1
|
Laghouaouta H, Laplana M, Ros‐Freixedes R, Fraile LJ, Pena RN. Sequence variants associated with resilient responses in growing pigs. J Anim Breed Genet 2025; 142:79-91. [PMID: 38967062 PMCID: PMC11629070 DOI: 10.1111/jbg.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
The current work aimed to identify genomic regions and candidate genes associated with resilience in pigs. In previous work, we proposed the body weight deviation from the expected growth curve (ΔBW) and the increase of the positive acute-phase protein haptoglobin (ΔHP) after a vaccine challenge as resilience indicators which may be improved through selective breeding in pigs. Individuals with steady growth rate and minor activation of haptoglobin (high ΔBW and low ΔHP values) were considered resilient. In contrast, pigs with perturbed growth rate and high activation of haptoglobin (low ΔBW and high ΔHP values) were considered susceptible. Both ∆BW and ∆HP were simultaneously considered to select the most resilient (N = 40) and susceptible (N = 40) pigs. A genome-wide association study was carried out for the pigs' response classification to the challenge test using whole-genome sequence data (7,760,720 variants). Eleven associated genomic regions were identified, harbouring relevant candidate genes related to the immune response (such as pro- and anti-inflammatory responses) and growth pathways. These associated genomic regions harboured 41 potential functional mutations (frameshift, splice donor, splice acceptor, start loss and stop loss/gain) in candidate genes. Overall, this study advances our knowledge about the genetic determinism of resilience, highlighting its polygenic nature and strong relationship with immunity and growth.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaSpain
| | - Marina Laplana
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaSpain
| | - Lorenzo J. Fraile
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
2
|
Panigrahi M, Rajawat D, Nayak SS, Jain K, Nayak A, Rajput AS, Sharma A, Dutt T. A comprehensive review on genomic insights and advanced technologies for mastitis prevention in dairy animals. Microb Pathog 2024; 199:107233. [PMID: 39694196 DOI: 10.1016/j.micpath.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Mastitis is a multi-etiological disease that significantly impacts milk production and reproductive efficiency. It is highly prevalent in dairy populations subjected to intensive selection for higher milk yield and where inbreeding is common. The issue is amplified by climate change and poor hygiene management, making disease control challenging. Key obstacles include antibiotic resistance, maximum residue levels, horizontal gene transfer, and limited success in breeding for resistance. Predictive genomics offers a promising solution for mastitis prevention by identifying genetic traits linked with susceptibility to mastitis. This review compiles the research and findings on genomics and its allied approaches, such as pan-genomics, epigenetics, proteomics, and transcriptomics, for diagnosing, understanding, and treating mastitis. In dairy production, artificial intelligence (AI), particularly deep learning (DL) techniques like convolutional neural networks (CNNs), has demonstrated significant potential to enhance milk production and improve farm profitability. It highlights the integration of advanced technologies like machine learning (ML), CRISPR, and pan-genomics to improve our knowledge of mastitis epidemiology, pathogen evolution, and the development of more effective diagnostic, preventive and therapeutic strategies for dairy herds. Genomic advancements provide critical insights into the complexities of mastitis, offering new avenues for understanding its dynamics. Integrating these findings with key predisposing factors can drive targeted prevention and more effective disease management.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Ambika Nayak
- Division of Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Atul Singh Rajput
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
3
|
Dalal V, Kamaldeep D, Magotra A, Yadav DC, Pushpa S, Garg AR. Association of CXCR1 Gene Polymorphism With Clinical Mastitis and Performance Traits in Murrah Buffalo. Reprod Domest Anim 2024; 59:e14749. [PMID: 39639851 DOI: 10.1111/rda.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
This study revealed the presence of single nucleotide polymorphisms in the CXCR1 gene and their association with performance traits and mastitis incidence in Murrah buffalo. The targeted SNP rs211042414 (T > C) at the g.106216468 locus in partial exon 2 of the CXCR1 gene was genotyped using PCR amplification and restriction enzyme digestion by Alu I, Bsa I, Dde I, Ava I, Hind III, EcoRV, Hae III, and Hae II restriction enzymes. The genotypic frequencies revealed three genotypes: CC, CT, and TT, with the C allele being the most prevalent (0.79) compared to the T allele (0.21). Targeted SNP showed significant association with the incidence of clinical mastitis incidence, and the study revealed that the TT genotyped animals showed a higher incidence of clinical mastitis compared to the TT and CT genotyped animals in the targeted population. Furthermore, least squares analysis revealed that targeted performance traits, viz. 305 days milk yield, total milk yield, and lactation length, were significantly associated with the genetic variants of the CXCR1 gene. TT genotyped animals exhibited higher milk yield than CT and CC genotyped animals, indicating a positive association between the T allele and increased milk production. These findings revealed that there is a scope for the genetic improvement of Murrah buffalo. Incorporating the identified CXCR1 gene polymorphisms into existing selection criteria can help to improve disease resistance and milk production traits in Murrah buffalo. However, further validation with a larger sample size is necessary to strengthen the observed associations and ensure their practical applicability.
Collapse
Affiliation(s)
- Vikrant Dalal
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Dhundwal Kamaldeep
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Dipin Chander Yadav
- Department of Livestock Production Management, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sindhu Pushpa
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Asha Rani Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
4
|
Bhat RR, Bhat NN, Shabir A, Mir MUR, Ahmad SB, Hussain I, Hussain SA, Ali A, Shamim K, Rehman MU. SNP Analysis of TLR4 Promoter and Its Transcriptional Factor Binding Profile in Relevance to Bovine Subclinical Mastitis. Biochem Genet 2024; 62:3605-3623. [PMID: 38158465 DOI: 10.1007/s10528-023-10578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 01/03/2024]
Abstract
Bovine mastitis is a complex infectious disease that develops in the mammary gland, predominantly caused by a bacterial infection of mammary tissue. Genetic variability of mastitis is well established and depends upon different quantitative trait loci (QTL) related to mastitis resistance or susceptibility. The susceptibility is often attributed to single-nucleotide polymorphisms (SNPs) in the variable cow breed genomes. Several global investigative attempts have resulted in studies mapping mastitis to the variations in the relevant genes. Reports have been attributed to dramatic genetic expression changes in Toll-Like Receptor 4 (TLR4) genes in mastitis-positive cows. However, the mechanism behind this variable genetic expression of TLR4 genes has been studied poorly. The present study aims to investigate SCM through various screening tests like somatic cell count (SCC), electric conductivity (EC), pH, and California mastitis test (CMT) in milk samples. This study also aims to investigate possible mechanisms behind this variable expression of TLR4 by comparative SNP evaluation and transcriptional factor profile mining. So that the important genetic mutations and effects thereof can be exploited in selecting specific breeds with higher mastitis resistance and milk yield. Seventy Holstein Frisian (HF) crossbred dairy cows were selected in the present study. The animals were screened based on various diagnostic tests (SCC, pH, EC, and CMT). Blood samples (5 mL) were collected for extraction of DNA followed by amplification of PPR1 and PPR2 of the promoter region and 5'UTR of the bovine TLR4 gene using specific primers. Sanger's enzymatic DNA sequencing technique sequenced the amplified PCR products. Further, the identification of SNPs was done through various bioinformatic tools used in this study. The findings of the present study revealed that CMT, EC, pH, and SCC could be used for the early detection of subclinical mastitis. In the present study, a significant increase in the EC, pH, and SCC in milk samples of animals affected with SCM was found in comparison to the healthy animals. The present study also revealed 16 SNPs falling in TLR4 promoter and 5' untranslated region (5'UTR) sequences in mastitis-positive genotypes compared to reference genomes. The study also investigates the potential transcriptional factor program deployed in response to variable mastitis development resistance. In the present study, the allelic and genotype frequencies of all SNP variants in the three regions viz., PPR1, PPR2, and 5'UTR, were the same indicating the absence of heterozygous condition at the respective loci. The present study has wide applicability for researchers developing mastitis-resistant breeding programs and the data generated may aid in the selection of better genetic breeds. The transcription factor binding profiles can serve as concrete leads about the studies on bovine mastitis at the molecular level and may also aid global research groups working on transcription factor (TF)-based molecular pathology of mastitis.
