1
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|
2
|
Bitoun S, Roques P, Maillere B, Le Grand R, Mariette X. Valine 11 and phenylalanine 13 have a greater impact on the T-cell response to citrullinated peptides than the 70-74 shared epitope of the DRB1 molecule in macaques. Ann Rheum Dis 2019; 78:917-921. [PMID: 31023654 DOI: 10.1136/annrheumdis-2019-215114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Various rheumatoid arthritis (RA) HLA-DRB-1 risk haplotypes have been regrouped under the shared epitope (SE) in position 70-74. The presence of Valine in position 11 (Val11) and phenylalanine in position 13 (Phe13) are also associated with RA, but it is impossible to differentiate their role compared with the SE since they are in strong linkage disequilibrium (LD) in humans. Similar to humans, certain macaques express the SE (H6). We analysed the effect of various DRB1 haplotypes on T-cell response to citrullinated peptides (Cit-P) in macaques. METHODS Six H6 and six non-H6 macaques were immunized with four Cit-P. T-cell response was assessed using Interferon γ enzyme-linked immunospot. RESULTS Animals developed a specific anti-Cit-P T-cell response. Surprisingly, H6 animals had a significantly lower T-cell response than non-H6. In macaques, the 70-74 SE and the Val11 are on separate haplotypes. Presence of Val11 was strongly associated with the anti-Cit-P T-cell response, whatever the 70-74 sequence was. This response was amplified in case of presence of Phe13. CONCLUSION The absence of LD between Val11 and SE in macaques allowed us to demonstrate that the most important HLA positions to induce a T-cell response against Cit-P were Val11 and Phe13 and not the 70-74 SE.
Collapse
Affiliation(s)
- Samuel Bitoun
- Rheumatology Department, Hôpitaux Universitaires Paris-Sud-Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Sud- CEA-INSERM U1184 'Immunology of viral infections and autoimmune diseases', Le Kremlin-Bicêtre, France
| | - Pierre Roques
- IDMIT Infrastructure, CEA - Université Paris Sud 11 - INSERM U1184, Immunology of viral infections and autoimmune diseases, Fontenay-Aux-Roses, France
| | - Bernard Maillere
- iBiTecS, Service d'Ingenierie Moleculaire des Proteines (SIMOPRO), Labex LERMIT, Labex VRI, CEA, Gif Sur Yvette, France
| | - Roger Le Grand
- IDMIT Infrastructure, CEA - Université Paris Sud 11 - INSERM U1184, Immunology of viral infections and autoimmune diseases, Fontenay-Aux-Roses, France
| | - Xavier Mariette
- Rheumatology Department, Hôpitaux Universitaires Paris-Sud-Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Sud- CEA-INSERM U1184 'Immunology of viral infections and autoimmune diseases', Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Cynomolgus macaque IL37 polymorphism and control of SIV infection. Sci Rep 2019; 9:7981. [PMID: 31138840 PMCID: PMC6538695 DOI: 10.1038/s41598-019-44235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/27/2019] [Indexed: 01/17/2023] Open
Abstract
The association between gene polymorphisms and plasma virus load at the set point (SP-PVL) was investigated in Mauritian macaques inoculated with SIV. Among 44 macaques inoculated with 50 AID50, six individuals were selected: three with SP-PVL among the highest and three with SP-PVL among the lowest. The exons of 390 candidate genes of these six animals were sequenced. Twelve non-synonymous single nucleotide polymorphisms (NS-SNPs) lying in nine genes potentially associated with PVL were genotyped in 23 animals. Three NS-SNPs with probabilities of association with PVL less than 0.05 were genotyped in a total of 44 animals. One NS-SNP lying in exon 1 of the IL37 gene displayed a significant association (p = 3.33 × 10−4) and a strong odds ratio (19.52). Multiple linear regression modeling revealed three significant predictors of SP-PVL, including the IL37 exon 1 NS-SNP (p = 0.0004) and the MHC Class IB haplotypes M2 (p = 0.0007) and M6 (p = 0.0013). These three factors in conjunction explained 48% of the PVL variance (p = 4.8 × 10−6). The potential role of IL37 in the control of SIV infection is discussed.
Collapse
|
4
|
Ishigaki H, Shiina T, Ogasawara K. MHC-identical and transgenic cynomolgus macaques for preclinical studies. Inflamm Regen 2018; 38:30. [PMID: 30479676 PMCID: PMC6249769 DOI: 10.1186/s41232-018-0088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Cynomolgus macaques are useful experimental animals that are physiologically and genetically close to humans. We have developed two kinds of experimental usage of cynomolgus macaque: transplantation and disease models. First, we identified certain major histocompatibility complex (MHC) haplotypes including homozygotes and heterozygotes in cynomolgus macaques native to the Philippines, because they have less polymorphism in the MHC than that in other origins such as Vietnam and Indonesia. As a preclinical model of the induced pluripotent stem cell (iPSC) stock project, we established iPSCs from various types of MHC homozygous macaques, which were transplanted into compatible MHC heterozygous macaques, the iPSC stock project was experimentally shown to be effective. Second, to obtain disease models of cynomolgus macaques for studies on regenerative medicine including cell therapies, we established two kinds of genetic technology to modify cynomolgus macaques: transgenic technology and gene editing technology using CRISPR-Cas9. We will establish disease models, such as Alzheimer's disease and progeria (Werner syndrome). In future, we will distribute the MHC-identical cynomolgus monkeys and genetically modified macaques to researchers, especially those engaging in regenerative medicine.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| | - Takashi Shiina
- 2Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shiomokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Kazumasa Ogasawara
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan.,3Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
5
|
de Manuel M, Shiina T, Suzuki S, Dereuddre-Bosquet N, Garchon HJ, Tanaka M, Congy-Jolivet N, Aarnink A, Le Grand R, Marques-Bonet T, Blancher A. Whole genome sequencing in the search for genes associated with the control of SIV infection in the Mauritian macaque model. Sci Rep 2018; 8:7131. [PMID: 29739964 PMCID: PMC5940699 DOI: 10.1038/s41598-018-25071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
In the Mauritian macaque experimentally inoculated with SIV, gene polymorphisms potentially associated with the plasma virus load at a set point, approximately 100 days post inoculation, were investigated. Among the 42 animals inoculated with 50 AID50 of the same strain of SIV, none of which received any preventive or curative treatment, nine individuals were selected: three with a plasma virus load (PVL) among the lowest, three with intermediate PVL values and three among the highest PVL values. The complete genomes of these nine animals were then analyzed. Initially, attention was focused on variants with a potential functional impact on protein encoding genes (non-synonymous SNPs (NS-SNPs) and splicing variants). Thus, 424 NS-SNPs possibly associated with PVL were detected. The 424 candidates SNPs were genotyped in these 42 SIV experimentally infected animals (including the nine animals subjected to whole genome sequencing). The genes containing variants most probably associated with PVL at a set time point are analyzed herein.
Collapse
Affiliation(s)
- Marc de Manuel
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Nathalie Dereuddre-Bosquet
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Henri-Jean Garchon
- Inserm U1173, Simone Veil School of Health Sciences, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
- Genetics Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Nicolas Congy-Jolivet
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
- Laboratoire d'immunologie, CHU de Toulouse, France
| | - Alice Aarnink
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
| | - Roger Le Grand
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Antoine Blancher
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France.
