1
|
Minias P. Evolutionary variation in gene conversion at the avian MHC is explained by fluctuating selection, gene copy numbers and life history. Mol Ecol 2024; 33:e17453. [PMID: 38953291 DOI: 10.1111/mec.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Using de novo genome assembly and high-throughput sequencing to characterize the MHC region in a non-model bird, the Eurasian coot. Sci Rep 2022; 12:7031. [PMID: 35488050 PMCID: PMC9054815 DOI: 10.1038/s41598-022-11018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Genes of the Major Histocompatibility Complex (MHC) form a key component of vertebrate adaptive immunity, as they code for molecules which bind antigens of intra- and extracellular pathogens (MHC class I and II, respectively) and present them to T cell receptors. In general, MHC genes are hyper-polymorphic and high MHC diversity is often maintained within natural populations (via balancing selection) and within individuals (via gene duplications). Because of its complex architecture with tandems of duplicated genes, characterization of MHC region in non-model vertebrate species still poses a major challenge. Here, we combined de novo genome assembly and high-throughput sequencing to characterize MHC polymorphism in a rallid bird species, the Eurasian coot Fulica atra. An analysis of genome assembly indicated high duplication rate at MHC-I, which was also supported by targeted sequencing of peptide-binding exons (at least five MHC-I loci genotyped). We found high allelic richness at both MHC-I and MHC-II, although signature of diversifying selection and recombination (gene conversion) was much stronger at MHC-II. Our results indicate that Eurasian coot retains extraordinary polymorphism at both MHC classes (when compared to other non-passerine bird species), although they may be subject to different evolutionary mechanism.
Collapse
|
3
|
Minias P, He K, Dunn PO. The strength of selection is consistent across both domains of the MHC class I peptide-binding groove in birds. BMC Ecol Evol 2021; 21:80. [PMID: 33964878 PMCID: PMC8106206 DOI: 10.1186/s12862-021-01812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 02/26/2023] Open
Abstract
Background The Major Histocompatibility Complex (MHC) codes for the key vertebrate immune receptors responsible for pathogen recognition. Foreign antigens are recognized via their compatibility to hyper-variable region of the peptide-binding groove (PBR), which consists of two separate protein domains. Specifically, the PBR of the MHC class I receptors, which recognize intra-cellular pathogens, has two α domains encoded by exon 2 (α1) and exon 3 (α2) of the same gene. Most research on avian MHC class I polymorphism has traditionally focused exclusively on exon 3 and comparisons of selection between the two domains have been hampered by the scarcity of molecular data for exon 2. Thus, it is not clear whether the two domains vary in their specificity towards different antigens and whether they are subject to different selective pressure. Results Here, we took advantage of rapidly accumulating genomic resources to test for the differences in selection patterns between both MHC class I domains of the peptide-binding groove in birds. For this purpose, we compiled a dataset of MHC class I exon 2 and 3 sequences for 120 avian species from 46 families. Our phylogenetically-robust approach provided strong evidence for highly consistent levels of selection on the α1 and α2 domains. There were strong correlations in all selection measures (number of positively/negatively selected residues and dN/dS ratios) between both PBR exons. Similar positive associations were found for the level of amino acid polymorphism across the two domains. Conclusions We conclude that the strength of selection and the level of polymorphism are highly consistent between both peptide-binding domains (α1 and α2) of the avian MHC class I. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01812-x.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
4
|
Cruz-López M, Fernández G, Hipperson H, Palacios E, Cavitt J, Galindo-Espinosa D, Gómez Del Angel S, Pruner R, Gonzalez O, Burke T, Küpper C. Allelic diversity and patterns of selection at the major histocompatibility complex class I and II loci in a threatened shorebird, the Snowy Plover (Charadrius nivosus). BMC Evol Biol 2020; 20:114. [PMID: 32912143 PMCID: PMC7488298 DOI: 10.1186/s12862-020-01676-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Understanding the structure and variability of adaptive loci such as the major histocompatibility complex (MHC) genes is a primary research goal for evolutionary and conservation genetics. Typically, classical MHC genes show high polymorphism and are under strong balancing selection, as their products trigger the adaptive immune response in vertebrates. Here, we assess the allelic diversity and patterns of selection for MHC class I and class II loci in a threatened shorebird with highly flexible mating and parental care behaviour, the Snowy Plover (Charadrius nivosus) across its broad geographic range. Results We determined the allelic and nucleotide diversity for MHC class I and class II genes using samples of 250 individuals from eight breeding population of Snowy Plovers. We found 40 alleles at MHC class I and six alleles at MHC class II, with individuals carrying two to seven different alleles (mean 3.70) at MHC class I and up to two alleles (mean 1.45) at MHC class II. Diversity was higher in the peptide-binding region, which suggests balancing selection. The MHC class I locus showed stronger signatures of both positive and negative selection than the MHC class II locus. Most alleles were present in more than one population. If present, private alleles generally occurred at very low frequencies in each population, except for the private alleles of MHC class I in one island population (Puerto Rico, lineage tenuirostris). Conclusion Snowy Plovers exhibited an intermediate level of diversity at the MHC, similar to that reported in other Charadriiformes. The differences found in the patterns of selection between the class I and II loci are consistent with the hypothesis that different mechanisms shape the sequence evolution of MHC class I and class II genes. The rarity of private alleles across populations is consistent with high natal and breeding dispersal and the low genetic structure previously observed at neutral genetic markers in this species.
