1
|
Wang H, de Lucio M, Hu T, Leng Y, Gomez H. A MPET 2-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108543. [PMID: 39671822 DOI: 10.1016/j.cmpb.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue. METHODS We propose the MPET2-mPBPK model to address this issue. This multiscale model couples the MPET2 model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET2 model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system. RESULTS We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection. CONCLUSION The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos NM 87544, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
3
|
Wang H, Hu T, Leng Y, de Lucio M, Gomez H. MPET 2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection. Drug Deliv 2023; 30:2163003. [PMID: 36625437 PMCID: PMC9851243 DOI: 10.1080/10717544.2022.2163003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,CONTACT Hao Wang School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Watkin SAJ, Bennie RZ, Gilkes JM, Nock VM, Pearce FG, Dobson RCJ. On the utility of microfluidic systems to study protein interactions: advantages, challenges, and applications. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:459-471. [PMID: 36583735 PMCID: PMC9801160 DOI: 10.1007/s00249-022-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel Z Bennie
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jenna M Gilkes
- Protein Science and Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Correia JJ, Bishop GR, Kyle PB, Wright RT, Sherwood PJ, Stafford WF. Sedimentation velocity FDS studies of antibodies in pooled human serum. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:321-332. [PMID: 37160443 DOI: 10.1007/s00249-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
The biotech industry has great interest in investigating therapeutic proteins in high concentration environments like human serum. The fluorescence detection system (Aviv-FDS) allows the performance of analytical ultracentrifuge (AUC) sedimentation velocity (SV) experiments in tracer or BOLTS protocols. Here, we compare six pooled human serum samples by AUC SV techniques and demonstrate the potential of this technology for characterizing therapeutic antibodies in serum. Control FDS SV experiments on serum alone reveal a bilirubin-HSA complex whose sedimentation is slowed by solution nonideality and exhibits a Johnston-Ogston (JO) effect due to the presence of high concentrations of IgG. Absorbance SV experiments on diluted serum samples verify the HSA-IgG composition as well as a significant IgM pentamer boundary at 19 s. Alexa-488 labeled Simponi (Golimumab) is used as a tracer to investigate the behavior of a therapeutic monoclonal antibody (mAb) in serum, and the sedimentation behavior of total IgG in serum. Serum dilution experiments allow extrapolation to zero concentration to extract so, while global direct boundary fitting with SEDANAL verifies the utility of a matrix of self- and cross-term phenomenological nonideality coefficients (ks and BM1) and the source of the JO effect. The best fits include weak reversible association (~ 4 × 103 M-1) between Simponi and total human IgG. Secondary mAbs to human IgG and IgM verify the formation of a 10.2 s 1:1 complex with human IgG and a 19 s complex with human IgM pentamers. These results demonstrate that FDS AUC allows a range of approaches for investigating therapeutic antibodies in human serum.
Collapse
Affiliation(s)
- J J Correia
- Department of Cell and Molecular Biology, University of Miss Medical Center, Jackson, MS, USA.
| | - G R Bishop
- Department of Pharmacology and Toxicology, University of Miss Medical Center, Jackson, MS, USA
| | - P B Kyle
- Department of Pathology, University of Miss Medical Center, Jackson, MS, USA
| | - R T Wright
- Janssen Research and Development, Spring House, PA, 19477, USA
| | | | - W F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Winzor DJ, Dinu V, Scott DJ, Harding SE. Retrospective rationalization of disparities between the concentration dependence of diffusion coefficients obtained by boundary spreading and dynamic light scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:333-342. [PMID: 37414903 PMCID: PMC10444695 DOI: 10.1007/s00249-023-01664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
This study establishes the existence of substantial agreement between published results from traditional boundary spreading measurements (including synthetic boundary measurements in the analytical ultracenrifuge) on two globular proteins (bovine serum albumin, ovalbumin) and the concentration dependence of diffusion coefficient predicted for experiments conducted under the operative thermodynamic constraints of constant temperature and solvent chemical potential. Although slight negative concentration dependence of the translational diffusion coefficient is the experimentally observed as well as theoretically predicted, the extent of the concentration dependence is within the limits of experimental uncertainty inherent in diffusion coefficient measurement. Attention is then directed toward the ionic strength dependence of the concentration dependence coefficient ([Formula: see text]) describing diffusion coefficients obtained by dynamic light scattering, where, in principle, the operative thermodynamic constraints of constant temperature and pressure preclude consideration of results in terms of single-solute theory. Nevertheless, good agreement between predicted and published experimental ionic strength dependencies of [Formula: see text] for lysozyme and an immunoglobulin is observed by a minor adaptation of the theoretical treatment to accommodate the fact that thermodynamic activity is monitored on the molal concentration scale because of the constraint of constant pressure that pertains in dynamic light scattering experiments.