Collapse
Affiliation(s)
- Rahil Razak Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Nadiem Nazir Bhat
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ambreen Shabir
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, SKUAST-Kashmir, Rangil, Ganderbal, J&K, 191201, India
| | - Manzoor Ur Rahman Mir
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Ishraq Hussain
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Syed Ashaq Hussain
- Division of Veterinary Clinical Medicine, Ethics and Jurisprudence, FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India
| | - Aarif Ali
- Division of Veterinary Biochemistry FVSc & AH, SKUAST-Kashmir, Shuhama, Alusteng, Srinagar, J&K, 190006, India.
| | - Kashif Shamim
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Liang Z, Prakapenka D, Zaabza HB, VanRaden PM, Van Tassell CP, Da Y. A million-cow genome-wide association study of productive life in U.S. Holstein cows. Genet Sel Evol 2024; 56:67. [PMID: 39327562 PMCID: PMC11426094 DOI: 10.1186/s12711-024-00935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Productive life (PL) of a cow is the time the cow remains in the milking herd from first calving to exit from the herd due to culling or death and is an important economic trait in U.S. Holstein cattle. The large samples of Holstein genomic evaluation data that have become available recently provided unprecedented statistical power to identify genetic factors affecting PL in Holstein cows using the approach of genome-wide association study (GWAS). METHODS The GWAS analysis used 1,103,641 Holstein cows with phenotypic observations on PL and genotypes of 75,282 single nucleotide polymorphism (SNP) markers. The statistical tests and estimation of SNP additive and dominance effects used the approximate generalized least squares method implemented by the EPISNPmpi computer program. RESULTS The GWAS detected 5390 significant additive effects of PL distributed over all 29 autosomes and the X-Y nonrecombining region of the X chromosome (Chr31). Two chromosome regions had the most significant and largest cluster of additive effects, the SLC4A4-GC-NPFFR2 (SGN) region of Chr06 with pleiotropic effects for PL, fertility, somatic cell score and milk yield; and the 32-52 Mb region of Chr10 with peak effects for PL in or near RASGRP1 with many important immunity functions. The dominance tests detected 38 significant dominance effects including 12 dominance effects with sharply negative homozygous recessive genotypes on Chr18, Chr05, Chr23 and Chr24. CONCLUSIONS The GWAS results showed that highly significant genetic effects for PL were in chromosome regions known to have highly significant effects for fertility and health and a chromosome region with multiple genes with reproductive and immunity functions. SNPs with rare but sharply negative homozygous recessive genotypes for PL existed and should be used for eliminating heifers carrying those homozygous recessive genotypes.
Collapse
Affiliation(s)
- Zuoxiang Liang
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dzianis Prakapenka
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Hafedh B Zaabza
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Paul M VanRaden
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Yang Da
- Department of Animal Science, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
6
|
Yaman Y, Kişi YE, Şengül SS, Yıldırım Y, Bay V. Unveiling genetic signatures associated with resilience to neonatal diarrhea in lambs through two GWAS approaches. Sci Rep 2024; 14:13072. [PMID: 38844604 PMCID: PMC11156902 DOI: 10.1038/s41598-024-64093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
Neonatal diarrhea presents a significant global challenge due to its multifactorial etiology, resulting in high morbidity and mortality rates, and substantial economic losses. While molecular-level studies on genetic resilience/susceptibility to neonatal diarrhea in farm animals are scarce, prior observations indicate promising research directions. Thus, the present study utilizes two genome-wide association approaches, pKWmEB and MLM, to explore potential links between genetic variations in innate immunity and neonatal diarrhea in Karacabey Merino lambs. Analyzing 707 lambs, including 180 cases and 527 controls, revealed an overall prevalence rate of 25.5%. The pKWmEB analysis identified 13 significant SNPs exceeding the threshold of ≥ LOD 3. Moreover, MLM detected one SNP (s61781.1) in the SLC22A8 gene (p-value, 1.85eE-7), which was co-detected by both methods. A McNemar's test was conducted as the final assessment to identify whether there are any major effective markers among the detected SNPs. Results indicate that four markers-oar3_OAR1_122352257, OAR17_77709936.1, oar3_OAR18_17278638, and s61781.1-have a substantial impact on neonatal diarrhea prevalence (odds ratio: 2.03 to 3.10; statistical power: 0.88 to 0.99). Therefore, we propose the annotated genes harboring three of the associated markers, TIAM1, YDJC, and SLC22A8, as candidate major genes for selective breeding against neonatal diarrhea.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Türkiye.
| | - Yiğit Emir Kişi
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Serkan S Şengül
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Yasin Yıldırım
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, 35100, Türkiye
| |
Collapse
|
7
|
Sölzer N, Brügemann K, Yin T, König S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype × housing system interactions. J Dairy Sci 2024; 107:3724-3737. [PMID: 38216046 DOI: 10.3168/jds.2023-24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns [CON] and compost-bedded pack barns [CBPB]) to infer possible genotype × housing system interactions. The DD stages included 2,980 observations for the 3 traits DD-sick, DD-acute, and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system, and location, but with pronounced housing-system differences. Five other farms had a "mixed system" with 2 subherds, one representing CBPB and the other one CON. The CBPB system was represented by 899 cows (1,530 observations), and 811 cows (1,450 observations) represented the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute, and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute, and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole dataset, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic, and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole dataset were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype × housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP × housing system interaction effects were estimated simultaneously via GWAS, considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, that is, METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP × housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for the same traits in different environments and negligible genotype × housing system interactions indicate only minor effects on genetic evaluations for DD due to housing-system particularities.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
8
|
Laodim T, Koonawootrittriron S, Elzo MA, Suwanasopee T, Jattawa D, Sarakul M. Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations. Anim Biosci 2024; 37:576-590. [PMID: 37946425 PMCID: PMC10915225 DOI: 10.5713/ab.23.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. METHODS A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-yearseason, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. RESULTS A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. CONCLUSION Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.
Collapse
Affiliation(s)
- Thawee Laodim
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140,
Thailand
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
| | - Skorn Koonawootrittriron
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Mauricio A. Elzo
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Sciences, University of Florida, Gainesville, 32611-0910, FL,
USA
| | - Thanathip Suwanasopee
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Danai Jattawa
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Mattaneeya Sarakul
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom, 48000,
Thailand
| |
Collapse
|
9
|
Sanchez L, Campos-Chillon F, Sargolzaei M, Peterson DG, Sprayberry KA, McArthur G, Anderson P, Golden B, Pokharel S, Abo-Ismail MK. Molecular Mechanisms Associated with the Development of the Metritis Complex in Dairy Cattle. Genes (Basel) 2024; 15:439. [PMID: 38674374 PMCID: PMC11049392 DOI: 10.3390/genes15040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The metritis complex (MC), a group of post-partum uterine diseases, is associated with increased treatment costs and reduced milk yield and fertility. The goal of this study was to identify genetic variants, genes, or genomic regions that modulate MC disease. A genome-wide association study was performed using a single-locus mixed linear model of 1967 genotypes (624,460 SNPs) and metritis complex records. Then, in-silico functional analyses were performed to detect biological mechanisms and pathways associated with the development of MC. The ATP8A2, COX16, AMN, and TRAF3 genes, located on chromosomes 12, 10, and 21, were associated with MC at p ≤ 0.0001. These genes are involved in the regulation of cholesterol metabolism in the stromal tissue of the uterus, which can be directly associated with the mode of transmission for pathogens causing the metritis complex. The modulation of cholesterol abundance alters the efficiency of virulence factors and may affect the susceptibility of the host to infection. The SIPA1L1, DEPDC5, and RNF122 genes were also significantly associated with MC at p ≤ 0.0001 and are involved in the PI3k-Akt pathway, responsible for activating the autophagic processes. Thus, the dysregulation of these genes allows for unhindered bacterial invasion, replication, and survival within the endometrium.