- Laboratoire d'immunologie, CHU de Toulouse, France.
| |
Collapse
|
6
|
Bitoun S, Roques P, Larcher T, Nocturne G, Serguera C, Chrétien P, Serre G, Grand RL, Mariette X. Both Systemic and Intra-articular Immunization with Citrullinated Peptides Are Needed to Induce Arthritis in the Macaque. Front Immunol 2017; 8:1816. [PMID: 29326703 PMCID: PMC5742322 DOI: 10.3389/fimmu.2017.01816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Objectives Anti-citrullinated peptides antibodies (ACPAs) have high specificity for the diagnosis of rheumatoid arthritis (RA), but their role in the pathophysiology is not fully established. The main genetic risk factor for RA, the shared epitope in major histocompatibility complex class II, is associated with ACPAs. Among certain non-human primates, 8% carry the shared epitope called H6 haplotype, and being similar to humans, are ideal candidates to study the role of ACPAs in RA. The goal of this study was to develop a macaque model of RA based on immunization against citrullinated peptides to generate an ACPA-mediated model of arthritis. Methods Cynomolgus macaques were immunized with four citrullinated peptides from vimentin, fibrinogen, and aggrecan, known to induce T-cell response in RA patients, and received an intra-articular (IA) boost with the same four citrullinated peptides pooled. Results In the macaque, the T-cell response was specific to citrullinated peptides. Antibodies generated in response to immunization were cross-reactive between the citrulline and arginine peptides. The presence of the H6 haplotype did not affect the magnitude of the immune response. Since no clinical response was observed, macaques received an IA boost with the same four peptides pooled and incomplete Freund’s adjuvant, which led to a prolonged neutrophil-rich mono-arthritis, preferentially in H6-positive animals. Conversely, animals boosted with incomplete Freund’s adjuvant alone presented only transient mono-arthritis. Conclusion This two-hit model of prolonged mono-arthritis mimics what could happen in RA. Despite the limited number of joints with disease in the macaque model, the model appears unique to study the events occurring during the preclinical phase of RA, from immunization against citrullinated peptides to the clinical appearance of disease.
Collapse
Affiliation(s)
- Samuel Bitoun
- Rheumatology Department, Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, INSERM U1184, Le Kremlin Bicêtre, France.,Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure CEA, Université Paris-Sud, INSERM U1184, Fontenay-Aux-Roses, France
| | - Pierre Roques
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure CEA, Université Paris-Sud, INSERM U1184, Fontenay-Aux-Roses, France
| | | | - Gaétane Nocturne
- Rheumatology Department, Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, INSERM U1184, Le Kremlin Bicêtre, France
| | - Che Serguera
- Modélisation des Biothérapies MIRCen, CEA/INSERM US27, Fontenay-Aux-Roses, France
| | - Pascale Chrétien
- Immunology Department AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France
| | - Guy Serre
- "Epithelial Differentiation and Rheumatoid Autoimmunity" Unit, INSERM U1056, Université de Toulouse, Toulouse, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure CEA, Université Paris-Sud, INSERM U1184, Fontenay-Aux-Roses, France
| | - Xavier Mariette
- Rheumatology Department, Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, INSERM U1184, Le Kremlin Bicêtre, France.,Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure CEA, Université Paris-Sud, INSERM U1184, Fontenay-Aux-Roses, France
| |
Collapse
|
7
|
Uno Y, Osada N, Sakurai S, Shimozawa N, Iwata T, Ikeo K, Yamazaki H. Development of genotyping method for functionally relevant variants of cytochromes P450 in cynomolgus macaques. J Vet Pharmacol Ther 2017; 41:e30-e34. [PMID: 28752932 DOI: 10.1111/jvp.12443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/03/2017] [Indexed: 02/02/2023]
Abstract
In cynomolgus macaques (Macaca fascicularis), widely used in drug metabolism studies, CYP2C9, CYP2C76, CYP2D6, CYP3A4, and CYP3A5, important drug-metabolizing enzymes, are abundantly expressed in liver and metabolize cytochrome P450 substrates. CYP2C9 (c.334A>C), CYP2C76 (c.449TG>A), CYP2D6 (c.891A>G), CYP3A4 (IVS3 + 1G>del), and CYP3A5 (c.625A>T) substantially influence metabolic activity of enzymes, and thus are important variants in drug metabolism studies. In this study, a real-time PCR method was developed for genotyping these variants. The validity of the methods was verified by genotyping two wild type, two heterozygous, and two homozygous DNAs and was used to genotype 41 cynomolgus macaques (from Cambodia, Indonesia, the Philippines, or Vietnam) for the five variants, along with another important variant CYP2C19 (c.308C>T). The CYP2C9 and CYP2C19 variants were found only in Cambodian and Vietnamese animals, while the CYP2C76 and CYP2D6 variants were found only in Indonesian and Philippine animals. The CYP3A4 and CYP3A5 variants were not found in any of the animals analyzed. Mauritian animals, genotyped using next-generation sequencing data for comparison, possessed the CYP2C19 and CYP2D6 variants, but not the other variants. These results indicated differences in prevalence of these important variants among animal groups. Therefore, the genotyping tool developed is useful for drug metabolism studies using cynomolgus macaques.
Collapse
Affiliation(s)
- Y Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan
| | - N Osada
- Graduate School of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - S Sakurai
- Graduate School of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - N Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - T Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - K Ikeo
- National Institute of Genetics, Mishima, Japan
| | - H Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
8
|
Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, Ng J, Trask JS, Huang R, Singh B, Du H, Smith DG. Ancestry, Plasmodium cynomolgi prevalence and rhesus macaque admixture in cynomolgus macaques (Macaca fascicularis) bred for export in Chinese breeding farms. J Med Primatol 2017; 46:31-41. [PMID: 28266719 PMCID: PMC7571188 DOI: 10.1111/jmp.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model. METHODS DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals. RESULTS All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry. CONCLUSIONS The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Anthropology, University of California, Davis, CA, USA
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Mingyu Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robert Oldt
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
| | - Jillian Ng
- Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Department of Research Compliance & Integrity, Office of Research, University of California, Davis, CA, USA
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Hongli Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Wu H, Whritenour J, Sanford JC, Houle C, Adkins KK. Identification of MHC Haplotypes Associated with Drug-induced Hypersensitivity Reactions in Cynomolgus Monkeys. Toxicol Pathol 2016; 45:127-133. [PMID: 27879435 DOI: 10.1177/0192623316677326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug-induced hypersensitivity reactions can significantly impact drug development and use. Studies to understand risk factors for drug-induced hypersensitivity reactions have identified genetic association with specific human leukocyte antigen (HLA) alleles. Interestingly, drug-induced hypersensitivity reactions can occur in nonhuman primates; however, association between drug-induced hypersensitivity reactions and major histocompatibility complex (MHC) alleles has not been described. In this study, tissue samples were collected from 62 cynomolgus monkeys from preclinical studies in which 9 animals had evidence of drug-induced hypersensitivity reactions. Microsatellite analysis was used to determine MHC haplotypes for each animal. A total of 7 haplotypes and recombinant MHC haplotypes were observed, with distribution frequency comparable to known MHC I allele frequency in cynomolgus monkeys. Genetic association analysis identified alleles from the M3 haplotype of the MHC I B region (B*011:01, B*075:01, B*079:01, B*070:02, B*098:05, and B*165:01) to be significantly associated (χ2 test for trend, p < 0.05) with occurrence of drug-induced hypersensitivity reactions. Sequence similarity from alignment of alleles in the M3 haplotype B region and HLA alleles associated with drug-induced hypersensitivity reactions in humans was 86% to 93%. These data demonstrate that MHC alleles in cynomolgus monkeys are associated with drug-induced hypersensitivity reactions, similar to HLA alleles in humans.
Collapse
Affiliation(s)
- Hong Wu
- 1 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Jessica Whritenour
- 1 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Jonathan C Sanford
- 1 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Christopher Houle
- 1 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| | - Karissa K Adkins
- 1 Pfizer, Drug Safety Research and Development, Groton, Connecticut, USA
| |
Collapse
|
10
|
Cordoba F, Wieczorek G, Audet M, Roth L, Schneider MA, Kunkler A, Stuber N, Erard M, Ceci M, Baumgartner R, Apolloni R, Cattini A, Robert G, Ristig D, Munz J, Haeberli L, Grau R, Sickert D, Heusser C, Espie P, Bruns C, Patel D, Rush JS. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am J Transplant 2015; 15:2825-36. [PMID: 26139432 DOI: 10.1111/ajt.13377] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 01/25/2023]
Abstract
CD40-CD154 pathway blockade prolongs renal allograft survival in nonhuman primates (NHPs). However, antibodies targeting CD154 were associated with an increased incidence of thromboembolic complications. Antibodies targeting CD40 prolong renal allograft survival in NHPs without thromboembolic events but with accompanying B cell depletion, raising the question of the relative contribution of B cell depletion to the efficacy of anti-CD40 blockade. Here, we investigated whether fully silencing Fc effector functions of an anti-CD40 antibody can still promote graft survival. The parent anti-CD40 monoclonal antibody HCD122 prolonged allograft survival in MHC-mismatched cynomolgus monkey renal allograft transplantation (52, 22, and 24 days) with accompanying B cell depletion. Fc-silencing yielded CFZ533, an antibody incapable of B cell depletion but still able to potently inhibit CD40 pathway activation. CFZ533 prolonged allograft survival and function up to a defined protocol endpoint of 98-100 days (100, 100, 100, 98, and 76 days) in the absence of B cell depletion and preservation of good histological graft morphology. CFZ533 was well-tolerated, with no evidence of thromboembolic events or CD40 pathway activation and suppressed a gene signature associated with acute rejection. Thus, use of the Fc-silent anti-CD40 antibody CFZ533 appears to be an attractive approach for preventing solid organ transplant rejection.