Collapse
Affiliation(s)
- Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
- Research Complex at Harwell, OX11 OFA, Rutherford Appleton Laboratory, UK.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
7
|
Yarawsky AE, Dinu V, Harding SE, Herr AB. Strong non-ideality effects at low protein concentrations: considerations for elongated proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:427-438. [PMID: 37055656 PMCID: PMC10599268 DOI: 10.1007/s00249-023-01648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
A recent investigation was aimed at obtaining structural information on a highly extended protein via SEC-MALS-SAXS. Significantly broadened elution peaks were observed, reminiscent of a phenomenon known as viscous fingering. This phenomenon is usually observed above 50 mg/mL for proteins like bovine serum albumin (BSA). Interestingly, the highly extended protein (Brpt5.5) showed viscous fingering at concentrations lower than 5 mg/mL. The current study explores this and other non-ideal behavior, emphasizing the presence of these effects at relatively low concentrations for extended proteins. BSA, Brpt5.5, and a truncated form of Brpt5.5 referred to as Brpt1.5 are studied systematically using size-exclusion chromatography (SEC), sedimentation velocity analytical ultracentrifugation (AUC), and viscosity. The viscous fingering effect is quantified using two approaches and is found to correlate well with the intrinsic viscosity of the proteins-Brpt5.5 exhibits the most severe effect and is the most extended protein tested in the study. By AUC, the hydrodynamic non-ideality was measured for each protein via global analysis of a concentration series. Compared to BSA, both Brpt1.5 and Brpt5.5 showed significant non-ideality that could be easily visualized at concentrations at or below 5 mg/mL and 1 mg/mL, respectively. A variety of relationships were examined for their ability to differentiate the proteins by shape using information from AUC and/or viscosity. Furthermore, these relationships were also tested in the context of hydrodynamic modeling. The importance of considering non-ideality when investigating the structure of extended macromolecules is discussed.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA, 19134, USA.
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Philo JS. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:233-266. [PMID: 36792822 DOI: 10.1007/s00249-023-01629-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
Proper interpretation of analytical ultracentrifugation (AUC) data for purified proteins requires ancillary information and calculations to account for factors such as buoyancy, buffer viscosity, hydration, and temperature. The utility program SEDNTERP has been widely used by the AUC community for this purpose since its introduction in the mid-1990s. Recent extensions to this program (1) allow it to incorporate data from diffusion as well as AUC experiments; and (2) allow it to calculate the refractive index of buffer solutions (based on the solute composition of the buffer), as well as the specific refractive increment (dn/dc) of proteins based on their composition. These two extensions should be quite useful to the light scattering community as well as helpful for AUC users. The latest version also adds new terms to the partial specific volume calculations which should improve the accuracy, particularly for smaller proteins and peptides, and can calculate the viscosity of buffers containing heavy isotopes of water. It also uses newer, more accurate equations for the density of water and for the hydrodynamic properties of rods and disks. This article will summarize and review all the equations used in the current program version and the scientific background behind them. It will tabulate the values used to calculate the partial specific volume and dn/dc, as well as the polynomial coefficients used in calculating the buffer density and viscosity (most of which have not been previously published), as well as the new ones used in calculating the buffer refractive index.
