institute of Forests and Society, Faculty of Forest Science and Natural Resources, Universidad Austral de Valdivia, Valdivia, Chile
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Mónica Rubilar
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile.
| |
Collapse
|
9
|
Shakeel F, Haq N, Alshehri S. Solubility Data of the Bioactive Compound Piperine in (Transcutol + Water) Mixtures: Computational Modeling, Hansen Solubility Parameters and Mixing Thermodynamic Parameters. Molecules 2020; 25:E2743. [PMID: 32545724 PMCID: PMC7355804 DOI: 10.3390/molecules25122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
The solubility values and thermodynamic parameters of a natural phytomedicine/nutrient piperine (PPN) in Transcutol-HP (THP) + water combinations were determined. The mole fraction solubilities (xe) of PPN in THP + water combinations were recorded at T = 298.2-318.2 K and p = 0.1 MPa by the shake flask method. Hansen solubility parameters (HSPs) of PPN, pure THP, pure water and THP + water mixtures free of PPN were also computed. The xe values of PPN were correlated well with "Apelblat, Van't Hoff, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van't Hoff" models with root mean square deviations of < 2.0%. The maximum and minimum xe value of PPN was found in pure THP (9.10 × 10-2 at T = 318.2 K) and pure water (1.03 × 10-5 at T = 298.2 K), respectively. In addition, HSP of PPN was observed more closed with that of pure THP. The thermodynamic parameters of PPN were obtained using the activity coefficient model. The results showed an endothermic dissolution of PPN at m = 0.6-1.0 in comparison to other THP + water combinations studied. In addition, PPN dissolution was recorded as entropy-driven at m = 0.8-1.0 compared with other THP + water mixtures evaluated.
Collapse
Affiliation(s)
| | | | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (F.S.); (N.H.)
| |
Collapse
|
10
|
Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: Old Spice and New Nutraceutical? Curr Pharm Des 2020; 25:1729-1739. [PMID: 31267856 DOI: 10.2174/1381612825666190701150803] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many of the activities associated with pepper fruits have been attributed to piperine, the most active compound present in these spices. OBJECTIVE This paper aims to provide an overview of the known properties of piperine, i.e. piperine's chemistry, its physiological activity, documented interactions as a bioenhancer and reported data concerning its toxicity, antioxidant properties and anticancer activity. DISCUSSION It is known that piperine possesses several properties. In its interaction with other drugs, it can act as a bioavailability enhancer; this effect is also manifested in combination with other nutraceuticals, e.g. with curcumin, i.e. piperine can modify curcumin's antioxidant, anti-inflammatory, antimicrobial and anticancer effects. Piperine displays significant immunomodulating, antioxidant, chemopreventive and anticancer activity; these effects have been shown to be dose-dependent and tissue-specific. However, the main limitation associated with piperine seems to be its low bioavailability, a disadvantage that innovative formulations are overcoming. CONCLUSION It is predicted that an increasing number of studies will focus on piperine, especially those directed towards unraveling its properties at molecular level. The current knowledge about the action of piperine will form a foundation for ways to improve piperine's bioavailability e.g. exploitation of different carrier systems. The therapeutical applications of this compound will be clarified, and piperine will be recognized as an important nutraceutical.
Collapse
Affiliation(s)
- Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Aleksandar Cvetkovski
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Tatjana Ruskovska
- Department of General Medicine, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Bojana Vidovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Debnath S, Mishra J. Understanding the intrinsic fluorescence of piperine in microheterogeneous media: partitioning and loading studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj00770f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Piperine, an ingredient of black pepper, is widely used in pharmaceutical applications.
Collapse
Affiliation(s)
- Sanchari Debnath
- Department of Chemistry Indian Institute of Technology Madras
- Chennai 600036
- India
| | - Jhili Mishra
- Department of Chemistry Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
12
|
Singh M, Devi S, Rana VS, Mishra BB, Kumar J, Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J Microencapsul 2019; 36:215-235. [PMID: 31092084 DOI: 10.1080/02652048.2019.1617361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bio-availability is a major concern in delivery of dietary phytochemicals for better bio-efficacy. The reduced bio-availability of food bioactive compounds is evident due to degradation during human digestion process which involves liberation, absorption, distribution, metabolism and elimination. The bio-efficacy of any nutrient can be increased by increasing bio-availability. Different technologies are available for engineered efficient delivery systems; still many challenges remain with advancement of delivery systems. The ease of preparedness and adaptability of liposomes has resulted in wide-range of applicability and acceptability in scientific field, especially as delivery vehicles. In view, of properties like biocompatibility and biodegradability, liposomes have been modified with different usable methodologies for delivery of phytochemicals. The aim of this review is to abridge liposomes, methods of preparation, their application as delivery cargo in dietary phytochemicals, result of using different preparation techniques on properties.