Collapse
Affiliation(s)
- F Cordoba
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - G Wieczorek
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M Audet
- Hôpital de Hautepierre, Strasbourg, France
| | - L Roth
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M A Schneider
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - A Kunkler
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - N Stuber
- Laboratory and Animal Services, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M Erard
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - M Ceci
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - R Baumgartner
- Laboratory and Animal Services, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - R Apolloni
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - A Cattini
- Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - G Robert
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - D Ristig
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - J Munz
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - L Haeberli
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - R Grau
- Technical Research and Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - D Sickert
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - C Heusser
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - P Espie
- Drug Metabolism and Pharmacokinetics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - C Bruns
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - D Patel
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - J S Rush
- Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
11
|
Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing: Mafa-class I polymorphism. Immunogenetics 2015; 67:563-78. [PMID: 26349955 DOI: 10.1007/s00251-015-0867-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Although the low polymorphism of the major histocompatibility complex (MHC) transplantation genes in the Filipino cynomolgus macaque (Macaca fascicularis) is expected to have important implications in the selection and breeding of animals for medical research, detailed polymorphism information is still lacking for many of the duplicated class I genes. To better elucidate the degree and types of MHC polymorphisms and haplotypes in the Filipino macaque population, we genotyped 127 unrelated animals by the Sanger sequencing method and high-resolution pyrosequencing and identified 112 different alleles, 28 at cynomolgus macaque MHC (Mafa)-A, 54 at Mafa-B, 12 at Mafa-I, 11 at Mafa-E, and seven at Mafa-F alleles, of which 56 were newly described. Of them, the newly discovered Mafa-A8*01:01 lineage allele had low nucleotide similarities (<86%) with primate MHC class I genes, and it was also conserved in the Vietnamese and Indonesian populations. In addition, haplotype estimations revealed 17 Mafa-A, 23 Mafa-B, and 12 Mafa-E haplotypes integrated with 84 Mafa-class I haplotypes and Mafa-F alleles. Of these, the two Mafa-class I haplotypes, F/A/E/B-Hp1 and F/A/E/B-Hp2, had the highest haplotype frequencies at 10.6 and 10.2%, respectively. This suggests that large scale genetic screening of the Filipino macaque population would identify these and other high-frequency Mafa-class I haplotypes that could be used as MHC control animals for the benefit of biomedical research.
Collapse
|
12
|
MHC polymorphism in Caribbean African green monkeys. Immunogenetics 2014; 66:353-60. [PMID: 24676686 DOI: 10.1007/s00251-014-0770-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
African green monkeys (AGM) are among the most widely used nonhuman primate models used in various fields of medical research. One species of AGM that originated from West Africa, Chlorocebus sabaeus, was introduced three centuries ago in the Caribbean islands. We present here a systematic study of the major histocompatibility complex (MHC) polymorphism of Caribbean AGM which is currently frequently used as an animal model. We studied 54 animals originated from Barbados (N=25) or Saint Kitts (N=29). The MHC polymorphism was characterized by means of 17 MHC microsatellites spread across MHC and DRB genotyping by DGGE sequencing. We defined nine frequent MHC haplotypes of which two were found in the two insular populations suggesting either past exchanges between the two populations or a common origin of the founders of the two populations. By the analysis of a previously described EST library, we characterized 38 MHC cDNA sequences (17 class I and 21 class II). In conclusion, we characterized for the first time the MHC polymorphism of Barbados and Saint Kitts AGM. We found a restricted polymorphism due to a founding effect, which is responsible for a strong bottleneck. The poorness of MHC polymorphism observed in the Caribbean AGM populations is similar to that observed in the Mauritian cynomolgus macaque population.
Collapse
|
13
|
Study of MHC class II region polymorphism in the Filipino cynomolgus macaque population. Immunogenetics 2014; 66:219-30. [PMID: 24569954 DOI: 10.1007/s00251-014-0764-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 01/03/2023]
Abstract
The cynomolgus macaque (Macaca fascicularis) is currently used as an animal model in various fields of immunology especially in the development of innovative vaccines for the prevention and treatment of infectious diseases. The polymorphism of the major histocompatibility complex (MHC) influences the development of adaptive immune responses and it is crucial to characterize the polymorphism of cynomolgus MHC genes. We present here a systematic study of the MHC class II haplotypes in the Filipino macaque population. By the study of a large sample of Filipino animals (N = 353), we have characterized 18 MHC class II haplotypes by means of genotyping seven microsatellites. The animals were DRB genotyped by means of PCR-SSO or DGGE-sequencing on genomic amplified fragments. We cloned and sequenced the complementary DNA (cDNA) of DQA, DQB, DPA, and DPB genes of 117 animals. Combining the microsatellite genotyping and cDNA characterized in the 117 animals, we defined genetic association between the cDNA and the microsatellites and characterized 18 MHC class II haplotypes. For 104 animals out of the 353 studied, the presence of a recombinant haplotype was highly probable. Thirty-four percent of recombination was located in 256 kb segment between D6S2876 and D6S2747 microsatellites, a region encompassing several hot spots of recombination in the human MHC.
Collapse
|
14
|
Baroncelli S, Negri DRM, Michelini Z, Cara A. Macaca mulatta,fascicularisandnemestrinain AIDS vaccine development. Expert Rev Vaccines 2014; 7:1419-34. [DOI: 10.1586/14760584.7.9.1419] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model. Immunogenetics 2013; 66:105-13. [PMID: 24374979 DOI: 10.1007/s00251-013-0752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 12/21/2022]
Abstract
The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.
Collapse
|
16
|
Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics 2013; 65:569-84. [PMID: 23715823 PMCID: PMC3710572 DOI: 10.1007/s00251-013-0707-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
The Mamu-A, Mamu-B, and Mamu-DRB genes of the rhesus macaque show several levels of complexity such as allelic heterogeneity (polymorphism), copy number variation, differential segregation of genes/alleles present on a haplotype (diversity) and transcription level differences. A combination of techniques was implemented to screen a large panel of pedigreed Indian rhesus macaques (1,384 individuals representing the offspring of 137 founding animals) for haplotype diversity in an efficient and inexpensive manner. This approach allowed the definition of 140 haplotypes that display a relatively low degree of region variation as reflected by the presence of only 17 A, 18 B and 22 DRB types, respectively, exhibiting a global linkage disequilibrium comparable to that in humans. This finding contrasts with the situation observed in rhesus macaques from other geographic origins and in cynomolgus monkeys from Indonesia. In these latter populations, nearly every haplotype appears to be characterised by a unique A, B and DRB region. In the Indian population, however, a reshuffling of existing segments generated “new” haplotypes. Since the recombination frequency within the core MHC of the Indian rhesus macaques is relatively low, the various haplotypes were most probably produced by recombination events that accumulated over a long evolutionary time span. This idea is in accord with the notion that Indian rhesus macaques experienced a severe reduction in population during the Pleistocene due to a bottleneck caused by geographic changes. Thus, recombination-like processes appear to be a way to expand a diminished genetic repertoire in an isolated and relatively small founder population.