Collapse
Affiliation(s)
- John S Philo
- Alliance Protein Laboratories, San Diego, CA, USA.
| |
Collapse
|
9
|
Hopkins MM, Antonopoulos IH, Parupudi A, Bee JS, Bain DL. Comparative Thermodynamics of the Reversible Self-Association of Therapeutic mAbs Reveal Opposing Roles for Linked Proton- and Ion-Binding Events. Pharm Res 2023; 40:1383-1397. [PMID: 36869246 DOI: 10.1007/s11095-023-03485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE Reversible self-association (RSA) has long been a concern in therapeutic monoclonal antibody (mAb) development. Because RSA typically occurs at high mAb concentrations, accurate assessment of the underlying interaction parameters requires explicitly addressing hydrodynamic and thermodynamic nonideality. We previously examined the thermodynamics of RSA for two mAbs, C and E, in phosphate buffered saline (PBS). Here we continue to explore the mechanistic aspects of RSA by examining the thermodynamics of both mAbs under reduced pH and salt conditions. METHODS Dynamic light scattering and sedimentation velocity (SV) studies were conducted for both mAbs at multiple protein concentrations and temperatures, with the SV data analyzed via global fitting to determine best-fit models, interaction energetics, and nonideality contributions. RESULTS We find that mAb C self-associates isodesmically irrespective of temperature, and that association is enthalpically driven but entropically penalized. Conversely, mAb E self-associates cooperatively and via a monomer-dimer-tetramer-hexamer reaction pathway. Moreover, all mAb E reactions are entropically driven and enthalpically modest or minimal. CONCLUSIONS The thermodynamics for mAb C self-association are classically seen as originating from van der Waals interactions and hydrogen bonding. However, relative to the energetics we determined in PBS, self-association must also be linked to proton release and/or ion uptake events. For mAb E, the thermodynamics implicate electrostatic interactions. Furthermore, self-association is instead linked to proton uptake and/or ion release, and primarily by tetramers and hexamers. Finally, although the origins of mAb E cooperativity remain unclear, ring formation remains a possibility whereas linear polymerization reactions can be eliminated.
Collapse
Affiliation(s)
- Mandi M Hopkins
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Ioanna H Antonopoulos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA
- Biophysical Characterization, KBI Biopharma, Louisville, CO, 80027, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Drug Product and Formulation Sciences, GSK Vaccines, Rockville, MD, 20850, USA
| | - Jared S Bee
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Formulation and Drug Product Development, REGENXBIO Inc, Rockville, MD, 20850, USA
| | - David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., C-238, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Batoni E, Bonatti AF, De Maria C, Dalgarno K, Naseem R, Dianzani U, Gigliotti CL, Boggio E, Vozzi G. A Computational Model for the Release of Bioactive Molecules by the Hydrolytic Degradation of a Functionalized Polyester-Based Scaffold. Pharmaceutics 2023; 15:pharmaceutics15030815. [PMID: 36986675 PMCID: PMC10057942 DOI: 10.3390/pharmaceutics15030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
This work presents a computational model to study the degradation behavior of polyester-based three-dimensional (3D) functionalized scaffolds for bone regeneration. As a case study, we investigated the behavior of a 3D-printed scaffold presenting a functionalized surface with ICOS-Fc, a bioactive protein able to stimulate bone regeneration and healing, inhibiting osteoclast activity. The aim of the model was to optimize the scaffold design to control its degradation and thus the release of grafted protein over time and space. Two different scenarios were considered: (i) a scaffold without macroporosity presenting a functionalized external surface; and (ii) a scaffold presenting an internal functionalized macroporous architecture with open channels to locally deliver the degradation products.
