1
|
Agrawal P, Chen S, de Pablos A, Jame-Chenarboo F, Miera Saenz de Vega E, Darvishian F, Osman I, Lujambio A, Mahal LK, Hernando E. Integrated in vivo functional screens and multi-omics analyses identify α-2,3-sialylation as essential for melanoma maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584072. [PMID: 38559078 PMCID: PMC10979837 DOI: 10.1101/2024.03.08.584072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuhui Chen
- Department of Chemistry, New York University
| | - Ana de Pablos
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Dermatology, NYU Grossman School of Medicine, New York
| | | | - Lara K. Mahal
- Department of Chemistry, New York University
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
| |
Collapse
|
2
|
Nawrot-Hadzik I, Matkowski A, Fast M, Choromańska A. The combination of pro-oxidative acting vanicosides and GLUT1 inhibitor (WZB117) exerts a synergistic cytotoxic effect against melanoma cells. Fitoterapia 2023; 171:105702. [PMID: 37848084 DOI: 10.1016/j.fitote.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Vanicosides A and B isolated from Reynoutria sachalinensis rhizomes are disaccharide phenylpropanoid esters with proven antioxidant activity. Our earlier study showed the cytotoxic activity of vanicosides against melanoma cells, but the mechanism of cell death has not been elucidated. Based on the chemical structure of vanicosides, we proposed that they may induce cell death by generating reactive oxygen species (ROS) into melanoma cells. Moreover, the glucose molecule in their structure can affect the glucose transporters (GLUTs), upregulated in cancer cells. The A375 (melanotic) and C32 (amelanotic) melanoma cell lines were applied. Cell viability assay and ROS-Glo™ assay were performed before and after blocking of Glucose Transporter Type 1 (GLUT1) by WZB117. Fibroblasts and the SKOV-3 line were included in the study to test selectivity in the action of vanicosides and help to elucidate the mechanism of action. Upon incubation with vanicosides, high production of ROS occured, especially inside C32 cells, which was significantly reduced after GLUT-1 blocking. The A375 cells produced less ROS. Melanoma cells were simillary sensitive to the cytotoxic effects of vanicosides, which was clearly enhanced when vanicosides were used together with the WZB117 (GLUT1 inhibitor). The SKOV-3 line and the fibroblasts showed much less sensitivity to the cytotoxicity of vanicosides, also used together with WZB117. Moreover, no significant ROS formation was observed in these lines. The study proved that vanicosides generate ROS inside melanoma cells. These findings suggest that the combination of pro-oxidative acting vanicosides and GLUT1 inhibitors exerts a synergistic cytotoxic effect on melanoma cells.
Collapse
Affiliation(s)
- Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Magdalena Fast
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| |
Collapse
|
3
|
da Silva EL, Mesquita FP, Aragão DR, de Sousa Portilho AJ, Marinho AD, de Oliveira LLB, Lima LB, de Moraes MEA, Souza PFN, Montenegro RC. Mebendazole targets essential proteins in glucose metabolism leading gastric cancer cells to death. Toxicol Appl Pharmacol 2023; 475:116630. [PMID: 37473966 DOI: 10.1016/j.taap.2023.116630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer (GC) is among the most-diagnosed and deadly malignancies worldwide. Deregulation in cellular bioenergetics is a hallmark of cancer. Based on the importance of metabolic reprogramming for the development and cancer progression, inhibitors of cell metabolism have been studied as potential candidates for chemotherapy in oncology. Mebendazole (MBZ), an antihelminthic approved by FDA, has shown antitumoral activity against cancer cell lines. However, its potential in the modulation of tumoral metabolism remains unclear. Results evidenced that the antitumoral and cytotoxic mechanism of MBZ in GC cells is related to the modulation of the mRNA expression of glycolic targets SLC2A1, HK1, GAPDH, and LDHA. Moreover, in silico analysis has shown that these genes are overexpressed in GC samples, and this increase in expression is related to decreased overall survival rates. Molecular docking revealed that MBZ modifies the protein structure of these targets, which may lead to changes in their protein function. In vitro studies also showed that MBZ induces alterations in glucose uptake, LDH's enzymatic activity, and ATP production. Furthermore, MBZ induced morphologic and intracellular alterations typical of the apoptotic cell death pathway. Thus, this data indicated that the cytotoxic mechanism of MBZ is related to an initial modulation of the tumoral metabolism in the GC cell line. Altogether, our results provide more evidence about the antitumoral mechanism of action of MBZ towards GC cells and reveal metabolic reprogramming as a potential area in the discovery of new pharmacological targets for GC chemotherapy.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Dyane Rocha Aragão