Collapse
|
17
|
Aarnink A, Garchon HJ, Okada Y, Takahashi A, Matsuda K, Kubo M, Nakamura Y, Blancher A. Comparative analysis in cynomolgus macaque identifies a novel human MHC locus controlling platelet blood counts independently of BAK1. J Thromb Haemost 2013; 11:384-6. [PMID: 23217248 DOI: 10.1111/jth.12092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 11/28/2022]
|
18
|
Satkoski Trask J, George D, Houghton P, Kanthaswamy S, Smith DG. Population and landscape genetics of an introduced species (M. fascicularis) on the island of Mauritius. PLoS One 2013; 8:e53001. [PMID: 23341917 PMCID: PMC3544817 DOI: 10.1371/journal.pone.0053001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
The cynomolgus macaque, Macaca fascicularis, was introduced onto the island of Mauritius in the early 17(th) century. The species experienced explosive population growth, and currently exists at high population densities. Anecdotes collected from nonhuman primate trappers on the island of Mauritius allege that animals from the northern portion of the island are larger in body size than and superior in condition to their conspecifics in the south. Although previous genetic studies have reported Mauritian cynomolgus macaques to be panmictic, the individuals included in these studies were either from the southern/central or an unknown portion of the island. In this study, we sampled individuals broadly throughout the entire island of Mauritius and used spatial principle component analysis to measure the fine-scale correlation between geographic and genetic distance in this population. A stronger correlation between geographic and genetic distance was found among animals in the north than in those in the southern and central portions of the island. We found no difference in body weight between the two groups, despite anecdotal evidence to the contrary. We hypothesize that the increased genetic structure among populations in the north is related to a reduction in dispersal distance brought about by human habitation and tourist infrastructure, but too recent to have produced true genetic differentiation.
Collapse
|
19
|
Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O'Connor DH. Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 2013; 54:196-210. [PMID: 24174442 PMCID: PMC3814398 DOI: 10.1093/ilar/ilt036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.
Collapse
Affiliation(s)
- Roger W. Wiseman
- Address correspondence and reprint requests to Dr. Roger Wiseman, Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Drive, Madison, WI 53711 or email
| | | | | | | | | | | |
Collapse
|
20
|
Gene transfer of human CD40Ig does not prevent rejection in a non-human primate kidney allotransplantation model. Transpl Immunol 2012; 27:139-45. [PMID: 23098770 DOI: 10.1016/j.trim.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blockade of costimulation signaling required for immune response, such as CD40/CD40L and CD28/B7, is a reasonable strategy to prevent rejection and in defined combinations may allow donor specific tolerance. Indeed, in rodents, costimulation blockade with CD28/B7 antagonists or with CD40Ig was able to induce regulatory T cells and transplant tolerance whereas in primates, anti-CD40 antibodies, anti-CD40L antibodies or CTLA4Ig, used as monotherapy, significantly delayed graft rejection. METHODS Using an adeno-associated virus (AAV) vector mediated gene transfer of a human CD40Ig fusion protein (hCD40Ig) in primates, we evaluated the capacity of this costimulation blockade molecule interfering with CD40/CD40L signaling in prolonging kidney transplants in cynomolgus monkeys. RESULTS This gene transfer strategy allowed for maintaining a plateau of hCD40Ig production within two months and avoided a high-scale production phase of this molecule. Although the hCD40Ig was able to bind efficiently to human and macaque CD40L and high (>200 μg/ml) transgene expression was obtained, no effect on graft survival was observed. In addition, there was no inhibition of humoral response to vaccination. In vitro, hCD40Ig strongly increased mixed lymphocyte reaction, and when compared to the anti-CD40L antibody h5C8, was not as potent to induce complement-dependent cytotoxicity. CONCLUSION These data suggest that CD40/CD40L blockade using a non-depleting CD40Ig fusion protein, a therapeutic strategy that showed efficacy in rodents, is not able to modulate the immune response in primates. These data highlight important biological differences between rodent and primate models to evaluate therapeutic strategies at the preclinical level.
Collapse
|
21
|
Abstract
The HLA region shows diversity concerning the number and content of DRB genes present per haplotype. Similar observations are made for the equivalent regions in other primate species. To elucidate the evolutionary history of the various HLA-DRB genes, a large panel of intron sequences obtained from humans, chimpanzees, rhesus macaques, and common marmosets has been subjected to phylogenetic analyses. Special attention was paid to the presence and absence of particular transposable elements and/or to their segments. The sharing of different parts of the same long interspersed nuclear element-2 (LINE2, L2) and various Alu insertions by the species studied demonstrates that one precursor gene must have been duplicated several times before the Old World monkey (OWM) and hominid (HOM) divergence. At least four ancestral DRB gene families appear to have been present before the radiation of OWM and HOM, and one of these even predates the speciation of Old and New World primates. Two of these families represent the pseudogenes DRB6/DRB2 and DRB7, which have been locked in the genomes of various primate species over long evolutionary time spans. Furthermore, all phylogenies of different intron segments show consistently that, apart from the pseudogenes, only DRB5 genes are shared by OWM and HOM, and they demonstrate the common history of certain DRB genes/lineages of humans and chimpanzees. In contrast, the evolutionary history of some other DRB loci is difficult to decipher, thus illustrating the complex history of the evolution of DRB genes due to a combination of mutations and recombination-like events. The selected approach allowed us to shed light on the ancestral DRB gene pool in primates and on the evolutionary relationship of the various HLA-DRB genes.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
22
|
Li W, Wang T, Ling F, Zhao H, Wei L, Zhuo M, Du H, Wang X. Identification of MhcMafa-DRB alleles in a cohort of cynomolgus macaques of Vietnamese origin. Am J Primatol 2012; 74:958-66. [PMID: 22903750 DOI: 10.1002/ajp.22048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/23/2012] [Indexed: 11/11/2022]
Abstract
Cynomolgus macaques have been used widely to build a research model of infectious and chronic diseases, as well as in transplantation studies, where disease susceptibility and/or resistance are associated with the major histocompatibility complex (MHC). To better elucidate polymorphisms and genetic differences in the Mafa-DRB locus, and facilitate the experimental use of cynomolgus macaques, we used pool screening combined with cloning and direct sequencing of polymerase chain reaction products to characterize MhcMafa-DRB gene alleles in 153 Vietnamese cynomolgus macaques. We identified 30 Mafa-DRB alleles belonging to 17 allelic lineages, including four novel sequences that had not been documented in earlier reports. The highest frequency allele was Mafa-DRB*W27:04, which was present in 7 of 35 (20%) monkeys. The next most frequent alleles were Mafa-DRB*3:07 and Mafa-DRB*W7:01, which were detected in 5 of 35 (14.3%) and 4 of 35 (11.4%) of the monkeys, respectively. The high-frequency alleles in this Vietnamese population may be high priority targets for additional characterization of immune functions. Only the DRB1*03 and DRB1*10 lineages were also present in humans, whereas the remaining alleles were monkey-specific lineages. We found 25 variable sites by aligning the deduced amino acid sequences of 29 identified alleles. Evolutionary and population analyses based on these sequences showed that human, rhesus, and cynomolgus macaques share several Mhc-DRB lineages and the shared polymorphisms in the DRB region may be attributable to the existence of interbreeding between rhesus and cynomolgus macaques. This information will promote the understanding of MHC diversity and polymorphism in cynomolgus macaques and increase the value of this species as a model for biomedical research.