Collapse
Affiliation(s)
- Elisa Batoni
- Research Center E. Piaggio, Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
| | - Amedeo Franco Bonatti
- Research Center E. Piaggio, Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio, Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Umberto Dianzani
- Department of Health Sciences, Università de Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università de Piemonte Orientale, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università de Piemonte Orientale, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio, Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2217073
| |
Collapse
|
11
|
Watkin SAJ, Hashemi A, Thomson DR, Pearce FG, Dobson RCJ, Nock VM. Laminar flow-based microfluidic systems for molecular interaction analysis-Part 1: Chip development, system operation and measurement setup. Methods Enzymol 2023; 682:53-100. [PMID: 36948712 DOI: 10.1016/bs.mie.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The recent advent of laminar flow-based microfluidic systems for molecular interaction analysis has enabled transformative new profiling of proteins in regards to their structure, disordering, complex formation and interactions in general. Based on the diffusive transport of molecules perpendicular to the direction of laminar flow in a microfluidic channel, systems of this type promise continuous-flow, high-throughput screening of complex, multi-molecule interactions, while remaining tolerant to heterogeneous mixtures. Using common microfluidic device processing, the technology provides unique opportunities, as well as device design and experimental challenges, for integrative sample handling approaches that can investigate biomolecular interaction events in complex samples with readily available laboratory equipment. In this first chapter of a two-part series, we introduce system design and experimental setup requirements for a typical laminar flow-based microfluidic system for molecular interaction analysis in the form of what we call the 'LaMInA system' (Laminar flow-based Molecular Interaction Analysis system). We provide microfluidic device development advice on choice of device material, device design, including impact of channel geometry on the signal acquisition, and on design limitations and possible post-fabrication treatments to redress these. Finally. we cover aspects of fluidic actuation, such as selecting, measuring and controlling the flow rate appropriately, and provide a guide to possible fluorescent labels for proteins, as well as options for the fluorescence detection hardware, all in the context of assisting the reader in developing their own laminar flow-based experimental setup for biomolecular interaction analysis.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Azadeh Hashemi
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Dion R Thomson
- Protein Science & Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
12
|
Watkin SAJ, Hashemi A, Thomson DR, Nock VM, Dobson RCJ, Pearce FG. Laminar flow-based microfluidic systems for molecular interaction analysis-Part 2: Data extraction, processing and analysis. Methods Enzymol 2023; 682:429-464. [PMID: 36948710 DOI: 10.1016/bs.mie.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rate at which fluorescently-labeled biomolecules, that are flowing at a constant speed in a microfluidic channel, diffuse into an adjacent buffer stream can be used to calculate the diffusion coefficient of the molecule, which then gives a measure of its size. Experimentally, determining the rate of diffusion involves capturing concentration gradients in fluorescence microscopy images at different distances along the length of the microfluidic channel, where distance corresponds to residence time, based on the flow velocity. The preceding chapter in this journal covered the development of the experimental setup, including information about the microscope camera detection systems used to acquire fluorescence microscopy data. In order to calculate diffusion coefficients from fluorescence microscopy images, intensity data are extracted from the images and then appropriate methods of processing and analyzing the data, including the mathematical models used for fitting, are applied to the extracted data. This chapter begins with a brief overview of digital imaging and analysis principles, before introducing custom software for extracting the intensity data from the fluorescence microscopy images. Subsequently, methods and explanations for performing the necessary corrections and appropriate scaling of the data are provided. Finally, the mathematics of one-dimensional molecular diffusion is described, and analytical approaches to obtaining the diffusion coefficient from the fluorescence intensity profiles are discussed and compared.