Collapse
Affiliation(s)
- Leanna Sanchez
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Fernando Campos-Chillon
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Mehdi Sargolzaei
- Select Sires Inc., 11740 US-42, Plain City, OH 43064, USA;
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniel G. Peterson
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Kim A. Sprayberry
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Garry McArthur
- Swinging Udders Veterinary Services, 8418 Liberty Rd, Galt, CA 95632, USA;
| | - Paul Anderson
- Department of Computer Science and Software Engineering, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA;
| | | | - Siroj Pokharel
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| | - Mohammed K. Abo-Ismail
- Department of Animal Science, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; (L.S.); (F.C.-C.); (D.G.P.); (K.A.S.); (S.P.)
| |
Collapse
|
10
|
Valente D, Serra O, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. A Genome-Wide Association Study for Resistance to Tropical Theileriosis in Two Bovine Portuguese Autochthonous Breeds. Pathogens 2024; 13:71. [PMID: 38251378 PMCID: PMC10819359 DOI: 10.3390/pathogens13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The control of Tropical Theileriosis, a tick-borne disease with a strong impact on cattle breeding, can be facilitated using marker-assisted selection in breeding programs. Genome-wide association studies (GWAS) using high-density arrays are extremely important for the ongoing process of identifying genomic variants associated with resistance to Theileria annulata infection. In this work, single-nucleotide polymorphisms (SNPs) were analyzed in the Portuguese autochthonous cattle breeds Alentejana and Mertolenga. In total, 24 SNPs suggestive of significance (p ≤ 10-4) were identified for Alentejana cattle and 20 SNPs were identified for Mertolenga cattle. The genomic regions around these SNPs were further investigated for annotated genes and quantitative trait loci (QTLs) previously described by other authors. Regarding the Alentejana breed, the MAP3K1, CMTM7, SSFA2, and ATG13 genes are located near suggestive SNPs and appear as candidate genes for resistance to Tropical Theileriosis, considering its action in the immune response and resistance to other diseases. On the other hand, in the Mertolenga breed, the UOX gene is also a candidate gene due to its apparent link to the pathogenesis of the disease. These results may represent a first step toward the possibility of including genetic markers for resistance to Tropical Theileriosis in current breed selection programs.
Collapse
Affiliation(s)
- Diana Valente
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal;
| | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Jacinto Gomes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Monforte Herdade da Coutada Real-Assumar, 7450-051 Assumar, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, 7006-806 Évora, Portugal;
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
11
|
Strillacci MG, Punturiero C, Milanesi R, Bernini F, Mason T, Bagnato A. Antibiotic treatments and somatic cell count as phenotype to map QTL for mastitis susceptibility in Holstein cattle breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Tiziano Mason
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
12
|
Jaglan K, Ravikumar D, Sukhija N, George L, Alex R, Vohra V, Verma A. Genomic clues of association between clinical mastitis and SNPs identified by ddRAD sequencing in Murrah buffaloes. Anim Biotechnol 2023; 34:4538-4546. [PMID: 36639144 DOI: 10.1080/10495398.2023.2165937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The total milk production of India is 209.96 MT out of which 45% is contributed by the indigenous buffalo and due to their high producing virtue, the prevalence of mastitis is 5-20%. Despite the increasing level of technological advancement, mastitis is still an issue of concern for dairy industry in India as well as across the world. Therefore, the present study aimed to identify the SNPs and associate them with the incidence of clinical mastitis in Murrah buffalo using the ddRAD sequencing approach taking mastitis incidence data of 96 Murrah buffaloes. A total of 246 million quality controlled reads were obtained with an average alignment rate of 99.01% and at a read depth of 10, quality controlled SNPs obtained were 18,056. The logistic regression model was used and a total of seven SNPs were found significantly associated (p < 0.001) with mastitis incidence and seven genes were identified viz., NCBP1, FOXN3, TPK1, XYLT2, CPXM2, HERC1, and OPCML. The majority of them were having tumor suppressing action, related to immunogenetics or glycolytic and energy production. Conclusively, the SNPs identified in this study may be useful for future studies on mastitis incidence in Murrah buffalo and the SNP associations can be further validated.
Collapse
Affiliation(s)
- Komal Jaglan
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - D Ravikumar
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Nidhi Sukhija
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Linda George
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Kour A, Deb SM, Nayee N, Niranjan SK, Raina VS, Mukherjee A, Gupta ID, Patil CS. Novel insights into genome-wide associations in Bos indicus reveal genetic linkages between fertility and growth. Anim Biotechnol 2023; 34:39-55. [PMID: 34120566 DOI: 10.1080/10495398.2021.1932520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bos indicus breed Sahiwal, famous for its optimum performance, has so far been genetically improved for performance traits based on phenotypic records and the genomic knowhow regarding genes, regions and biological processes underlying the complex quantitative traits is lacking. In this context, a Genome-wide Association Study was performed for fertility and growth traits in Sahiwal cattle to shed light on its genomic profile. A total of 46 SNPs were found associated with the traits at genome-wide suggestive threshold of P ≤ 10-4. USP32, LRPPRC, PLA2G10, RRN3 and ASAP1 were identified as putative candidate genes for body weight at different ages. However, several genes mapped for growth traits like GREB1, PLA2G10, RAD51C, BIRC6, TEX14 and PEBP4 had significant physiological underpinnings in determining fertility of the animals. Moreover, Quantitative trait loci (QTL) identification revealed potential overlaps with the already reported QTLs for both fertility and growth for most of the traits. Further, candidate SNP enrichment analysis revealed an enriched biological process for birth weight with a significant reproductive role. Based on the findings, genetic linkages underlying fertility and growth could be discerned in Sahiwal population and may be utilized for improving fertility traits in future.
Collapse
Affiliation(s)
- Aneet Kour
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | - Nilesh Nayee
- National Dairy Development Board, Anand, Gujarat, India
| | | | | | | | | | | |
Collapse
|
14
|
Essa B, Al-Sharif M, Abdo M, Fericean L, Ateya A. New Insights on Nucleotide Sequence Variants and mRNA Levels of Candidate Genes Assessing Resistance/Susceptibility to Mastitis in Holstein and Montbéliarde Dairy Cows. Vet Sci 2023; 10:vetsci10010035. [PMID: 36669036 PMCID: PMC9861242 DOI: 10.3390/vetsci10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
A major factor in the propagation of an infectious disease is host genetics. In this study, 180 dairy cows (90 of each breed: Holstein and Montbéliarde) were used. Each breed's tested dairy cows were divided into two groups of comparable size (45 cows each), mastitis-free and mastitis-affected groups. Each cow's jugular vein was punctured to obtain blood samples for DNA and RNA extraction. In the examined Holstein and Montbéliarde dairy cows, single nucleotide polymorphisms (SNPs) related with mastitis resistance/susceptibility were found in the RASGRP1, NFkB, CHL1, MARCH3, PDGFD, MAST3, EPS15L1, C1QTNF3, CD46, COX18, NEURL1, PPIE, and PTX3 genes. Chi-square analysis of identified SNPs revealed a significant difference in gene frequency between mastitic and healthy cows. Except for CHL1, mastitic dairy cows of two breeds had considerably higher mRNA levels of the examined genes than did healthy ones. Marker-assisted selection and monitoring of dairy cows' susceptibility to mastitis may be accomplished through the use of discovered SNPs and changes in the gene expression profile of the studied genes. These findings also point to a possible method for reducing mastitis in dairy cows through selective breeding of animals using genetic markers linked to an animal's ability to resist infection.