Collapse
Affiliation(s)
- Wai Li
- School of Life Science, General Hospital of PLA T, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Borsetti A, Maggiorella MT, Sernicola L, Bellino S, Ferrantelli F, Belli R, Fulgenzi D, Mee ET, Rose NJ, Cafaro A, Ensoli B, Titti F. Influence of MHC class I and II haplotypes on the experimental infection of Mauritian cynomolgus macaques with SHIVSF162P4cy. ACTA ACUST UNITED AC 2012; 80:36-45. [DOI: 10.1111/j.1399-0039.2012.01875.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Blancher A, Aarnink A, Tanaka K, Ota M, Inoko H, Yamanaka H, Nakagawa H, Apoil PA, Shiina T. Study of cynomolgus monkey (Macaca fascicularis) Mhc DRB gene polymorphism in four populations. Immunogenetics 2012; 64:605-14. [PMID: 22790512 DOI: 10.1007/s00251-012-0613-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/12/2012] [Indexed: 11/25/2022]
Abstract
The cynomolgus macaque (Macaca fascicularis) is currently used as an animal model in various fields of immunology especially in the development of innovative vaccines for the prevention and treatment of infectious diseases. The polymorphism of the major histocompatibility complex (MHC) influences the development of adaptive immune responses, and it is crucial to characterize the polymorphism of cynomolgus MHC genes. Among all macaque species, the cynomolgus macaque has the most diversified geographical area encompassing continental and insular populations. By the study of a large sample of animals from the Philippines (N = 359), we have characterized 20 DRB haplotypes. The DRB genotyping was performed by denaturing gradient gel electrophoresis (DGGE) sequencing of exon 2 and was confirmed by polymerase chain reaction-sequence-specific oligonucleotide. The DRB and DRA cDNA of 126 animals were characterized by cloning and sequencing. By means of DGGE sequencing, we characterized the polymorphism of genomic DRB exon 2 in three other cynomolgus macaque population samples (Java, Vietnam, and Mauritius), and we discuss about the origin of the founders of the Mauritian and the Filipino cynomolgus macaque populations.
Collapse
Affiliation(s)
- Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, CHU de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sotrastaurin (AEB071) alone and in combination with cyclosporine A prolongs survival times of non-human primate recipients of life-supporting kidney allografts. Transplantation 2012; 93:156-64. [PMID: 22179400 DOI: 10.1097/tp.0b013e31823cf92f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sotrastaurin (STN), a novel oral protein kinase C inhibitor that inhibits early T-cell activation, was assessed in non-human primate recipients of life-supporting kidney allografts. METHODS Cynomolgus monkey recipients of life-supporting kidney allografts were treated orally with STN alone or in combination with cyclosporine A (CsA). RESULTS STN monotherapy at 50 mg/kg once daily prolonged recipient survival times to the predefined endpoint of 29 days (n=2); when given at 25 mg/kg twice daily, the median survival time (MST) was 27 days (n=4). Neither once-daily monotherapy of STN 20 mg/kg nor CsA 20 mg/kg was effective (MST 6 days [n=2] and 7 days [n=5], respectively). In combination, however, STN 20 mg/kg and CsA 20 mg/kg prolonged MST to more than 100 days (n=5). By combining lower once-daily doses of STN (7 or 2 mg/kg) with CsA (20 mg/kg), MST was more than 100 (n=3) and 22 days (n=2), respectively. Neither in single-dose pharmacokinetic studies nor the transplant recipients were STN or CsA blood levels for combined treatment greater than when either drug was administered alone. STN blood levels in transplant recipients during combination therapy were dose related (20 mg/kg, 30-182 ng/mL; 7 mg/kg, 7-41 ng/mL; and 2 mg/kg, 3-5 ng/mL). STN at a daily dose of up to 20 mg/kg was relatively well tolerated. CONCLUSIONS STN prolonged survival times of non-human primate kidney allograft recipients both as monotherapy and most effectively in combination with CsA. Pharmacokinetic interactions were not responsible for the potentiation of immunosuppressive efficacy by coadministering STN and CsA.
Collapse
|
26
|
Ling F, Zhuo M, Ni C, Zhang GQ, Wang T, Li W, Wei LQ, Du HL, Wang JF, Wang XN. Comprehensive identification of high-frequency and co-occurring Mafa-B, Mafa-DQB1, and Mafa-DRB alleles in cynomolgus macaques of Vietnamese origin. Hum Immunol 2012; 73:547-53. [PMID: 22365968 PMCID: PMC7115533 DOI: 10.1016/j.humimm.2012.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/24/2012] [Accepted: 02/01/2012] [Indexed: 11/13/2022]
Abstract
High-frequency alleles and/or co-occurring human leukocyte antigen (HLA) alleles across loci appear to be more important than individual alleles, because they might be markers of disease risk that have clinical value as biomarkers for targeted screening or the development of new therapies. To better elucidate the major histocompatibility complex background and to facilitate the experimental use of cynomolgus macaques, Mafa-B, Mafa-DQB1, and Mafa-DRB alleles were characterized and their combinations were investigated from 30 macaques of Vietnamese origin by cloning and sequencing. A total of 48 Mafa-B, 22 Mafa-DQB1, and 42 Mafa-DRB alleles, were detected in this study, respectively. In addition, two Mafa-DQB1 and eight Mafa-DRB alleles represented novel sequences that had not been documented in earlier studies. Our results also showed that the macaque from Vietnam might be valuable because >30% of the test animals possessed Mafa-DRB*w304 (30%) and -DQB1*0616 (30%). We report that the combination of major histocompatibility complex (MHC) class I and II alleles, including the combination of DRB3*0403-DRB*w304, DRB1*1013-DRB*w304, and Mafa-B*007:01:01-DRB*w304, which was in 17%, 13%, and 13% of the animals, respectively. Interesting, more than two Mafa-DQB1 alleles detected in one animal in this study suggest that Mafa-DQB1, like Mafa-DRB, might be a duplication in the chromosome, which have ever been documented in cynomolgus monkeys but has not yet been observed in rhesus macaques or other primates. Our results for the high frequency of commonly co-occurring MHC alleles across loci in a cohort of the Vietnamese cynomolgus macaque emphasized the value of this species as a model for biomedical research.
Collapse
Affiliation(s)
- Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Creager HM, Becker EA, Sandman KK, Karl JA, Lank SM, Bimber BN, Wiseman RW, Hughes AL, O’Connor SL, O’Connor DH. Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques. Immunogenetics 2011; 63:611-8. [PMID: 21614582 PMCID: PMC3156323 DOI: 10.1007/s00251-011-0537-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/10/2011] [Indexed: 01/09/2023]
Abstract
In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.
Collapse
Affiliation(s)
- Hannah M Creager
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Kelly K. Sandman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
| | - Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA 53705
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA 53705
| |
Collapse
|
28
|
DR haplotype diversity of the cynomolgus macaque as defined by its transcriptome. Immunogenetics 2011; 64:31-7. [PMID: 21805219 PMCID: PMC3249155 DOI: 10.1007/s00251-011-0561-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 11/25/2022]
Abstract
The DR region of particular primate species may display allelic polymorphism and gene copy number variation (region configuration polymorphism). The sum of these distinct types of polymorphism is defined as complexity. To date, however, the DR region of cynomolgus macaques (Macaca fascicularis) has been poorly defined. Transcriptome analysis of a pedigreed colony, comprising animals from Indonesia and Indochina, revealed a total of 15 Mafa-DRA and 57 DRB alleles, specifying 28 different region configurations. The DRA alleles can be divided into two distinct lineages. One lineage is polymorphic, but the majority of the amino acid replacements map to the leader peptide. The second lineage is at best oligomorphic, and segregates with one specific Mafa-DRB allele. The number of Mafa-DRB genes ranges from two to five per haplotype. Due to the presence of pseudogenes, however, each haplotype encodes only one to three bona fide DRB transcripts. Depending on the region configuration in which the Mafa-DRB gene is embedded, identical alleles may display differential transcription levels. Region configurations appear to have been generated by recombination-like events. When genes or gene segments are relocated, it seems plausible that they may be placed in the context of distinct transcription control elements. As such, DRB region-related transcription level differences may add an extra layer of polymorphism to this section of the adaptive immune system.
Collapse
|
29
|
Aarnink A, Dereuddre-Bosquet N, Vaslin B, Le Grand R, Winterton P, Apoil PA, Blancher A. Influence of the MHC genotype on the progression of experimental SIV infection in the Mauritian cynomolgus macaque. Immunogenetics 2011; 63:267-74. [DOI: 10.1007/s00251-010-0504-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/15/2010] [Indexed: 11/30/2022]
|
30
|
Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolgus macaques of Vietnamese origin. Immunogenetics 2010; 63:155-66. [PMID: 21132285 PMCID: PMC7080152 DOI: 10.1007/s00251-010-0498-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolgus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolgus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolgus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolgus macaque but will also increase the value of this species as a model for biomedical research.