Collapse
Affiliation(s)
- Serena A J Watkin
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Azadeh Hashemi
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Dion R Thomson
- Protein Science & Engineering Team, Callaghan Innovation, Christchurch, New Zealand
| | - Volker M Nock
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Department of Electrical & Computer Engineering, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
13
|
Leng Y, Wang H, de Lucio M, Gomez H. Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech Model Mechanobiol 2022; 21:1825-1840. [PMID: 36057050 PMCID: PMC9440471 DOI: 10.1007/s10237-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has gained increasing interest in the pharmaceutical industry. The transport, distribution and absorption of mAbs in the skin after injection are not yet well-understood. Experiments have shown that fibrous septa form preferential channels for fluid flow in the tissue. The majority of mAbs can only be absorbed through lymphatics which follow closely the septa network. Therefore, studying drug transport in the septa network is vital to the understanding of drug absorption. In this work, we present a mixed-dimensional multi-scale (MDMS) poroelastic model of adipose tissue for subcutaneous injection. More specifically, we model the fibrous septa as reduced-dimensional microscale interfaces embedded in the macroscale tissue matrix. The model is first verified by comparing numerical results against the full-dimensional model where fibrous septa are resolved using fine meshes. Then, we apply the MDMS model to study subcutaneous injection. It is found that the permeability ratio between the septa and matrix, volume capacity of the septa network, and concentration-dependent drug viscosity are important factors affecting the amount of drug entering the septa network which are paths to lymphatics. Our results show that septa play a critical role in the transport of mAbs in the subcutaneous tissue, and this role was previously overlooked.
Collapse
Affiliation(s)
- Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Valderrama OJ, Nischang I. Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine. Anal Chem 2021; 93:15805-15815. [PMID: 34806364 DOI: 10.1021/acs.analchem.1c03116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The analytical ultracentrifuge (AUC) and the modern field of analytical ultracentrifugation found its inception approximately a century ago. We highlight the scope of its major experimental opportunities as a transport-based method, contemporary and up-and-coming investigation potential for polymers, polymer-drug conjugates, polymer assemblies, as well as medical nanoparticles. Special focus lies on molar mass estimates of unimeric polymeric species, self-assemblies in solution, and (co)localization of multicomponent systems in solution alongside the material-biofluid interactions. We close with present challenges and incentives for future research.
Collapse
Affiliation(s)
- Olenka Jibaja Valderrama
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
15
|
Larsen HA, Atkins WM, Nath A. Probing interactions of therapeutic antibodies with serum via second virial coefficient measurements. Biophys J 2021; 120:4067-4078. [PMID: 34384764 DOI: 10.1016/j.bpj.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Antibody-based therapeutics are the fastest-growing drug class on the market, used to treat aggressive forms of cancer, chronic autoimmune conditions, and numerous other disease states. Although the specificity, affinity, and versatility of therapeutic antibodies can provide an advantage over traditional small-molecule drugs, their development and optimization can be much more challenging and time-consuming. This is, in part, because the ideal formulation buffer systems used for in vitro characterization inadequately reflect the crowded biological environments (serum, endosomal lumen, etc.) that these drugs experience once administered to a patient. Such environments can perturb the binding of antibodies to their antigens and receptors, as well as homo- and hetero-aggregation, thereby altering therapeutic effect and disposition in ways that are incompletely understood. Although excluded volume effects are classically thought to favor binding, weak interactions with co-solutes in crowded conditions can inhibit binding. The second virial coefficient (B2) parameter quantifies such weak interactions and can be determined by a variety of techniques in dilute solution, but analogous methods in complex biological fluids are not well established. Here, we demonstrate that fluorescence correlation spectroscopy is able to measure diffusive B2-values directly in undiluted serum. Apparent second virial coefficient (B2,app) measurements of antibodies in serum reveal that changes in the balance between attractive and repulsive interactions can dramatically impact global nonideality. Furthermore, our findings suggest that the approach of isolating specific components and completing independent cross-term virial coefficient measurements may not be an effective approach to characterizing nonideality in serum. The approach presented here could enrich our understanding of the effects of biological environments on proteins in general and advance the development of therapeutic antibodies and other protein-based therapeutics.