Collapse
Affiliation(s)
- Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-10-0354-1921; Fax: +20-502372592
| |
Collapse
|
15
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
16
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
17
|
Zemanova M, Langova L, Novotná I, Dvorakova P, Vrtkova I, Havlicek Z. Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows. Arch Anim Breed 2022; 65:371-384. [PMID: 36415759 PMCID: PMC9673033 DOI: 10.5194/aab-65-371-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs, thereby reducing the resistance of microorganisms and decreasing companies' economic losses due to mastitis (i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on dairy cows' immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to describe the physiology of the mammary gland along with its immune mechanisms and to approximate their connection with potential mastitis resistance genes. This work describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.
Collapse
|
18
|
Sölzer N, May K, Yin T, König S. Genomic analyses of claw disorders in Holstein cows: Genetic parameters, trait associations, and genome-wide associations considering interactions of SNP and heat stress. J Dairy Sci 2022; 105:8218-8236. [PMID: 36028345 DOI: 10.3168/jds.2022-22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study was an in-depth genomic analysis to understand the genomic mechanisms of the 3 claw disorders dermatitis digitalis (DD), interdigital hyperplasia (HYP), and sole ulcer (SU). In this regard, we estimated genetic parameters based on genomic relationship matrices, performed genome-wide association studies, annotated potential candidate genes, and inferred genetic associations with breeding goal traits considering the most important chromosomal segments. As a further novelty of this study, we inferred possible SNP × heat stress interactions for claw disorders. The study consisted of 17,264 first-lactation Holstein Friesian cows kept in 50 large-scale contract herds. The disease prevalence was 15.96, 2.36, and 8.20% for DD, HYP, and SU, respectively. The remaining breeding goal traits consisted of type traits of the feet and leg composite, female fertility, health traits, and 305-d production traits. The final genotype data set included 44,474 SNPs from the 17,264 genotyped cows. Heritabilities for DD, HYP, and SU were estimated in linear and threshold models considering the genomic relationship matrix (G matrix). Genetic correlations with breeding goal traits based on G were estimated in a series of bivariate linear models, which were verified via SNP effect correlations for specific chromosome segments (i.e., segments harboring potential candidate genes for DD, HYP, and SU). Genome-wide association studies were performed for all traits in a case-control design by applying a single SNP linear mixed model. Furthermore, for DD, HYP, and SU, we modeled SNP × heat stress interactions in genome-wide association studies. Single nucleotide polymorphism-based heritabilities were 0.04 and 0.08 for DD, 0.03 and 0.10 for SU, and 0.03 and 0.23 for HYP from linear and threshold models, respectively. The genetic correlations between DD, HYP, and SU with conformation traits from the feet and leg composite were positive throughout, indicating the value of indirect selection on conformation traits to improve claw health. Genetic correlations between DD, SU, and HYP with other breeding goal traits indicated impaired female fertility, impaired udder health status, and productivity decline of diseased cows. Genetic correlations among DD, SU, and HYP were moderate to large, indicating that different claw disorders have similar genetic mechanisms. Nevertheless, we identified disease-specific potential candidate genes, and genetic associations based on the surrounding SNPs partly differed from the genetic correlations. Especially for candidate genes contributing to 2 traits simultaneously, correlations based on SNP effects from the respective chromosome segment were close to 1 or to -1. In this regard, we annotated the candidate genes KRT33A and KRT33B for HYP and DD, KIF27 for HYP and calving to first insemination, and MAN1A1 for SU and the production traits. For SNP × heat stress interactions, we identified significant SNPs on BTA 2, 4, 5, 7, 8, 9, 13, 22, 25, and 28, and we annotated the potential candidate genes FSIP2, CLCN1, ADGRV1, DOP1A, THBD, and RHOBTB1. Results indicate gene-specific mechanisms of the claw disorders only in specific environments.
Collapse
Affiliation(s)
- Niklas Sölzer
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Giessen, 35390 Giessen, Germany.
| |
Collapse
|
19
|
Zhang X, Chen N, Chen H, Lei C, Sun T. Comparative analyses of copy number variations between swamp and river buffalo. Gene X 2022; 830:146509. [PMID: 35460806 DOI: 10.1016/j.gene.2022.146509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Domestic buffalo is an important livestock in the tropical and sub-tropical region, including two types: swamp and river buffalo. The swamp buffalo is mainly used as draft animal, while the river buffalo is raised for milk production. In this study, based on the new high-quality buffalo reference genome UOA_WB_1, we firstly investigated the copy number variants in buffalo using whole-genome Illumina sequencing. A total of 3,734 CNV regions (CNVRs) were detected in 106 buffalo population with a total length of 23,429,066 bp, corresponding to ∼ 0.88% of the water buffalo genome (UOA_WB_1). Our results revealed a clear population differentiation in CNV between swamp and river buffalo. In addition, a total of 667 highly differentiated CNVRs (covering 886 genes) were detected between river and swamp buffalo population. We detected a set of CNVR-overlapping genes associated with exercise, immunity, nerve, and milk trait which exhibited different copy numbers between swamp and river buffalo population. This study provides valuable genome variation resources for buffalo and would contribute to understanding the genetic differences between swamp and river buffalo.
Collapse
Affiliation(s)
- Xianfu Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
20
|
Trujano-Chavez MZ, Sánchez-Ramos R, Pérez-Rodríguez P, Ruíz-Flores A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Vet Sci 2021; 8:vetsci8120329. [PMID: 34941856 PMCID: PMC8707377 DOI: 10.3390/vetsci8120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mastitis is a disease that causes significant economic losses, since resistance to mastitis is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coefficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076) mastitis, possibly due to low selection for the immunological candidate genes that influence these traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the group distribution through the graphics of the principal component analysis. The genotypic profiles showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to 13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of the presence of genetic diversity. The results of this study constitute evidence of the genetic potential of the Mexican Braunvieh population to improve mastitis-related traits.
Collapse
Affiliation(s)
- Mitzilin Zuleica Trujano-Chavez
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
| | - Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Socio Economía Estadística e Informática-Estadística, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
- Correspondence: ; Tel.: +52-595-952-1621
| |
Collapse
|
21
|
Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech 2021; 11:466. [PMID: 34745817 DOI: 10.1007/s13205-021-03012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
This study elucidated potential genetic variants and QTLs associated with clinical mastitis incidence traits in Bos indicus breed, Sahiwal. Estimated breeding values for the traits (calculated using Bayesian inference) were used as pseudo-phenotypes for association with genome-wide SNPs and further QTL regions underlying the traits were identified. In all, 25 SNPs were found to be associated with the traits at the genome-wide suggestive threshold (p ≤ 5 × 10-4) and these SNPs were used to define QTL boundaries based on the linkage disequilibrium structure. A total of 16 QTLs were associated with the trait EBVs including seven each for clinical mastitis incidence (CMI) in first and second lactations and two for CMI in third lactation. Nine out of sixteen QTLs overlapped with the already reported QTLs for mastitis traits, whereas seven were adjudged as novel ones. Important candidates for clinical mastitis in the identified QTL regions included DNAJB9, ELMO1, ARHGAP26, NR3C1, CACNB2, RAB4A, GRB2, NUP85, SUMO2, RBPJ, and RAB33B genes. These findings shed light on the genetic architecture of the disease in Bos indicus, and present potential regions for fine mapping and downstream analysis in future.