Collapse
|
31
|
Aarnink A, Garchon HJ, Puissant-Lubrano B, Blancher-Sardou M, Apoil PA, Blancher A. Impact of MHC class II polymorphism on blood counts of CD4+ T lymphocytes in macaque. Immunogenetics 2010; 63:95-102. [PMID: 21086122 DOI: 10.1007/s00251-010-0492-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
Abstract
While the number of peripheral blood T lymphocytes and of their two main subsets (CD4+CD8- and CD4-CD8+) varies little in a given healthy individual, substantial variation is observed between individuals. It was proposed that these counts could be influenced by MHC polymorphisms because of the well-established role of MHC molecules in thymic T lymphocyte maturation and presentation of antigenic peptides to peripheral T lymphocytes. To test this hypothesis, we have chosen the crab-eating macaque (Macaca fascicularis), an animal model phylogenetically close to man. We selected the Philippine macaque population because of a restriction of the MHC polymorphism in this islander population. Peripheral blood lymphocytes were counted with an automated analyzer and T lymphocyte subsets were assessed by immunolabeling and flow cytometry. The MHC polymorphism was investigated in 200 unrelated subjects using 14 microsatellites markers distributed across the MHC and the DRB locus that was genotyped by denaturing gradient gel electrophoresis and sequencing. All markers were in Hardy-Weinberg equilibrium. Allelic associations were tested with the UNPHASED software. We revealed a significant influence of the MHC class II region on CD4+ T lymphocyte blood count with the largest effect associated with a two-locus haplotypes combining the DRACA allele 274 and the DRB haplotype #8a (p < 8 × 10(-7)). Our data should stimulate a similar association study of the CD4+ T cell counts in humans.
Collapse
Affiliation(s)
- Alice Aarnink
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, IFR150 (INSERM), CHU de Toulouse, 1 avenue Jean Poulhes, TSA 50032, 31059, Toulouse cedex 9, France
| | | | | | | | | | | |
Collapse
|
32
|
Xu HL, Wang YT, Cheng AC, Yao YF, Ni QY, Zeng W, Bi FJ, Yang ZX, Chen XY. [Polymorphism of MHC-DPB1 gene exon 2 in rhesus macaques (Macaca mulatta)]. YI CHUAN = HEREDITAS 2010; 32:588-98. [PMID: 20566463 DOI: 10.3724/sp.j.1005.2010.00588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rhesus macaque (Macaca mulatta) has long been used as an experimental model animal for biomedical research and was under the key state protection (class II) from Chinese government. In order to facilitate the use of Chinese rhesus macaques in biomedical research and their protection based on better understanding of the major mistocompability complex (MHC) genes in these macaques, the exon 2 of Mamu-DPB1 genes were determined in 106 wild rhesus macaques using DGGE, cloning and sequencing. A total of 21 Mamu-DPB1 alleles were obtained, of which 15 alleles were novel sequences that had not been documented previously. Mamu-DPB1 30 was the most frequent allele in the whole large population comprising all 106 rhesus macaque individuals (0.1120) and in Xiaojin population (0.1120), Mamu-DPB1 04 in Heishui (0.1702), -DPB1 32 in Bazhong (0.1613), -DPB1 30 in Hanyuan (0.1120), and -DPB1 04 in Jiulong (0.1139). The alignment of the amino acids sequences showed that 12 variable sites were species-specific, of which 9 sites occurred in the putative amino acids sequences of the 15 novel Mamu-DPB1 alleles. Trans-species polymorphism was observed on the phylogenetic tree based on the DPB1 alleles of rhesus macaques and cynomolgus (Macaca fascicularis). In addition, these results also demonstrated that significant genetic differentiation has occurred between Chinese and Indian rhesus macaque population.
Collapse
Affiliation(s)
- Huai-Liang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sasseville VG, Mansfield KG. Overview of known non-human primate pathogens with potential to affect colonies used for toxicity testing. J Immunotoxicol 2010; 7:79-92. [PMID: 19909217 DOI: 10.3109/15476910903213521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The increased demand for non-human primates (NHPs) in biomedical research has resulted in alternative sources of animals being used, which has allowed for importation of animals with varying background incidences of bacterial, viral, parasitic, and fungal pathogens. This can be of minimal consequence when animals from different sources are kept isolated. However, when NHPs from different sources with varying incidences of primary and opportunistic pathogens are mixed, there can be a rapid spread of these pathogens and an increase in the seroconversion of susceptible animals. If this process occurs during the conduct of a study, interpretation of that study can be confounded. Furthermore, NHPs imported from areas enzootic for pathogens such as Plasmodium or with high incidences of human diseases such as measles and tuberculosis can introduce diseases that can be a threat to colony health, have zoonotic risk, and can severely impact study outcome. Thus, knowledge of the common primary and opportunistic NHP infections, as well as reemerging pathogens, enables the toxicologist to use information on disease status for pre-study animal selection and intelligent study design. This is particularly important when immunomodulatory compounds are being investigated. Moreover, the toxicologic pathologist well versed in the common spontaneous infections, opportunistic pathogens, and background lesions in NHPs is able to assess possible drug-related effects in drug safety studies. This review identifies the common primary and opportunistic pathogens, as well as newly emerging infections of NHPs, that can directly or indirectly affect colony health and the interpretation of drug safety studies.
Collapse
Affiliation(s)
- Vito G Sasseville
- Bristol-Myers Squibb Research and Development, Discovery Toxicology, Princeton, NJ 08543, USA.
| | | |
Collapse
|
34
|
Doxiadis GGM, de Groot N, de Groot NG, Rotmans G, de Vos-Rouweler AJM, Bontrop RE. Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force. Immunogenetics 2010; 62:137-47. [PMID: 20131048 PMCID: PMC2827794 DOI: 10.1007/s00251-010-0422-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/08/2010] [Indexed: 12/21/2022]
Abstract
The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Aarnink A, Estrade L, Apoil PA, Kita YF, Saitou N, Shiina T, Blancher A. Study of cynomolgus monkey (Macaca fascicularis) DRA polymorphism in four populations. Immunogenetics 2010; 62:123-36. [PMID: 20094710 DOI: 10.1007/s00251-009-0421-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/21/2009] [Indexed: 12/11/2022]
Abstract
To describe the polymorphism of the DRA gene in Macaca fascicularis, we have studied 141 animals either at cDNA level (78 animals from Mauritius, the Philippines, and Vietnam) or genomic level (63 animals from the Philippines, Indonesia, and Vietnam). In total, we characterized 22 cDNA DRA alleles, 13 of which had not been described until now. In the Mauritius population, we confirmed the presence of three DRA alleles. In the Philippine and Vietnam populations, we observed 11 and 14 DRA alleles, respectively. Only two alleles were present in all three populations. All DRA alleles but one differ from the consensus sequence by one to three mutations, most being synonymous; so, only seven DR alpha proteins were deduced from the 22 cDNA alleles. One DRA cDNA allele, Mafa-DRA*02010101, differs from all other alleles by 11 to 14 mutations of which only four are non-synonymous. The two amino acid changes inside the peptide groove of Mafa-DRA*02010101 are highly conservative. The very low proportion of non-synonymous/synonymous mutations is compatible with a purifying selection which is comparable to all previous observations concerning the evolution of the DRA gene in mammals. Homologues of the allele Mafa-DRA*02010101 are also found in two other Asian macaques (Macaca mulatta and Macaca nemestrina). The forces able to maintain this highly divergent allele in three different macaque species remain hypothetical.