Collapse
Affiliation(s)
- Hayli A Larsen
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
16
|
Chaturvedi SK, Parupudi A, Juul-Madsen K, Nguyen A, Vorup-Jensen T, Dragulin-Otto S, Zhao H, Esfandiary R, Schuck P. Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs 2021; 12:1810488. [PMID: 32887536 PMCID: PMC7531506 DOI: 10.1080/19420862.2020.1810488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Monoclonal antibodies are a class of biotherapeutics used for an increasing variety of disorders, including cancer, autoimmune, neurodegenerative, and viral diseases. Besides their antigen specificity, therapeutic use also mandates control of their solution interactions and colloidal properties in order to achieve a stable, efficacious, non-immunogenic, and low viscosity antibody solution at concentrations in the range of 50–150 mg/mL. This requires characterization of their reversible self-association, aggregation, and weak attractive and repulsive interactions governing macromolecular distance distributions in solution. Simultaneous measurement of these properties, however, has been hampered by solution nonideality. Based on a recently introduced sedimentation velocity method for measuring macromolecular size distributions in a mean-field approximation for hydrodynamic interactions, we demonstrate simultaneous measurement of polydispersity and weak and strong solution interactions in a panel of antibodies with concentrations up to 45 mg/mL. By allowing approximately an order of magnitude higher concentrations than previously possible in sedimentation velocity size distribution analysis, this approach can substantially improve efficiency and sensitivity for characterizing polydispersity and interactions of therapeutic antibodies at or close to formulation conditions.
Collapse
Affiliation(s)
- Sumit K Chaturvedi
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Arun Parupudi
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Kristian Juul-Madsen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA.,Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University , Aarhus, Denmark
| | - Sonia Dragulin-Otto
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| | - Reza Esfandiary
- Department of Dosage Form Design and Development, Biopharmaceuticals R&D, AstraZeneca , Gaithersburg, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
17
|
Correia JJ, Wright RT, Sherwood PJ, Stafford WF. Analysis of nonideality: insights from high concentration simulations of sedimentation velocity data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:687-700. [PMID: 33159218 PMCID: PMC7701085 DOI: 10.1007/s00249-020-01474-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
The Aviv fluorescence detection system (Aviv-FDS) has allowed the performance of sedimentation velocity experiments on therapeutic antibodies in highly concentrated environments like formulation buffers and serum. Methods were implemented in the software package SEDANAL for the analysis of nonideal, weakly associating AUC data acquired on therapeutic antibodies and proteins (Wright et al. Eur Biophys J 47:709–722, 2018, Anal Biochem 550:72–83, 2018). This involved fitting both hydrodynamic, ks, and thermodynamic, BM1, nonideality where concentration dependence is expressed as s = so/(1 + ksc) and D = Do(1 + 2BM1c)/(1 + ksc) and so and Do are values extrapolated to c = 0 (mg/ml). To gain insight into the consequences of these phenomenological parameters, we performed simulations with SEDANAL of a monoclonal antibody as a function of ks (0–100 ml/g) and BM1 (0–100 ml/g). This provides a visual understanding of the separate and joint impact of ks and BM1 on the shape of high-concentration sedimentation velocity boundaries and the challenge of their unique determination by finite element methods. In addition, mAbs undergo weak self- and hetero-association (Yang et al. Prot Sci 27:1334–1348, 2018) and thus we have simulated examples of nonideal weak association over a wide range of concentrations (1–120 mg/ml). Here we demonstrate these data are best analyzed by direct boundary global fitting to models that account for ks, BM1 and weak association. Because a typical clinical dose of mAb is 50–200 mg/ml, these results have relevance for biophysical understanding of concentrated therapeutic proteins.
Collapse
Affiliation(s)
- J J Correia
- Department of Cell and Molecular Biology, University of MS Medical Center, Jackson, MS, USA.