Collapse
|
22
|
May K, Sames L, Scheper C, König S. Genomic loci and genetic parameters for uterine diseases in first-parity Holstein cows and associations with milk production and fertility. J Dairy Sci 2021; 105:509-524. [PMID: 34656355 DOI: 10.3168/jds.2021-20685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Based on the clinical stage (e.g., vaginal discharge) and bacterial species, several forms of uterine diseases (UD) exist and can be classified as different traits [i.e., different stages of endometritis (EM) and metritis (MET)], which may differ in their genetic background and causal physiological mechanisms. Consequently, the present study aimed to study (1) the effect of UD on 305-d lactation and fertility, (2) the estimation of heritabilities for UD traits using pedigree- and SNP-based relationships, and (3) genome-wide associations to detect significant SNP markers and to infer candidate genes for UD traits. The data set contained herd manager and veterinarian recorded UD traits of 14,810 first-lactating genotyped Holstein cows from 63 large-scale contract herds. Binary defined UD traits (healthy or diseased) according to the clinical stage were endometritis catarrhalis (EM I), endometritis mucopurulenta (EM II), endometritis purulenta (EM III), pyometra (EM IV), endometritis (EM_SOD; superordinate diagnosis = no specific clinical stage defined), and MET. The binary defined trait UDall included all EM and MET diagnoses. The prevalence of UDall was 26.7%. The effect of UD on 305-d lactation and fertility was estimated via linear and generalized linear mixed models. We applied linear single-trait animal models and threshold models to estimate pedigree- and SNP-based heritabilities for UD traits, and bivariate linear models for genetic correlation estimations between UDall with 305-d lactation and fertility traits. A diagnosis for UDall had significant unfavorable effects on the female fertility traits calving interval, interval from calving to first service, days open, and nonreturn rate after 90 d, but was unrelated to 305-d lactation records for production traits milk yield, protein yield, and fat yield. Heritabilities for UDall and EM stages were close to zero, displaying maximal values of 0.05 for pedigree and 0.07 for SNP-based relationship matrices. For MET, pedigree- and SNP-based heritabilities were <0.001 and 0.07, respectively. Genetic correlations ranged from 0.20 to 0.31 between UDall with 305-d milk, protein, and fat yield, and from 0.17 to 0.40 with fertility traits. The GWAS revealed 5 SNP on bovine chromosomes (BTA) 1, 8, 10, 23 for UDall, 5 SNP on BTA 26 for EM I, 1 SNP on BTA 19 for EM II, 4 SNP on BTA 2, 18, 20, 25 for EM III, and 4 SNP on BTA 4, 16, 20 for EM IV above the significance threshold. For EM_SOD, we identified 15 significantly associated SNP on 4 chromosomes, and 4 significant SNP on BTA 3, 20, 22, 28 for MET. Marker associations for UD traits were annotated to 24 potential candidate genes using the ENSEMBL database. Six of these genes were previously reported to be involved in uterine defense mechanisms or in endometritis. Further detected genes contribute to immune response mechanisms during bacterial infections. Different SNP significantly influenced different UD stages, explaining the inter-individual variations in clinical severity of uterine infections.
Collapse
Affiliation(s)
- Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| | - Lena Sames
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| |
Collapse
|
23
|
Santos WB, Schettini GP, Maiorano AM, Bussiman FO, Balieiro JCC, Ferraz GC, Pereira GL, Baldassini WA, Neto ORM, Oliveira HN, Curi RA. Genome-wide scans for signatures of selection in Mangalarga Marchador horses using high-throughput SNP genotyping. BMC Genomics 2021; 22:737. [PMID: 34645387 PMCID: PMC8515666 DOI: 10.1186/s12864-021-08053-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The detection of signatures of selection in genomic regions provides insights into the evolutionary process, enabling discoveries regarding complex phenotypic traits. In this research, we focused on identifying genomic regions affected by different selection pressures, mainly highlighting the recent positive selection, as well as understanding the candidate genes and functional pathways associated with the signatures of selection in the Mangalarga Marchador genome. Besides, we seek to direct the discussion about genes and traits of importance in this breed, especially traits related to the type and quality of gait, temperament, conformation, and locomotor system. RESULTS Three different methods were used to search for signals of selection: Tajima's D (TD), the integrated haplotype score (iHS), and runs of homozygosity (ROH). The samples were composed of males (n = 62) and females (n = 130) that were initially chosen considering well-defined phenotypes for gait: picada (n = 86) and batida (n = 106). All horses were genotyped using a 670 k Axiom® Equine Genotyping Array (Axiom MNEC670). In total, 27, 104 (chosen), and 38 candidate genes were observed within the signatures of selection identified in TD, iHS, and ROH analyses, respectively. The genes are acting in essential biological processes. The enrichment analysis highlighted the following functions: anterior/posterior pattern for the set of genes (GLI3, HOXC9, HOXC6, HOXC5, HOXC4, HOXC13, HOXC11, and HOXC10); limb morphogenesis, skeletal system, proximal/distal pattern formation, JUN kinase activity (CCL19 and MAP3K6); and muscle stretch response (MAPK14). Other candidate genes were associated with energy metabolism, bronchodilator response, NADH regeneration, reproduction, keratinization, and the immunological system. CONCLUSIONS Our findings revealed evidence of signatures of selection in the MM breed that encompass genes acting on athletic performance, limb development, and energy to muscle activity, with the particular involvement of the HOX family genes. The genome of MM is marked by recent positive selection. However, Tajima's D and iHS results point also to the presence of balancing selection in specific regions of the genome.
Collapse
Affiliation(s)
- Wellington B Santos
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil.
| | - Gustavo P Schettini
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Amanda M Maiorano
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Fernando O Bussiman
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Júlio C C Balieiro
- Department of Animal Science, University of São Paulo (USP) - FZEA, Pirassununga, Brazil
| | - Guilherme C Ferraz
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Guilherme L Pereira
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Welder Angelo Baldassini
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Otávio R M Neto
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| | - Henrique N Oliveira
- Department of Animal Science, São Paulo State University (Unesp) - FCAV, Via de Acesso Professor Paulo Donato Castelane, NN, CEP: 14884-900, Jaboticabal, SP, Brazil
| | - Rogério A Curi
- Department of Breeding and Animal Nutrition, São Paulo State University (Unesp) - FMVZ, Botucatu, Brazil
| |
Collapse
|
24
|
Ilie DE, Mizeranschi AE, Mihali CV, Neamț RI, Goilean GV, Georgescu OI, Zaharie D, Carabaș M, Huțu I. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes (Basel) 2021; 12:genes12101495. [PMID: 34680890 PMCID: PMC8535694 DOI: 10.3390/genes12101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mastitis is one of the most frequently encountered diseases in dairy cattle, negatively affecting animal welfare and milk production. For this reason, contributions to understanding its genomic architecture are of great interest. Genome-wide association studies (GWAS) have identified multiple loci associated with somatic cell score (SCS) and mastitis in cattle. However, most of the studies have been conducted in different parts of the world on various breeds, and none of the investigations have studied the genetic architecture of mastitis in Romanian dairy cattle breeds up to this point in time. In this study, we report the first GWAS for SCS in dairy cattle breeds from Romania. For GWAS, we used an Axiom Bovine v3 SNP-chip (>63,000 Single Nucleotide Polymorphism -SNPs) and 33,330 records from 690 cows belonging to Romanian Spotted (RS) and Romanian Brown (RB) cattle. The results found one SNP significantly associated with SCS in the RS breed and 40 suggestive SNPs with -log10 (p) from 4 to 4.9 for RS and from 4 to 5.4 in RB. From these, 14 markers were located near 12 known genes (AKAP8, CLHC1, MEGF10, SATB2, GATA6, SPATA6, COL12A1, EPS8, LUZP2, RAMAC, IL12A and ANKRD55) in RB cattle, 3 markers were close to ZDHHC19, DAPK1 and MMP7 genes, while one SNP overlapped the HERC3 gene in RS cattle. Four genes (HERC3, LUZP2, AKAP8 and MEGF10) associated with SCS in this study were previously reported in different studies. The most significant SNP (rs110749552) associated with SCS was located within the HERC3 gene. In both breeds, the SNPs and position of association signals were distinct among the three parities, denoting that mastitis is controlled by different genes that are dependent according to parity. The current results contribute to an expansion in the body of knowledge regarding the proportion of genetic variability explained by SNPs for SCS in dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
- Correspondence:
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ciprian Valentin Mihali
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Radu Ionel Neamț
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - George Vlad Goilean
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ovidiu Ionuț Georgescu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| | - Daniela Zaharie
- Faculty of Mathematics and Computer Science, West University of Timișoara, 300223 Timisoara, Romania;
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, 060042 București, Romania;
| | - Ioan Huțu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| |
Collapse
|
25
|
Relationship between polymorphism within Peptidoglycan Recognition Protein 1 gene (PGLYRP1) and somatic cell counts in milk of Holstein cows. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.