Collapse
Affiliation(s)
- Alice Aarnink
- Laboratoire d'immunogénétique moléculaire, EA3034, Faculté de Médecine Purpan, Toulouse 3, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Kita YF, Hosomichi K, Kohara S, Itoh Y, Ogasawara K, Tsuchiya H, Torii R, Inoko H, Blancher A, Kulski JK, Shiina T. MHC class I A loci polymorphism and diversity in three Southeast Asian populations of cynomolgus macaque. Immunogenetics 2009; 61:635-48. [PMID: 19649628 DOI: 10.1007/s00251-009-0390-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/22/2009] [Indexed: 11/26/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis, Mafa) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex polymorphic regions. The current information on the polymorphism or diversity of the polygenetic Mafa class I A loci is limited in comparison to the more commonly studied rhesus macaque Mafa class I A loci. Therefore, in this paper, to better elucidate the degree and types of polymorphisms and genetic differences of Mafa-A1 among three native Southeast Asian populations (Indonesian, Vietnamese, and Filipino) and to investigate how the allele differences between macaques and humans might have evolved to affect their respective immune responses, we identified 83 Mafa-A loci-derived alleles by DNA sequencing of which 66 are newly described. Most alleles are unique to each population, but seven of the most frequent alleles were identical in sequence to some alleles in other macaque species. We also revealed (1) the large and dynamic genetic and structural differences and similarities in allelic variation by analyzing the population allele frequencies, Hardy-Weinberg's equilibrium, heterozygosity, nucleotide diversity profiles, and phylogeny, (2) the difference in genetic structure of populations by Wright's FST statistic and hierarchical analysis of molecular variance, and (3) the different demographic and selection pressures on the three populations by performing Tajima's D test of neutrality. The large level of diversity and polymorphism at the Mafa-A1 was less evident in the Filipino than in the Vietnam or the Indonesian populations, which may have important implications in animal capture, selection, and breeding for medical research.
Collapse
Affiliation(s)
- Yuki F Kita
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Campbell KJ, Detmer AM, Karl JA, Wiseman RW, Blasky AJ, Hughes AL, Bimber BN, O’Connor SL, O’Connor DH. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques. Immunogenetics 2009; 61:177-87. [PMID: 19107381 PMCID: PMC2666003 DOI: 10.1007/s00251-008-0351-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/08/2008] [Indexed: 11/28/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV(89.6P). We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols.
Collapse
Affiliation(s)
- Kevin J. Campbell
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Ann M. Detmer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbus, SC 29208
| | - Benjamin N. Bimber
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
38
|
Mee ET, Badhan A, Karl JA, Wiseman RW, Cutler K, Knapp LA, Almond N, O'Connor DH, Rose NJ. MHC haplotype frequencies in a UK breeding colony of Mauritian cynomolgus macaques mirror those found in a distinct population from the same geographic origin. J Med Primatol 2008; 38:1-14. [PMID: 19018947 DOI: 10.1111/j.1600-0684.2008.00299.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mauritian cynomolgus macaques have greatly restricted genetic diversity in the MHC region compared to other non-human primates; however, the frequency of common MHC haplotypes among captive-bred populations has not been reported. METHODS Microsatellite PCR was used to determine MHC haplotype frequencies among captive macaques at a UK breeding facility. Allele-specific PCR and reference strand conformational analysis were used to determine the allele expression profile of a subset of animals. RESULTS Haplotypes H3 (21%) and H1 (19%) were most common in the captive population of Mauritian cynomolgus macaques. Predicted alleles were detected by allele-specific PCR-SSP in 98% of animals. Allele expression profiles were similar in animals with identical haplotypes. CONCLUSIONS Mauritian cynomolgus macaques in the UK breeding facility have restricted MHC diversity comparable to a previously described population. Microsatellite-derived haplotypes are highly predictive of allele expression. A selective breeding program has been established to produce MHC-identical animals for biomedical research.
Collapse
Affiliation(s)
- Edward T Mee
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bonhomme M, Doxiadis GGM, Heijmans CMC, Vervoort V, Otting N, Bontrop RE, Crouau-Roy B. Genomic plasticity of the immune-related Mhc class I B region in macaque species. BMC Genomics 2008; 9:514. [PMID: 18973694 PMCID: PMC2584111 DOI: 10.1186/1471-2164-9-514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/30/2008] [Indexed: 11/12/2022] Open
Abstract
Background In sharp contrast to humans and great apes, the expanded Mhc-B region of rhesus and cynomolgus macaques is characterized by the presence of differential numbers and unique combinations of polymorphic class I B genes per haplotype. The MIB microsatellite is closely linked to the single class I B gene in human and in some great apes studied. The physical map of the Mhc of a heterozygous rhesus monkey provides unique material to analyze MIB and Mamu-B copy number variation and then allows one to decipher the compound evolutionary history of this region in primate species. Results In silico research pinpointed 12 MIB copies (duplicons), most of which are associated with expressed B-genes that cluster in a separate clade in the phylogenetic tree. Generic primers tested on homozygous rhesus and pedigreed cynomolgus macaques allowed the identification of eight to eleven MIB copies per individual. The number of MIB copies present per haplotype varies from a minimum of three to six in cynomolgus macaques and from five to eight copies in rhesus macaques. Phylogenetic analyses highlight a strong transpecific sharing of MIB duplicons. Using the physical map, we observed that, similar to MIB duplicons, highly divergent Mamu-B genes can be present on the same haplotype. Haplotype variation as reflected by the copy number variation of class I B loci is best explained by recombination events, which are found to occur between MIBs and Mamu-B. Conclusion The data suggest the existence of highly divergent MIB and Mamu-B lineages on a given haplotype, as well as variable MIB and B copy numbers and configurations, at least in rhesus macaque. Recombination seems to occur between MIB and Mamu-B loci, and the resulting haplotypic plasticity at the individual level may be a strategy to better cope with pathogens. Therefore, evolutionary inferences based on the multiplicated MIB loci but also other markers close to B-genes appear to be promising for the study of B-region organization and evolution in primates.
Collapse
Affiliation(s)
- Maxime Bonhomme
- Université Paul Sabatier, Laboratoire Evolution et Diversité Biologique UMR5174 UPS/CNRS, 118 Route de Narbonne, Toulouse 31062 cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics 2008; 60:737-48. [PMID: 18956179 PMCID: PMC4629986 DOI: 10.1007/s00251-008-0333-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 12/11/2022]
Abstract
The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.
Collapse
|
41
|
Mee ET, Murrell CK, Sauermann U, Wilkinson RC, Cutler K, North D, Heath A, Ladhani K, Almond N, Rose NJ. TheMhcclass IIDRBgenotype ofMacaca fascicularisdoes not influence infection by simian retrovirus type 2. ACTA ACUST UNITED AC 2008; 72:369-78. [DOI: 10.1111/j.1399-0039.2008.01114.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Sasseville VG, Diters RW. Impact of infections and normal flora in nonhuman primates on drug development. ILAR J 2008; 49:179-90. [PMID: 18323580 DOI: 10.1093/ilar.49.2.179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preclinical safety studies that are required for the marketing approval of a pharmaceutical include single and repeat dose studies in rodent and nonrodent species. The use of nonhuman primates (NHPs), primarily macaques, as the nonrodent species has increased in recent years, in part due to the increase in development of biopharmaceuticals and immunomodulatory agents. Depending on the source of the macaques, they may vary in genetic background, normal flora, and/or the incidence of preexisting pathogens and inflammatory conditions. As the use of alternative sources of macaques rises to meet the increased demand for these animals in biomedical research, the toxicologic pathologist should be well versed in NHP pathology to adequately assess potential drug-related effects in the context of these variations. Such knowledge is particularly important in studies involving immunomodulatory drugs as the toxicologic pathologist should anticipate which type(s) of infections are most likely to arise depending on which arm of the immune system is modulated. The purpose of this review is to discuss the immunosuppressive (e.g., simian type D retrovirus, simian immunodeficiency virus) and opportunistic viruses (e.g., cytomegalovirus, adenovirus, simian virus 40, rhesus rhadinovirus, and lymphocryptovirus), primary and opportunistic bacteria (e.g., Campylobacter spp., Shigella flexneri, Yersinia enterocolitica, Moraxella catarrhalis, Mycobacterium avium complex, enteropathogenic Escherichia coli), and parasites (e.g., Plasmodium spp., Schistosoma spp., Strongyloides fulleborni) that have had the most profound impact on the interpretation of drug safety studies and/or that may reemerge as alternative sources of NHPs are used for drug safety studies.