Collapse
Affiliation(s)
- Mangat Singh
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Shanti Devi
- b Chemistry Division , Forest Research Institute , Dehradun , India
| | - Virendra S Rana
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Bhuwan B Mishra
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Jitendra Kumar
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Vivek Ahluwalia
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| |
Collapse
|
13
|
Quilaqueo M, Millao S, Luzardo-Ocampo I, Campos-Vega R, Acevedo F, Shene C, Rubilar M. Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Shityakov S, Bigdelian E, Hussein AA, Hussain MB, Tripathi YC, Khan MU, Shariati MA. Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. Eur J Med Chem 2019; 176:149-161. [PMID: 31103896 DOI: 10.1016/j.ejmech.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Plants are vital for the wellbeing of humankind in a variety of ways. Some plant extracts contain antimicrobial properties that can treat different pathogens. Most of the world's population relies on medicinal plants and natural products for their primary health care needs. Therefore, there is a growing interest in natural products, medicinal plants, and traditional medicine along with a desire to design and develop novel plant-based pharmaceuticals. These plant-based pharmaceuticals may address the concerns of reduced efficacy of synthetic antibiotics due to the emergence of drug-resistant pathogens. In this regard, some plant extracts from black pepper (Piper nigrum) with antimicrobial properties, including piperine, have the potential to be used as natural dietary supplements together with modern therapeutic approaches. This review highlights possible applications of piperine as the active compound in the fields of rational drug design and discovery, pharmaceutical chemistry, and biomedicine. We discuss different extraction methods and pharmacological effects of the analyzed substance to pave the way for further research strategies and perspectives towards the development of novel herbal products for better healthcare solutions.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anesthesia and Critical Care, University of Würzburg, 97080, Würzburg, Germany.
| | - Ehsan Bigdelian
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran
| | - Aqeel A Hussein
- School of Chemistry, University of Southampton, Highfield, Southampton, SO171BJ, UK; School of Medicine, University of Al-Ameed, Karbala P.O No: 198, Iraq
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Yogesh Chandra Tripathi
- Chemistry and Bioprospecting Division, Forest Research Institute, P. O. New Forest, Dehradun, 248 006, Uttarakhand, India
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, WA, 99354, USA; Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026, Orel, Russia.
| |
Collapse
|
15
|
Yaroslavov AA, Sybachin AV, Sandzhieva AV, Zaborova OV. Multifunctional Containers from Anionic Liposomes and Cationic Polymers/Colloids. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Solubility, molecular interactions and mixing thermodynamic properties of piperine in various pure solvents at different temperatures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Lee SH, Kim HY, Back SY, Han HK. Piperine-mediated drug interactions and formulation strategy for piperine: recent advances and future perspectives. Expert Opin Drug Metab Toxicol 2017; 14:43-57. [PMID: 29250980 DOI: 10.1080/17425255.2018.1418854] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Piperine has various pharmacological effects and can modulate the functional activity of metabolic enzymes and drug transporters. Consequently, there is a great interest in the application of piperine as an alternative medicine or bioavailability enhancer. Areas covered: This review deals with the effects of piperine on metabolizing enzymes and drug transporters. It provides the readers with an update on transporter-mediated and also metabolic enzyme-mediated piperine-drug interactions, with emphasis on its in vivo implications. This article also encompasses recent advances in the formulation approaches and technologies for optimizing the delivery of piperine. Expert opinion: Piperine can influence the pharmacokinetics of coadministered drugs, which may result in a therapeutically beneficial or adverse effect. Given that piperine inhibits or stimulates the activity of metabolic enzymes and transporters depending on the treatment conditions, the clinical significance of piperine-drug interactions should be assessed by varying the dose, dosing frequency, and the duration of treatment. In particular, better understanding the clinical relevance of piperine-drug interactions based on long-term assessments will provide a strong basis for the feasibility and applicability of piperine as a bioenhancer or a health-promoting agent. The development of effective formulations is also critical to facilitate the therapeutic applications of piperine.
Collapse
Affiliation(s)
- Sang Hoon Lee
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Hyeon Young Kim
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Seung Yun Back
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Hyo-Kyung Han
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| |
Collapse
|
18
|
Sybachin AV, Zaborova OV, Efimova AA, Ballauff M, Yaroslavov AA. Electrostatic complexes of liquid and solid liposomes with spherical polycationic brushes. POLYMER SCIENCE SERIES C 2017. [DOI: 10.1134/s181123821701012x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine-The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr Rev Food Sci Food Saf 2016; 16:124-140. [DOI: 10.1111/1541-4337.12246] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering; Babol Noushirvani Univ. of Technology; 47148 Babol Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering; Babol Noushirvani Univ. of Technology; 47148 Babol Iran
| | - Ghasem D. Najafpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering; Babol Noushirvani Univ. of Technology; 47148 Babol Iran
| | - Maryam Nikzad
- Biotechnology Research Laboratory, Faculty of Chemical Engineering; Babol Noushirvani Univ. of Technology; 47148 Babol Iran
| |
Collapse
|