Collapse
|
26
|
Klein SL, Yin T, Swalve HH, König S. Single-step genomic best linear unbiased predictor genetic parameter estimations and genome-wide associations for milk fatty acid profiles, interval from calving to first insemination, and ketosis in Holstein cattle. J Dairy Sci 2021; 104:10921-10933. [PMID: 34334206 DOI: 10.3168/jds.2021-20416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Milk fatty acids (FA) have been suggested as biomarkers for early-lactation metabolic diseases and for female fertility status. The aim of the present study was to infer associations between FA, the metabolic disorder ketosis (KET), and the interval from calving to first insemination (ICF) genetically and genomically. In this regard, we focused on a single-step genomic BLUP approach, allowing consideration of genotyped and ungenotyped cows simultaneously. The phenotypic data set considered 38,375 first-lactation Holstein cows, kept in 45 large-scale co-operator herds from 2 federal states in Germany. The calving years for these cows were from 2014 to 2017. Concentrations in milk from the first official milk recording test-day for saturated, unsaturated (UFA), monounsaturated (MUFA), polyunsaturated, palmitic, and stearic (C18:0) FA were determined via Fourier-transform infrared spectroscopy. Ketosis was defined as a binary trait according to a veterinarian diagnosis key, considering diagnoses within a 6-wk interval after calving. A subset of 9,786 cows was genotyped for 40,989 SNP markers. Variance components and heritabilities for all Gaussian distributed FA and for ICF, and for binary KET were estimated by applying single-step genomic BLUP single-trait linear and threshold models, respectively. Genetic correlations were estimated in series of bivariate runs. Genomic breeding values for the single-step genomic BLUP estimations were dependent traits in single-step GWAS. Heritabilities for FA were moderate in the range from 0.09 to 0.20 (standard error = 0.02-0.03), but quite small for ICF (0.08, standard error = 0.01) and for KET (0.05 on the underlying liability scale, posterior standard deviation = 0.02). Genetic correlations between KET and UFA, MUFA, and C18:0 were large (0.74 to 0.85, posterior standard deviation = 0.14-0.19), and low positive between KET and ICF (0.17, posterior standard deviation = 0.22). Genetic correlations between UFA, MUFA, and C18:0 with ICF ranged from 0.34 to 0.46 (standard error = 0.12). In single-step GWAS, we identified a large proportion of overlapping genomic regions for the different FA, especially for UFA and MUFA, and for saturated and palmitic FA. One identical significantly associated SNP was identified for C18:0 and KET on BTA 15. However, there was no genomic segment simultaneously significantly affecting all trait categories ICF, FA, and KET. Nevertheless, some of the annotated potential candidate genes DGKA, IGFBP4, and CXCL8 play a role in lipid metabolism and fertility mechanisms, and influence production diseases in early lactation. Genetic and genomic associations indicate that Fourier-transform infrared spectroscopy FA concentrations in milk from the first official test-day are valuable predictors for KET and for ICF.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - H H Swalve
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
27
|
Wagner P, Yin T, Brügemann K, Engel P, Weimann C, Schlez K, König S. Genome-Wide Associations for Microscopic Differential Somatic Cell Count and Specific Mastitis Pathogens in Holstein Cows in Compost-Bedded Pack and Cubicle Farming Systems. Animals (Basel) 2021; 11:ani11061839. [PMID: 34205623 PMCID: PMC8234204 DOI: 10.3390/ani11061839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary New free walk housing systems such as compost-bedded pack barns might positively influence animal welfare. However, udder health can be negatively affected due to the microbial environment in the pack. Udder health depends on many factors, such as the environment, the feed, the pathogen species, and the genetic mechanisms of the cow’s immune system. For a more precise evaluation of udder health, we examined novel traits including specific mastitis pathogens and differential somatic cell fractions in milk. In order to identify possible candidate genes for udder health, a genome-wide association study, including single-nucleotide polymorphisms (SNP) by housing system interactions (compost-bedded pack barn and conventional cubicle barn), was performed. We identified two potential candidate genes for the interaction effect in relation to udder health. The identified potential candidate gene HEMK1 (HemK methyltransferase family member 1) is involved in immune system development, and CHL1 (cell adhesion molecule L1 like) has an immunosuppressive effect during stress conditions. The results suggest housing system-specific breeding strategies in order to improve udder health in compost-bedded pack and conventional cubicle barns. Abstract The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems.
Collapse
Affiliation(s)
- Patricia Wagner
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
- Correspondence: ; Tel.: +49-(0)-641-99-37675
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Petra Engel
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Christina Weimann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| | - Karen Schlez
- Landesbetrieb Hessisches Landeslabor, Schubertstraße 60, D-35392 Gießen, Germany;
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany; (T.Y.); (K.B.); (P.E.); (C.W.); (S.K.)
| |
Collapse
|
28
|
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod 2021; 53:236. [PMID: 33788033 DOI: 10.1007/s11250-021-02680-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/22/2021] [Indexed: 01/17/2023]
Abstract
Mastitis is the most important disease in the dairy industry. Antibiotics are considered to be the first choice in the treatment of the disease. However, the problem of antibiotic residue and antimicrobial resistance, in addition to the impact of antibiotic abuse on public health, leads to many restrictions on uncontrolled antibiotic therapy in the dairy sector worldwide. Researchers have investigated novel therapeutic approaches to replace the use of antibiotics in mastitis control. These efforts, supported by the revolutionary development of nanotechnology, stem cell assays, molecular biological tools, and genomics, enabled the development of new approaches for mastitis-treatment and control. The present review discusses recent concepts to control mastitis such as breeding of mastitis-resistant dairy cows, the development of novel diagnostic and therapeutic tools, the application of communication technology as an educational and epidemiological tool, application of modern mastitis vaccines, cow drying protocols, teat disinfection, housing, and nutrition. These include the application of nanotechnology, stem cell technology, photodynamic and laser therapy or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
29
|
Shabalina T, Yin T, May K, König S. Proofs for genotype by environment interactions considering pedigree and genomic data from organic and conventional cow reference populations. J Dairy Sci 2021; 104:4452-4466. [PMID: 33589254 DOI: 10.3168/jds.2020-19384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to prove genotype by environment interactions (G × E) for production, longevity, and health traits considering conventional and organic German Holstein dairy cattle subpopulations. The full data set included 141,778 Holstein cows from 57 conventional herds and 7,915 cows from 9 organic herds. The analyzed traits were first-lactation milk yield and fat percentage (FP), the length of productive life (LPL) and the health traits mastitis, ovarian cycle disorders, and digital dermatitis in first lactation. A subset of phenotyped cows was genotyped and used for the implementation of separate cow reference populations. After SNP quality controls, the cow reference sets considered 40,830 SNP from 19,700 conventional cows and the same 40,830 SNP from 1,282 organic cows. The proof of possible G × E was made via multiple-trait model applications, considering same traits from the conventional and organic population as different traits. In this regard, pedigree (A), genomic (G) and combined relationship (H) matrices were constructed. For the production traits, heritabilities were very similar in both organic and conventional populations (i.e., close to 0.70 for FP and close to 0.40 for milk yield). For low heritability health traits and LPL, stronger heritability fluctuations were observed, especially for digital dermatitis with 0.05 ± 0.01 (organic, A matrix) to 0.33 ± 0.04 (conventional, G matrix). Quite large genetic correlations between same traits from the 2 environments were estimated for production traits, especially for high heritability FP. For LPL, the genetic correlation was 0.67 (A matrix) and 0.66 (H matrix). The genetic correlation between LPL organic with LPL conventional was 0.94 when considering the G matrix, but only 213 genotyped cows were included. For health traits, genetic correlations were throughout lower than 0.80, indicating possible G × E. Genetic correlations from the different matrices A, G, and H for health and production traits followed the same pattern, but the estimates from G for health traits were associated with quite large standard errors. In genome-wide association studies, significantly associated SNP for production traits overlapped in the conventional and organic population. In contrast, for low heritability LPL and health traits, significantly associated SNP and annotated potential candidate genes differed in both populations. In this regard, significantly associated SNP for mastitis from conventional cows were located on Bos taurus autosomes 6 and 19, but on Bos taurus autosomes 1, 10, and 22 in the organic population. For the remaining health traits and LPL, different potential candidate genes were annotated, but the different genes reflect similar physiological pathways. We found evidence of G × E for low heritability functional traits, suggesting different breeding approaches in organic and conventional populations. Nevertheless, for a verification of results and implementation of alternative breeding strategies, it is imperative to increase the organic cow reference population.