Collapse
Affiliation(s)
- Vito G Sasseville
- Bristol-Myers Squibb Research and Development, Princeton, NJ 08543, USA.
| | | |
Collapse
|
43
|
Qiu CL, Yang GB, Yu K, Li Y, Li XL, Liu Q, Zhao H, Xing H, Shao Y. Characterization of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles in a cohort of Chinese rhesus macaques (Macaca mulatta). Hum Immunol 2008; 69:513-21. [PMID: 18582516 DOI: 10.1016/j.humimm.2008.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Rhesus macaques have long been used in animal models for various human diseases, the susceptibility and/or resistance to some of which have been associated with the major histocompatibilty complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, the second exon of MhcMamu-DQB1 genes in 105 rhesus macaques were characterized by cloning and sequencing. A total of 37 MhcMamu-DQB1 alleles were identified, illustrating a marked allelic polymorphism at DQB1 in these monkeys. In addition to 10 alleles were novel sequences that had not been documented in earlier reports, at least 14 alleles reported in earlier studies were not detected in this study. Most of the sequences (73%) observed in this study belong to DQB1 06 (13 alleles) and DQB1 18 (14 alleles) lineages, and the rest (27%) belong to DQB1 15, DQB1 16 and DQB1 17 lineages. The most frequent allele detected among these monkeys was MhcMamu-DQB1 06111 (22%), followed by DQB1 1503 (19%); and most of the novel alleles were present at a frequency of less than 2.5%. As for individual animals, 24 of 105 (23%) were homozygous whereas 81 of 105 (77%) were heterozygous at the MhcMamu-DQB1 locus. These data indicated significant differences in MhcMamu-DQB1 allele distribution between the Chinese rhesus macaques and the previously reported rhesus macaques, which were mostly of Indian origin. This information will not only promote the understanding of rhesus macaque MHC diversity and polymorphism but will also facilitate the use of Chinese rhesus macaques in human disease studies, especially those that may be associated with HLA-DQB genes.
Collapse
Affiliation(s)
- Chen-Li Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meyer-Lucht Y, Otten C, Püttker T, Sommer S. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials. BMC Genet 2008; 9:39. [PMID: 18534008 PMCID: PMC2442840 DOI: 10.1186/1471-2156-9-39] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 06/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. RESULTS G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. CONCLUSION Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism.
Collapse
Affiliation(s)
- Yvonne Meyer-Lucht
- Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str, 17, D-10315 Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
Kawamoto Y, Kawamoto S, Matsubayashi K, Nozawa K, Watanabe T, Stanley MA, Perwitasari-Farajallah D. Genetic diversity of longtail macaques (Macaca fascicularis) on the island of Mauritius: an assessment of nuclear and mitochondrial DNA polymorphisms. J Med Primatol 2008; 37:45-54. [PMID: 18199072 DOI: 10.1111/j.1600-0684.2007.00225.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individuals from an introduced population of longtail macaques on Mauritius have been extensively used in recent research. This population has low MHC gene diversity, and is thus regarded as a valuable resource for research. METHODS We investigated the genetic diversity of this population using multiple molecular markers located in mitochondrial DNA and microsatellite DNA loci on the autosomes and the Y chromosome. We tested samples from 82 individuals taken from seven study sites. RESULTS AND CONCLUSIONS We found this population to be panmictic, with a low degree of genetic variability. On the basis of an mtDNA phylogeny, we inferred that these macaques' ancestors originated from Java in Asia. Weak gametic disequilibrium was observed, suggesting decay of non-random associations between genomic genes at the time of founding. The results suggest that macaques bred in Mauritius are valuable as model animals for biomedical research because of their genetic homogeneity.
Collapse
Affiliation(s)
- Y Kawamoto
- Primate Research Institute, Kyoto University, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pendley CJ, Becker EA, Karl JA, Blasky AJ, Wiseman RW, Hughes AL, O'Connor SL, O'Connor DH. MHC class I characterization of Indonesian cynomolgus macaques. Immunogenetics 2008; 60:339-51. [PMID: 18504574 PMCID: PMC2612123 DOI: 10.1007/s00251-008-0292-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 11/12/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B*7601 is identical throughout its peptide binding domain to Mamu-B*03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.
Collapse
Affiliation(s)
- Chad J Pendley
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Impact of endogenous intronic retroviruses on major histocompatibility complex class II diversity and stability. J Virol 2008; 82:6667-77. [PMID: 18448532 DOI: 10.1128/jvi.00097-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) represents a multigene family that is known to display allelic and gene copy number variations. Primate species such as humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) show DRB region configuration polymorphism at the population level, meaning that the number and content of DRB loci may vary per haplotype. Introns of primate DRB alleles differ significantly in length due to insertions of transposable elements as long endogenous retrovirus (ERV) and human ERV (HERV) sequences in the DRB2, DRB6, and DRB7 pseudogenes. Although the integration of intronic HERVs resulted sooner or later in the inactivation of the targeted genes, the fixation of these endogenous retroviral segments over long time spans seems to have provided evolutionary advantage. Intronic HERVs may have integrated in a sense or an antisense manner. On the one hand, antisense-oriented retroelements such as HERV-K14I, observed in intron 2 of the DRB7 genes in humans and chimpanzees, seem to promote stability, as configurations/alleles containing these hits have experienced strong conservative selection during primate evolution. On the other hand, the HERVK3I present in intron 1 of all DRB2 and/or DRB6 alleles tested so far integrated in a sense orientation. The data suggest that multigenic regions in particular may benefit from sense introgressions by HERVs, as these elements seem to promote and maintain the generation of diversity, whereas these types of integrations may be lethal in monogenic systems, since they are known to influence transcript regulation negatively.
Collapse
|
48
|
Bonhomme M, Blancher A, Jalil MF, Crouau-Roy B. Factors shaping genetic variation in the MHC of natural non-human primate populations. ACTA ACUST UNITED AC 2007; 70:398-411. [PMID: 17854428 DOI: 10.1111/j.1399-0039.2007.00925.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Across a large distribution range, population-specific factors as well as pathogen-mediated selection may shape species genetic diversity in the major histocompatibility complex (MHC). We have studied genetic diversity and population differentiation in the MHC region of the Southeast Asian cynomolgus macaque (Macaca fascicularis fascicularis), a species with large and discontinuous range, in order to investigate the role of demography vs selection. Genetic variation was assessed at seven MHC microsatellites on 272 individuals from five populations (Indochina, Java, Borneo, Philippines, and Mauritius). A high genetic diversity was observed in all populations and the Philippines but also the Mauritius populations were the most genetically differentiated. The strength and extent of linkage disequilibrium (LD) (up to 4 Mb) varies across populations mainly because of demographic factors. In Indochina, the complete lack of LD could be the signature of ancient hybridization between cynomolgus and rhesus macaques in the Indochinese peninsula. With the additional support of seven autosomal microsatellites, tests for outlier loci based on intrapopulation diversity and interpopulation differentiation (using F-statistic) allowed to dissociate demographic from selective histories: (i) demographic history may itself explain levels of MHC variability in the Mauritius populations and (ii) positive selection could be responsible for the Philippines population differentiation, especially in the MHC class II region. Among various pathogens, Plasmodium knowlesi and Plasmodium coatneyi are two likely candidates to explain the higher frequency of some MHC haplotypes. Indeed, literature describes low parasitemia in the Philippines individuals, contrasting with fatal infections provoked by these parasites in other cynomolgus macaque populations.
Collapse
Affiliation(s)
- M Bonhomme
- Laboratoire UMR 5174 Evolution et Diversité Biologique EDB, Université Paul Sabatier, Toulouse, France.
| | | | | | | |
Collapse
|
49
|
O’Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O’Connor DH. Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 2007; 59:449-62. [PMID: 17384942 PMCID: PMC2836927 DOI: 10.1007/s00251-007-0209-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.
Collapse
Affiliation(s)
- Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chad J. Pendley
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
50
|
Otting N, de Vos-Rouweler AJM, Heijmans CMC, de Groot NG, Doxiadis GGM, Bontrop RE. MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 2007; 59:367-75. [PMID: 17334754 PMCID: PMC1914291 DOI: 10.1007/s00251-007-0201-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/01/2007] [Indexed: 12/04/2022]
Abstract
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|