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Aline Diogo Marinho
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Lais Lacerda Brasil de Oliveira
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Luina Benevides Lima
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceará, Mister Hull Avenue- Pici, Fortaleza, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
4
|
Mierzejewska J, Kowalska P, Marlicka K, Dworakowska S, Sitkiewicz E, Trzaskowski M, Głuchowska A, Mosieniak G, Milner-Krawczyk M. Exploring Extracellular Vesicles of Probiotic Yeast as Carriers of Biologically Active Molecules Transferred to Human Intestinal Cells. Int J Mol Sci 2023; 24:11340. [PMID: 37511103 PMCID: PMC10379187 DOI: 10.3390/ijms241411340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles containing various bioactive cargos-e.g., proteins, RNAs, and lipids-that are released into the environment by all cell types. They are involved in, amongst other functions, intercellular communication. This article presents studies on EVs produced by the probiotic yeast Saccharomyces boulardii CNCM I-745. The size distribution and concentration of EVs in the liquid culture of yeast were estimated. Moreover, the vesicles of S. boulardii were tested for their cytotoxicity against three model human intestinal cell lines. This study did not show any significant negative effect of yeast EVs on these cells under tested conditions. In addition, EVs of S. boulardii were verified for their ability to internalize in vitro with human cells and transfer their cargo. The yeast vesicles were loaded with doxorubicin, an anticancer agent, and added to the cellular cultures. Subsequently, microscopic observations revealed that these EVs transferred the compound to human intestinal cell lines. A cytotoxicity test confirmed the activity of the transferred doxorubicin. Detailed information about the proteins present in EVs might be important in terms of exploring yeast EVs as carriers of active molecules. Thus, proteomic analysis of the EV content was also conducted within the present study, and it allowed the identification of 541 proteins after matching them to the Saccharomyces Genome Database (SGD). Altogether, this study provides strong evidence that the EVs of the probiotic CNCM I-745 strain could be considered a drug delivery system.
Collapse
Affiliation(s)
- Jolanta Mierzejewska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Patrycja Kowalska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Klaudia Marlicka
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Sara Dworakowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biophysics and Biochemistry, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Maciej Trzaskowski
- Center for Advanced Materials and Technology, Warsaw University of Technology, 02-822 Warsaw, Poland
| | - Agata Głuchowska
- Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Grażyna Mosieniak
- Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | - Małgorzata Milner-Krawczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
5
|
Piasek AM, Musolf P, Sobiepanek A. Aptamer-based Advances in Skin Cancer Research. Curr Med Chem 2023; 30:953-973. [PMID: 35400317 DOI: 10.2174/0929867329666220408112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Cancer diseases have been one of the biggest health threats for the last two decades. Approximately 9% of all diagnosed cancers are skin cancers, including melanoma and non-melanoma. In all cancer cases, early diagnosis is essential to achieve efficient treatment. New solutions and advanced techniques for rapid diagnosis are constantly being sought. Aptamers are single-stranded RNA or DNA synthetic sequences or peptides, which offer novel possibilities to this area of research by specifically binding selected molecules, the so-called cancer biomarkers. Nowadays, they are widely used as diagnostic probes in imaging and targeted therapy. In this review, we have summarized the recently made advances in diagnostics and treatment of skin cancers, which have been achieved by combining aptamers with basic or modern technologies.