| | - R T Wright
- Biophysics Group, Janssen Biotherapeutics, Spring House, PA, USA
| | | | - W F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Ferreira GM, Shahfar H, Sathish HA, Remmele RL, Roberts CJ. Identifying Key Residues That Drive Strong Electrostatic Attractions between Therapeutic Antibodies. J Phys Chem B 2019; 123:10642-10653. [PMID: 31739660 DOI: 10.1021/acs.jpcb.9b08355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Attractive electrostatic protein-protein interactions (PPI) necessarily involve identifying oppositely charged regions of the protein surface that interact favorably. This cannot be done reliably if one only considers a single protein in isolation unless there are obvious charge "patches" that result in extreme molecular dipoles. Prior work [ J. Pharm. Sci. 2019 , 108 , 120 - 132 ] identified three monoclonal antibodies (MAbs) that displayed experimental behavior ranging from net repulsive to strongly attractive electrostatic interactions. The present work provides a systematic computational approach for identifying the origin of diverse PPI, in terms of which sets of amino acids or individual amino acids are most influential, and determining if there are different patterns of pairwise amino acid interaction "maps" that result in different behaviors. The charge was eliminated computationally, one by one, for each charged residue in the wild-type sequences, which resulted in predicted changes in the second osmotic virial coefficient. The results highlight interaction "maps" that correspond to cases with qualitatively different net electrostatic PPI for the different MAbs and solution conditions, as well as key sets of residues that contribute to strongly attractive PPI. A more computationally efficient method is also proposed to identify key amino acids based on Mayer-weighted interaction energies.
Collapse
Affiliation(s)
- Glenn M Ferreira
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Hassan Shahfar
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States.,Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States
| | | | | | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
19
|
Kim DM, Yao X, Vanam RP, Marlow MS. Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry. MAbs 2019; 11:1319-1330. [PMID: 31401928 PMCID: PMC6748605 DOI: 10.1080/19420862.2019.1647744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biotherapeutic proteins are commonly dosed at high concentrations into the blood, which is an inherently complex, crowded solution with substantial protein content. The effects of macromolecular crowding may lead to an appreciable level of non-specific hetero-association in this physiological environment. Therefore, developing a method to characterize the diverse consequences of non-specific interactions between proteins under such non-ideal, crowded conditions, which deviate substantially from those commonly employed for in vitro characterization, is vital to achieving a more complete picture of antibody function in a biological context. In this study, we investigated non-specific interactions between human serum albumin (HSA) and two monoclonal antibodies (mAbs) by static light scattering and determined these interactions are both ionic strength-dependent and mAb-dependent. Using biolayer interferometry (BLI), we assessed the effect of HSA on antigen binding by mAbs, demonstrating that these non-specific interactions have a functional impact on mAb:antigen interactions, particularly at low ionic strength. While this effect is mitigated at physiological ionic strength, our in vitro data support the notion that HSA in the blood may lead to non-specific interactions with mAbs in vivo, with a potential impact on their interactions with antigen. Furthermore, the BLI method offers a high-throughput advantage compared to orthogonal techniques such as analytical ultracentrifugation and is amenable to a greater variety of solution conditions compared to nuclear magnetic resonance spectroscopy. Our study demonstrates that BLI is a viable technology for examining the impact of non-specific interactions on specific biologically relevant interactions, providing a direct method to assess binding events in crowded conditions.
Collapse
Affiliation(s)
- Dorothy M Kim
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Xiao Yao
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Ram P Vanam
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Michael S Marlow
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA.,Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc ., Ridgefield , CT , USA
| |
Collapse
|
20
|
Analytical ultracentrifugation (AUC): a seminal tool offering multiple solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 47:693-696. [PMID: 30218114 DOI: 10.1007/s00249-018-1333-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analytical ultracentrifugation (AUC) remains a highly versatile and widely applicable tool for the analysis of macromolecules and their interactions. The current state-of-the-art was demonstrated at a recent international meeting held in Glasgow, Scotland, in July 2017, the 23rd International Analytical Ultracentrifugation Workshop and Symposium. This special issue showcases the reports made at the meeting, which concerned the application of AUC to a wide range of topics in biochemical and polymer science including antibody and membrane protein characterisation, and protein-carbohydrate interactions. Presentations on development and testing of new instrumentation and methods of analysis were a particular feature of the meeting, including the optimisation of experimental protocols, and the latest optimised computational approaches to experimental simulation and the modelling of macromolecular structures.