Collapse
Affiliation(s)
- Medardo Cruz-López
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico.
| | - Guillermo Fernández
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 811, 82040, Mazatlán, Sinaloa, Mexico
| | - Helen Hipperson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Eduardo Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad La Paz, Miraflores 334, Col. Bellavista, 23050, La Paz, Baja California Sur, Mexico
| | - John Cavitt
- Avian Ecology Laboratory Department of Zoology, Weber State University, Ogden, UT, 84408, USA
| | - Daniel Galindo-Espinosa
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, A.P. 19-B, 23080, La Paz, B.C.S., Mexico
| | - Salvador Gómez Del Angel
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, Mexico
| | - Raya Pruner
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Panama City, FL, USA
| | - Oscar Gonzalez
- Grupo Aves del Perú, Gómez del Carpio 135, Barrio Medico, 34, Lima, Peru.,Department of Natural Sciences, Emmanuel College, Franklin Springs, GA, 30369, USA
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Clemens Küpper
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319, Seewiesen, Germany.
| |
Collapse
|
5
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
7
|
Whittingham LA, Dunn PO, Freeman-Gallant CR, Taff CC, Johnson JA. Major histocompatibility complex variation and blood parasites in resident and migratory populations of the common yellowthroat. J Evol Biol 2018; 31:1544-1557. [DOI: 10.1111/jeb.13349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Linda A. Whittingham
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - Peter O. Dunn
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | | | - Conor C. Taff
- Cornell Laboratory of Ornithology; Cornell University; Ithaca NY USA
| | - Jeff A. Johnson
- Department of Biological Sciences; Institute of Applied Sciences; University of North Texas; Denton TX USA
| |
Collapse
|
8
|
Lack of evidence for selection favouring MHC haplotypes that combine high functional diversity. Heredity (Edinb) 2018; 120:396-406. [PMID: 29362475 DOI: 10.1038/s41437-017-0047-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/02/2023] Open
Abstract
High rates of gene duplication and the highest levels of functional allelic diversity in vertebrate genomes are the main hallmarks of the major histocompatibility complex (MHC), a multigene family with a primordial role in pathogen recognition. The usual tight linkage among MHC gene duplicates may provide an opportunity for the evolution of haplotypes that associate functionally divergent alleles and thus grant the transmission of optimal levels of diversity to coming generations. Even though such associations may be a crucial component of disease resistance, this hypothesis has been given little attention in wild populations. Here, we leveraged pedigree data from a barn owl (Tyto alba) population to characterize MHC haplotype structure across two MHC class I (MHC-I) and two MHC class IIB (MHC-IIB) duplicates, in order to test the hypothesis that haplotypes' genetic diversity is higher than expected from randomly associated alleles. After showing that MHC loci are tightly linked within classes, we found limited evidence for shifts towards MHC haplotypes combining high diversity. Neither amino acid nor functional within-haplotype diversity were significantly higher than in random sets of haplotypes, regardless of MHC class. Our results therefore provide no evidence for selection towards high-diversity MHC haplotypes in barn owls. Rather, high rates of concerted evolution may constrain the evolution of high-diversity haplotypes at MHC-I, while, in contrast, for MHC-IIB, fixed differences among loci may provide barn owls with already optimized functional diversity. This suggests that at the MHC-I and MHC-IIB respectively, different evolutionary dynamics may govern the evolution of within-haplotype diversity.
Collapse
|
9
|
Drews A, Strandh M, Råberg L, Westerdahl H. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer). BMC Evol Biol 2017. [PMID: 28651571 PMCID: PMC5485651 DOI: 10.1186/s12862-017-0970-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. RESULTS The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. CONCLUSIONS Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical MHC-I genes, and that the evolutionary origin of these genes predate the split of the three investigated sparrow species 7 million years ago. Because only the classical MHC-I genes are involved in antigen presentation, the function of different MHC-I genes should be considered in future ecological and evolutionary studies of MHC-I in sparrows and other songbirds.