Collapse
Affiliation(s)
- Adrianna Maria Piasek
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Paulina Musolf
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
6
|
Sobiepanek A, Milner-Krawczyk M, Musolf P, Starecki T, Kobiela T. Anandamide-Modulated Changes in Metabolism, Glycosylation Profile and Migration of Metastatic Melanoma Cells. Cancers (Basel) 2022; 14:cancers14061419. [PMID: 35326572 PMCID: PMC8946642 DOI: 10.3390/cancers14061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Anandamide (AEA) belongs to the group of endocannabinoids and possesses various regulatory properties in physiological as well as pathological processes occurring in the organism. In this research some basic biological tests were applied to investigate AEA-induced changes in cell metabolism and motility, as well as advanced biophysical methods for the determination of the differences in the cell glycosylation profile on a highly dangerous model of melanoma skin cancer, for which an effective therapy is not yet available. Our research suggests that anandamide treatment of metastatic melanoma cells increases the cell metabolism which leads to the reduction in the metastatic potential of cells in terms of the cell glycosylation profile and cell migration. In the view of our research, it can be presumed that anandamide usage in the combined therapy of advanced melanoma would be an advantage for the patient. Abstract An effective therapy for advanced melanoma, a skin cancer with the highest mortality, has not yet been developed. The endocannabinoid system is considered to be an attractive target for cancer treatment. The use of endocannabinoids, such as anandamide (AEA), is considered to be much greater than as a palliative agent. Thus, we checked its influence on various signaling pathways in melanoma cells. Our investigation was performed on four commercial cell lines derived from different progression stages (radial WM35 and vertical WM115 growth phases, lymph node WM266-4 metastasis, solid tumor A375-P metastasis). Cell viability, glucose uptake, quantification of reactive oxygen species production, expression of selected genes encoding glycosyltransferases, quantification of glycoproteins production and changes in the glycosylation profile and migration, as well as in cell elastic properties were analyzed. The cell glycosylation profile was investigated using the biophysical profiling method—the quartz crystal microbalance with dissipation monitoring (QCM-D). Anandamide treatment of only metastatic cells resulted in: an increase in the cell metabolism, a decrease in GFAT-1 and DPM1 expression, followed by a decrease in L1-CAM glycoprotein production, which further influenced the reduction in the cell glycosylation profile and migration. Considering our results, AEA usage is highly recommended in the combined therapy of advanced melanoma.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
- Correspondence: (A.S.); (T.K.); Tel.: +48-792-350-130 (A.S.); +48-880-010-863 (T.K.)
| | - Małgorzata Milner-Krawczyk
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
| | - Paulina Musolf
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
| | - Tomasz Starecki
- Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland;
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland; (M.M.-K.); (P.M.)
- Correspondence: (A.S.); (T.K.); Tel.: +48-792-350-130 (A.S.); +48-880-010-863 (T.K.)
| |
Collapse
|
7
|
Sobiepanek A, Kowalska PD, Szota M, Grzywa TM, Nowak J, Włodarski PK, Galus R, Jachimska B, Kobiela T. Novel diagnostic and prognostic factors for the advanced melanoma based on the glycosylation-related changes studied by biophysical profiling methods. Biosens Bioelectron 2022; 203:114046. [PMID: 35121451 DOI: 10.1016/j.bios.2022.114046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022]
Abstract
Melanoma is a life-threatening disease due to the early onset of metastasis and frequent resistance to the applied treatment. For now, no single histological, immunohistochemical or serological biomarker was able to provide a precise predictive value for the aggressive behavior in melanoma patients. Thus, the search for quantifying methods allowing a simultaneous diagnosis and prognosis of melanoma patients is highly desirable. By investigating specific molecular interactions with some biosensor-based techniques, one can determine novel prognostic factors for this tumor. In our previous study, we have shown the possibility of a qualitative in vitro distinguishing the commercially available melanoma cells at different progression stages based on the measurements of the lectin Concanavalin A interacting with surface glycans present on cells. Here, we present the results of the quantitative diagnostic and prognostic study of both commercial and patient-derived melanoma cells based on the evaluation of two novel factors: lectin affinity and glycan viscoelastic index obtained from the quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Two approaches to the QCM-D measurements were applied, the first uses the ability of melanoma cells to grow as a monolayer of cells on the sensor (cell-based sensors), and the second shortens the time of the analysis (suspension cell based-sensors). The results were confirmed by the complementary label-free (atomic force microscopy, AFM; and surface plasmon resonance, SPR) and labeling (lectin-ELISA; and microscale thermophoresis, MST) techniques. This new approach provides additional quantitative diagnosis and a personalized prognosis which can be done simultaneously to the traditional histopathological analysis.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Patrycja D Kowalska