Collapse
Affiliation(s)
- T Shabalina
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany; Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Prof.-Dürwaechter-Platz 1, 85586 Poing, Germany
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstraße 21B, 35390 Gießen, Germany.
| |
Collapse
|
30
|
Rabier CE, Delmas C. The SgenoLasso and its cousins for selective genotyping and extreme sampling: application to association studies and genomic selection. STATISTICS-ABINGDON 2021. [DOI: 10.1080/02331888.2021.1881785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Charles-Elie Rabier
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
- IMAG, CNRS, Université de Montpellier, Montpellier, France
- LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Céline Delmas
- INRAE, UR MIAT, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
31
|
XU JINGCHENG, GUO SHANSHAN, TANG XINSHENG, CAI YAFEI. Correlation of SNPs in Myeloid differentiation-2 (MD-2) gene with the susceptibility to clinical mastitis in Chinese Holstein dairy cows. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Myeloid differentiation-2 (MD-2), as an essential component of the CD14-TLR4/MD-2 receptor complex, is critical in identifying bacterial Lipopolysaccharide (LPS) and activating innate immune responses. To evaluate the relationship between MD-2 polymorphisms (including 5′ end and exon regions) and clinical mastitis, population genetic analysis was performed via PCR single strand conformation polymorphism (PCR-SSCP) and direct sequencing in Chinese Holstein dairy cows. Eleven pairs of primer PCR products for SSCP analysis: six pairs of primers (P1-P6) for the 5′-end, four (P7–P10) for the exon regions, and one (P11) for 3′-untranslational region. There were six SSCP bands (named: EE, EF, FF, EQ, EM and EN genotype) in the PCR amplification products of primer P1, two bands in P4 (CD and DD) and three bands in P5 (AA, AB, and BB). Total of five (g.-2173 C/G, g.-2148 C/T, g.-2089 G/T, g.-555 G/A and g.-121 C/A) single nucleotides polymorphism sites (SNPs) were identified in 5′-end of the MD-2 gene. Data showed that SNPs g.-555 (G/A) had significant differences (P<0.01). However, only Gram-negative bacteria (e.g. E. coli) were screened in the milk of the clinical mastitis cows, indicating that this SNPs g.-555 (G/A) in MD-2 gene may play an important role in susceptibility to clinical mastitis infected with Gram-negative bacteria in Chinese Holstein dairy cows.
Collapse
|
32
|
Lai E, Danner AL, Famula TR, Oberbauer AM. Genome-Wide Association Studies Reveal Susceptibility Loci for Digital Dermatitis in Holstein Cattle. Animals (Basel) 2020; 10:ani10112009. [PMID: 33142934 PMCID: PMC7693332 DOI: 10.3390/ani10112009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Digital dermatitis (DD) causes lameness in dairy cattle. To detect the quantitative trait loci (QTL) associated with DD, genome-wide association studies (GWAS) were performed using high-density single nucleotide polymorphism (SNP) genotypes and binary case/control, quantitative (average number of FW per hoof trimming record) and recurrent (cases with ≥2 DD episodes vs. controls) phenotypes from cows across four dairies (controls n = 129 vs. FW n = 85). Linear mixed model (LMM) and random forest (RF) approaches identified the top SNPs, which were used as predictors in Bayesian regression models to assess the SNP predictive value. The LMM and RF analyses identified QTL regions containing candidate genes on Bos taurus autosome (BTA) 2 for the binary and recurrent phenotypes and BTA7 and 20 for the quantitative phenotype that related to epidermal integrity, immune function, and wound healing. Although larger sample sizes are necessary to reaffirm these small effect loci amidst a strong environmental effect, the sample cohort used in this study was sufficient for estimating SNP effects with a high predictive value.
Collapse
|
33
|
Wang M, Liang Y, Ibeagha-Awemu EM, Li M, Zhang H, Chen Z, Sun Y, Karrow NA, Yang Z, Mao Y. Genome-Wide DNA Methylation Analysis of Mammary Gland Tissues From Chinese Holstein Cows With Staphylococcus aureus Induced Mastitis. Front Genet 2020; 11:550515. [PMID: 33193625 PMCID: PMC7604493 DOI: 10.3389/fgene.2020.550515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus intramammary infection is one of the most common causes of chronic mastitis in dairy cows, whose development may be associated with epigenetic changes in the expression of important host defense genes. This study aimed to construct a genome-wide DNA methylation profile of the mammary gland of Chinese Holstein cows (n = 3) following experimentally induced S. aureus mastitis, and to explore the potential gene regulatory mechanisms affected by DNA methylation during S. aureus mastitis. DNA was extracted from S. aureus-positive (n = 3) and S. aureus-negative (n = 3) mammary gland quarters and subjected to methylation-dependent restriction-site associated DNA sequencing (Methyl-RAD Seq). Results showed that CmCGG/CmCWGG DNA methylation sites were unevenly distributed and concentrated on chromosomes 5, 11, and 19, and within intergenic regions and intron regions of genes. Compared with healthy control quarters, 9,181 significantly differentially methylated (DM) CmCGG sites and 1,790 DM CmCWGG sites were found in the S. aureus-positive quarters (P < 0.05, |log2FC| > 1). Furthermore, 363 CmCGG differently methylated genes (DMGs) and 301 CmCWGG DMGs (adjusted P < 0.05, |log2FC| > 1) were identified. Gene ontology and KEGG enrichment analysis indicated that CmCGG DMGs are involved in immune response pathways, while the CmCWGG DMGs were mainly enriched in gene ontology terms related to metabolism. The mRNAs of 526 differentially methylated CmCGG genes and 124 differentially methylated CmCWGG genes were also significantly differentially expressed (RNA-Seq data) in the same samples, herein denoted differentially methylated and expressed genes (DMEGs) (P < 0.05). Functional enrichment analysis of DMEGs revealed roles related to biological processes, especially the regulation of immune response to diseases. CmCGG DMEGs like IL6R, TNF, BTK, IL1R2, and TNFSF8 enriched in several immune-related GO terms and pathways indicated their important roles in host immune response and their potential as candidate genes for S. aureus mastitis. These results suggest potential regulatory roles for DNA methylation in bovine mammary gland processes during S. aureus mastitis and serves as a reference for future epigenetic regulation and mechanistic studies.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Huimin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Klein SL, Scheper C, May K, König S. Genetic and nongenetic profiling of milk β-hydroxybutyrate and acetone and their associations with ketosis in Holstein cows. J Dairy Sci 2020; 103:10332-10346. [PMID: 32952022 DOI: 10.3168/jds.2020-18339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Ketosis is a metabolic disorder of increasing importance in high-yielding dairy cows, but accurate population-wide binary health trait recording is difficult to implement. Against this background, proper Gaussian indicator traits, which can be routinely measured in milk, are needed. Consequently, we focused on the ketone bodies acetone and β-hydroxybutyrate (BHB), measured via Fourier-transform infrared spectroscopy (FTIR) in milk. In the present study, 62,568 Holstein cows from large-scale German co-operator herds were phenotyped for clinical ketosis (KET) according to a veterinarian diagnosis key. A sub-sample of 16,861 cows additionally had first test-day observations for FTIR acetone and BHB. Associations between FTIR acetone and BHB with KET and with test-day traits were studied phenotypically and quantitative genetically. Furthermore, we estimated SNP marker effects for acetone and BHB (application of genome-wide association studies) based on 40,828 SNP markers from 4,384 genotyped cows, and studied potential candidate genes influencing body fat mobilization. Generalized linear mixed models were applied to infer the influence of binary KET on Gaussian-distributed acetone and BHB (definition of an identity link function), and vice versa, such as the influence of acetone and BHB on KET (definition of a logit link function). Additionally, linear models were applied to study associations between BHB, acetone and test-day traits (milk yield, fat percentage, protein percentage, fat-to-protein ratio and somatic cell score) from the first test-day after calving. An increasing KET incidence was statistically significant associated with increasing FTIR acetone and BHB milk concentrations. Acetone and BHB concentrations were positively associated with fat percentage, fat-to-protein ratio and somatic cell score. Bivariate linear animal models were applied to estimate genetic (co)variance components for KET, acetone, BHB and test-day traits within parities 1 to 3, and considering all parities simultaneously in repeatability models. Pedigree-based heritabilities were quite small (i.e., in the range from 0.01 in parity 3 to 0.07 in parity 1 for acetone, and from 0.03-0.04 for BHB). Heritabilites from repeatability models were 0.05 for acetone, and 0.03 for BHB. Genetic correlations between acetone and BHB were moderate to large within parities and considering all parities simultaneously (0.69-0.98). Genetic correlations between acetone and BHB with KET from different parities ranged from 0.71 to 0.99. Genetic correlations between acetone across parities, and between BHB across parities, ranged from 0.55 to 0.66. Genetic correlations between KET, acetone, and BHB with fat-to-protein ratio and with fat percentage were large and positive, but negative with milk yield. In genome-wide association studies, we identified SNP on BTA 4, 10, 11, and 29 significantly influencing acetone, and on BTA 1 and 16 significantly influencing BHB. The identified potential candidate genes NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1, and PRG4 are involved in lipid and glucose metabolism pathways.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany.