Collapse
|
21
|
Zai-Rose V, West SJ, Kramer WH, Bishop GR, Lewis EA, Correia JJ. Effects of Doxorubicin on the Liquid-Liquid Phase Change Properties of Elastin-Like Polypeptides. Biophys J 2018; 115:1431-1444. [PMID: 30292393 DOI: 10.1016/j.bpj.2018.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent β-turn structures. Labeling with Dox further enhances β-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.
Collapse
Affiliation(s)
- Valeria Zai-Rose
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Savannah J West
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - Wolfgang H Kramer
- Department of Chemistry and Biochemistry, Millsaps College, Jackson, Mississippi
| | - G Reid Bishop
- Department of Chemistry, Belhaven University, Jackson, Mississippi
| | - Edwin A Lewis
- Department of Chemistry, Mississippi State University, Starkville, Mississippi
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.
| |
Collapse
|
22
|
Analytical band centrifugation revisited. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:799-807. [PMID: 29931388 DOI: 10.1007/s00249-018-1315-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/22/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Analytical band centrifugation (ABC) is a powerful tool for the analysis of macromolecules and nanoparticles. Although it offers several advantages over the sedimentation velocity (SV) experiment like a physical separation of the individual components and the possibility to perform chemical reactions, its analysis is still very restricted. Therefore, we investigated the integration of ABC data as an alternative approach, as this results in data similar to SV, which can then be evaluated by many established evaluation programs. We investigated this method using two different test systems, myoglobin as a biopolymer with significant diffusion and 100 nm polystyrene latex as a large particle with negligible diffusion, and found some limiting issues. These are namely, broadening of the initial boundary by diffusion of the sample, which can be taken into account and the dynamic density gradient between the solvent in the sector and the overlaid solution, which deforms the initial band upon movement through the gradient and is currently not taken into account. We show the influence these two factors have on the evaluation and show that it is possible to calculate the time-dependent change in solvent density and viscosity in the AUC cell using the integrated form of Fick's second law. We conclude that taking the dynamic density gradient into account will open ABC for the sophisticated methods based on the analysis of the whole sedimentation boundary and not just the determination of an average sedimentation coefficient.
Collapse
|
23
|
Wright RT, Hayes DB, Stafford WF, Sherwood PJ, Correia JJ. Characterization of therapeutic antibodies in the presence of human serum proteins by AU-FDS analytical ultracentrifugation. Anal Biochem 2018; 550:72-83. [PMID: 29654743 DOI: 10.1016/j.ab.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
The preclinical characterization of biopharmaceuticals seeks to determine the stability, state of aggregation, and interaction of the antibody/drug with other macromolecules in serum. Analytical ultracentrifugation is the best experimental method to understand these factors. Sedimentation velocity experiments using the AU-FDS system were performed in order to quantitatively characterize the nonideality of fluorescently labeled therapeutic antibodies in high concentrations of human serum proteins. The two most ubiquitous serum proteins are human serum albumin, HSA, and γ-globulins, predominantly IgG. Tracer experiments were done pairwise as a function of HSA, IgG, and therapeutic antibody concentration. The sedimentation coefficient for each fluorescently labeled component as a function of the concentration of the unlabeled component yields the hydrodynamic nonideality (ks). This generates a 3x3 matrix of ks values that describe the nonideality of each pairwise interaction. The ks matrix is validated by fitting both 2:1 mixtures of HSA (1-40 mg/ml) and IgG (0.5-20 mg/ml) as serum mimics, and human serum dilutions (10-100%). The data are well described by SEDANAL global fitting with the ks nonideality matrix. The ks values for antibodies are smaller than expected and appear to be masked by weak association. Global fitting to a ks and K2 model significantly improves the fits.
Collapse
Affiliation(s)
- Robert T Wright
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - David B Hayes
- Biotherapeutics Discovery Research, Boehringer Ingelheim, Ridgefield, CT, 06877, USA
| | - Walter F Stafford
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - John J Correia
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|