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Polish Stem Cell Bank, Warsaw, Poland
| | - Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Tomasz M Grzywa
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Nowak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paweł K Włodarski
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
8
|
Ścieżyńska A, Sobiepanek A, Kowalska PD, Soszyńska M, Łuszczyński K, Grzywa TM, Krześniak N, Góźdź A, Włodarski PK, Galus R, Kobiela T, Malejczyk J. A Novel and Effective Method for Human Primary Skin Melanocytes and Metastatic Melanoma Cell Isolation. Cancers (Basel) 2021; 13:cancers13246244. [PMID: 34944864 PMCID: PMC8699606 DOI: 10.3390/cancers13246244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The present paper describes a simple, non-enzymatic and effective method of melanocyte or metastatic melanoma cell isolation from skin or lymph node explants, respectively. The method is based on selective harvesting of melanocytes or melanoma cells emigrating from the explants. Thus, isolated cells display specific phenotypical and functional features of melanocytes/melanoma cells such as tyrosinase and Melan-A expression and melanin production. Furthermore, melanocyte or melanoma cell cultures are not contaminated by keratinocytes and/or fibroblasts. The method appears to be a useful tool for studies on the biology of melanocytes and malignant melanoma. Abstract The development of an effective method of melanocyte isolation and culture is necessary for basic and clinical studies concerning skin diseases, including skin pigmentation disorders and melanoma. In this paper, we describe a novel, non-enzymatic and effective method of skin melanocyte and metastatic melanoma cell isolation and culture (along with the spontaneous spheroid creation) from skin or lymph node explants. The method is based on the selective harvesting of melanocytes and melanoma cells emigrating from the cultured explants. Thereby, isolated cells retain their natural phenotypical features, such as expression of tyrosinase and Melan-A as well as melanin production and are not contaminated by keratinocytes and fibroblasts. Such melanocyte and melanoma cell cultures may be very useful for medical and cosmetology studies, including studies of antitumor therapies.
Collapse
Affiliation(s)
- Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland; (A.S.); (P.D.K.); (T.K.)
| | - Patrycja D. Kowalska
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland; (A.S.); (P.D.K.); (T.K.)
- Polish Stem Cell Bank, 00-867 Warsaw, Poland
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
| | - Tomasz M. Grzywa
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Immunology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Krześniak
- Medical Centre of Postgraduate Education, Department of Plastic and Reconstructive Surgery, Prof. W. Orlowski Memorial Hospital, 00-416 Warsaw, Poland;
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
| | - Paweł K. Włodarski
- Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, 00-661 Warsaw, Poland; (A.S.); (P.D.K.); (T.K.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (A.Ś.); (M.S.); (K.Ł.); (A.G.); (R.G.)
- Laboratory of Experimental Immunology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
López JI, De la Fuente IM. An Approach to Cell Motility as a Key Mechanism in Oncology. Cancers (Basel) 2021; 13:cancers13143576. [PMID: 34298789 PMCID: PMC8303912 DOI: 10.3390/cancers13143576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- José I. López
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Correspondence: (J.I.L.); (I.M.D.l.F.)
| | - Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Correspondence: (J.I.L.); (I.M.D.l.F.)
| |
Collapse
|
10
|
Cutruzzolà F, Bouzidi A, Liberati FR, Spizzichino S, Boumis G, Macone A, Rinaldo S, Giardina G, Paone A. The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation. Cancers (Basel) 2021; 13:2891. [PMID: 34207731 PMCID: PMC8227515 DOI: 10.3390/cancers13122891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alessio Paone
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.C.); (A.B.); (F.R.L.); (S.S.); (G.B.); (A.M.); (S.R.); (G.G.)
| |
Collapse
|
11
|
England P, Jowitt TA. Community-building and promotion of technological excellence in molecular biophysics: the ARBRE-MOBIEU network. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:307-311. [PMID: 34057541 DOI: 10.1007/s00249-021-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Patrick England
- Molecular Biophysics Facility, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris cedex 15, France.
| | - Thomas A Jowitt
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|