| |
Collapse
|
35
|
Meier S, Arends D, Korkuć P, Neumann GB, Brockmann GA. A genome-wide association study for clinical mastitis in the dual-purpose German Black Pied cattle breed. J Dairy Sci 2020; 103:10289-10298. [PMID: 32921452 DOI: 10.3168/jds.2020-18209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The dual-purpose German Black Pied Cattle (DSN) has become an endangered breed of approximately 2,550 registered cows in Germany. The breed is genetically related to Holstein-Friesian cattle because the old DSN breed contributed to the selection of the modern Holstein dairy cow. In dairy farms, breeders aim to improve animal health and well-being by reducing the number of mastitis cases, which would also reduce milk losses and treatment costs. On the genomic level, no markers associated with clinical mastitis have been reported in DSN. Therefore, we performed a genome-wide association study on 1,062 DSN cows using a univariate linear mixed model that included a relatedness matrix to correct for population stratification. Although the statistical power was limited by the small population size, 3 markers were significantly associated, and 2 additional markers showed a suggestive association with clinical mastitis. Those markers accounted for 1 to 3% of the variance of clinical mastitis in the examined DSN population. One marker was found in the intragenic region of NEURL1 on BTA26, and the other 4 markers in intergenic regions on BTA3, BTA6, and BTA9. Further analyses identified 23 positional candidate genes. Among them is BMPR1B, which has been previously associated with clinical mastitis in other dairy cattle breeds. The markers presented here can be used for selection for mastitis-resistant animals in the endangered DSN population, and can broadly contribute to a better understanding of mastitis determinants in dairy cattle breeds.
Collapse
Affiliation(s)
- Saskia Meier
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Paula Korkuć
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Guilherme B Neumann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
| |
Collapse
|
36
|
Paredes-Sánchez FA, Sifuentes-Rincón AM, Casas E, Arellano-Vera W, Parra-Bracamonte GM, Riley DG, Welsh TH, Randel RD. Novel genes involved in the genetic architecture of temperament in Brahman cattle. PLoS One 2020; 15:e0237825. [PMID: 32822435 PMCID: PMC7446865 DOI: 10.1371/journal.pone.0237825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cattle temperament is a complex and economically relevant trait. The objective of this study was to identify genomic regions and genes associated with cattle temperament. From a Brahman cattle population of 1,370 animals evaluated for temperament traits (Exit velocity-EV, Pen Score-PS, Temperament Score-TS), two groups of temperament-contrasting animals were identified based on their EV-average values ±1/2 standard deviation (SD). To be considered in the calm group, the EV of females ranged between 0.16–1.82 m/s (n = 50) and the EV of males ranged between 0.4–1.56 m/s (n = 48). Females were classified as temperamental if their EV ranged between 3.13–7.66 m/s (n = 46) and males were classified as temperamental if their EV ranged between 3.05–10.83 m/s (n = 45). Selected animals were genotyped using a total of 139,376 SNPs (GGP-HD-150K), evaluated for their association with EV. The Genome-Wide Association analysis (GWAS) identified fourteen SNPs: rs135340276, rs134895560, rs110190635, rs42949831, rs135982573, rs109393235, rs109531929, rs135087545, rs41839733, rs42486577, rs136661522, rs110882543, rs110864071, rs109722627, (P<8.1E-05), nine of them were located on intergenic regions, harboring seventeen genes, of which only ACER3, VRK2, FANCL and SLCO3A1 were considered candidate associated with bovine temperament due to their reported biological functions. Five SNPs were located at introns of the NRXN3, EXOC4, CACNG4 and SLC9A4 genes. The indicated candidate genes are implicated in a wide range of behavioural phenotypes and complex cognitive functions. The association of the fourteen SNPs on bovine temperament traits (EV, PS and TS) was evaluated; all these SNPs were significant for EV; only some were associated with PS and TS. Fourteen SNPs were associated with EV which allowed the identification of twenty-one candidate genes for Brahman temperament. From a functional point of view, the five intronic SNPs identified in this study, are candidates to address control of bovine temperament, further investigation will probe their role in expression of this trait.
Collapse
Affiliation(s)
| | | | - Eduardo Casas
- USDA, ARS, National Animal Disease Center, Ames, IA, United States of America
| | | | | | - David G. Riley
- Texas A&M University, College Station, TX, United States of America
| | - Thomas H. Welsh
- Texas A&M University, College Station, TX, United States of America
| | - Ronald D. Randel
- Texas A&M AgriLife Research, Overton, TX, United States of America
| |
Collapse
|
37
|
Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, Penasa M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102:10088-10099. [PMID: 31447150 DOI: 10.3168/jds.2019-16663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.
Collapse
Affiliation(s)
- Angela Costa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria.
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Christian Fuerst
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Strasse 89/19, A-1200 Vienna, Austria
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
38
|
Klein SL, Scheper C, Brügemann K, Swalve HH, König S. Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows. J Dairy Sci 2019; 102:6276-6287. [PMID: 31056336 DOI: 10.3168/jds.2019-16237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Energy demand for milk production in early lactation exceeds energy intake, especially in high-yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as an indicator for ketosis, because a FPR >1.5 refers to high lipolysis. The aim of this study was to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate metabolism with increased content of ketone bodies in the blood or urine. At least one entry for ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 (healthy) was assigned. The FPR from the first test-day was defined as a Gaussian distributed trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR = 1.5. After imputation and quality controls, 45,613 SNP markers from the 8,912 genotyped cows were used for genomic studies. Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide association studies, we identified the specific SNP rs109896020 (BTA 5, position: 115,456,438 bp) significantly contributing to ketosis. The identified potential candidate gene PARVB in close chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits genomically.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - K Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - H H Swalve
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| |
Collapse
|