Collapse
Affiliation(s)
- Anna Drews
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Maria Strandh
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Lars Råberg
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Helena Westerdahl
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| |
Collapse
|
10
|
Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 2017; 69:463-478. [PMID: 28534224 PMCID: PMC5486808 DOI: 10.1007/s00251-017-0993-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
Collapse
Affiliation(s)
- Sara Pardal
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Anna Drews
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden.
| | - José A Alves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,South Iceland Research Centre, University of Iceland, Fjolheimer, IS-800, Selfoss, Iceland
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Helena Westerdahl
- MEEL - Molecular Ecology and Evolution Laboratory, Lund University, Ecology building, SE-223 62, Lund, Sweden
| |
Collapse
|
11
|
Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SYW, Ujvari B. Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. INFECTION GENETICS AND EVOLUTION 2017; 53:135-145. [PMID: 28528860 DOI: 10.1016/j.meegid.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Migratory birds encounter a broad range of pathogens during their journeys, making them ideal models for studying immune gene evolution. Despite the potential value of these species to immunoecology and disease epidemiology, previous studies have typically focused on their adaptive immune gene repertoires. In this study, we examined the evolution of innate immune genes in three long-distance migratory waders (order Charadriiformes). We analysed two parts of the extracellular domains of two Toll-like receptors (TLR3 and TLR7) involved in virus recognition in the Sanderling (Calidris alba), Red-necked Stint (Calidris ruficollis), and Ruddy Turnstone (Arenaria interpres). Our analysis was extended to 50 avian species for which whole-genome sequences were available, including two additional waders. We found that the inferred relationships among avian TLR3 and TLR7 do not match the whole-genome phylogeny of birds. Further analyses showed that although both loci are predominantly under purifying selection, the evolution of the extracellular domain of avian TLR3 has also been driven by episodic diversifying selection. TLR7 was found to be duplicated in all five wader species and in two other orders of birds, Cuculiformes and Passeriformes. The duplication is likely to have occurred in the ancestor of each order, and the duplicated copies appear to be undergoing concerted evolution. The phylogenetic relationships of wader TLR7 matched those of the five wader species, but that of TLR3 did not. Instead, the tree inferred from TLR3 showed potential associations with the species' ecology, including migratory behaviour and exposure to pathogens. Our study demonstrates the importance of combining immunological and ecological knowledge to understand the impact of immune gene polymorphism on the evolutionary ecology of infectious diseases.
Collapse
Affiliation(s)
- Nynke Raven
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
12
|
Minias P, Whittingham LA, Dunn PO. Coloniality and migration are related to selection on MHC genes in birds. Evolution 2016; 71:432-441. [PMID: 27921293 DOI: 10.1111/evo.13142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
The major histocompatibility complex (MHC) plays a key role in pathogen recognition as a part of the vertebrate adaptive immune system. The great diversity of MHC genes in natural populations is maintained by different forms of balancing selection and its strength should correlate with the diversity of pathogens to which a population is exposed and the rate of exposure. Despite this prediction, little is known about how life-history characteristics affect selection at the MHC. Here, we examined whether the strength of balancing selection on MHC class II genes in birds (as measured with nonsynonymous nucleotide substitutions, dN) was related to their social or migratory behavior, two life-history characteristics correlated with pathogen exposure. Our comparative analysis indicated that the rate of nonsynonymous substitutions was higher in colonial and migratory species than solitary and resident species, suggesting that the strength of balancing selection increases with coloniality and migratory status. These patterns could be attributed to: (1) elevated transmission rates of pathogens in species that breed in dense aggregations, or (2) exposure to a more diverse fauna of pathogens and parasites in migratory species. Our study suggests that differences in social structure and basic ecological traits influence MHC diversity in natural vertebrate populations.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Fleming-Canepa X, Jensen SM, Mesa CM, Diaz-Satizabal L, Roth AJ, Parks-Dely JA, Moon DA, Wong JP, Evseev D, Gossen DA, Tetrault DG, Magor KE. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. THE JOURNAL OF IMMUNOLOGY 2016; 197:783-94. [PMID: 27342841 DOI: 10.4049/jimmunol.1502450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.
Collapse
Affiliation(s)
- Ximena Fleming-Canepa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shawna M Jensen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Christine M Mesa
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexa J Roth
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Julie A Parks-Dely
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Debra A Moon
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Janet P Wong
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danyel Evseev
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Desolie A Gossen
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - David G Tetrault
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Katharine E Magor
- Department of Biological Sciences and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
14
|
Zeng QQ, He K, Sun DD, Ma MY, Ge YF, Fang SG, Wan QH. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes. BMC Evol Biol 2016; 16:42. [PMID: 26892934 PMCID: PMC4758006 DOI: 10.1186/s12862-016-0609-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. RESULTS Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). CONCLUSIONS More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.
Collapse
Affiliation(s)
- Qian-Qian Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ke He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China.
| | - Dan-Dan Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Mei-Ying Ma
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yun-Fa Ge
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Sheng-Guo Fang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Qiu-Hong Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Zeng QQ, Zhong GH, He K, Sun DD, Wan QH. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus). Int J Immunogenet 2015; 43:8-17. [PMID: 26700854 DOI: 10.1111/iji.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022]
Abstract
Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.
Collapse
Affiliation(s)
- Q-Q Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - G-H Zhong
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - K He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - D-D Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q-H Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
17
|
Lyons AC, Hoostal MJ, Bouzat JL. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution. Genetica 2015; 143:521-34. [PMID: 26071093 DOI: 10.1007/s10709-015-9850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/06/2015] [Indexed: 11/29/2022]
Abstract
The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.
Collapse
Affiliation(s)
- Amanda C Lyons
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | |
Collapse
|