1
|
Steyaert S, Peeters C, Wieme AD, Muyldermans A, Vandoorslaer K, Spilker T, Wybo I, Piérard D, LiPuma JJ, Vandamme P. Novel Ralstonia species from human infections: improved matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based identification and analysis of antimicrobial resistance patterns. Microbiol Spectr 2024; 12:e0402123. [PMID: 38661349 PMCID: PMC11237764 DOI: 10.1128/spectrum.04021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
A collection of 161 Ralstonia isolates, including 90 isolates from persons with cystic fibrosis, 27 isolates from other human clinical samples, 8 isolates from the hospital environment, 7 isolates from industrial samples, and 19 environmental isolates, was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification and yielded confident species level identification scores for only 62 (39%) of the isolates, including four that proved misidentified subsequently. Whole-genome sequence analysis of 32 representative isolates for which no confident MALDI-TOF MS species level identification was obtained revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively, and provided the basis for updating an in-house MALDI-TOF MS database. A reanalysis of all mass spectra with the updated MALDI-TOF MS database increased the percentage of isolates with confident species level identification up to 77%. The antimicrobial susceptibility of 30 isolates mainly representing novel human clinical and environmental Ralstonia species was tested toward 17 antimicrobial agents and demonstrated that the novel Ralstonia species were generally multi-resistant, yet susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline. An analysis of genomic antimicrobial resistance genes in 32 novel and publicly available genome sequences revealed broadly distributed beta-lactam resistance determinants.IMPORTANCEThe present study demonstrated that a commercial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification database can be tailored to improve the identification of Ralstonia species. It also revealed the presence of seven novel Ralstonia species, including three and four that were isolated from cystic fibrosis or other human clinical samples, respectively. An analysis of minimum inhibitory concentration values demonstrated that the novel Ralstonia species were generally multi-resistant but susceptible to trimethoprim/sulfamethoxazole, ciprofloxacin, and tigecycline.
Collapse
Affiliation(s)
- Stephanie Steyaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
| | - Anneleen D. Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Astrid Muyldermans
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kristof Vandoorslaer
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Theodore Spilker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ingrid Wybo
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Denis Piérard
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- National Reference Center for Burkholderia cepacia complex, La Plata, Belgium
| |
Collapse
|
2
|
Bielen A, Babić I, Vuk Surjan M, Kazazić S, Šimatović A, Lajtner J, Udiković-Kolić N, Mesić Z, Hudina S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave mussel-associated culturable microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21752-21764. [PMID: 38393570 DOI: 10.1007/s11356-024-32537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.
Collapse
Affiliation(s)
- Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Vuk Surjan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jasna Lajtner
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Zrinka Mesić
- Oikon Ltd., Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
3
|
Beck ML, Song S, Shuster IE, Miharia A, Walker AS. Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities. J Ind Microbiol Biotechnol 2023; 50:kuad024. [PMID: 37653463 PMCID: PMC10548851 DOI: 10.1093/jimb/kuad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
Bacteria have long been a source of natural products with diverse bioactivities that have been developed into therapeutics to treat human disease. Historically, researchers have focused on a few taxa of bacteria, mainly Streptomyces and other actinomycetes. This strategy was initially highly successful and resulted in the golden era of antibiotic discovery. The golden era ended when the most common antibiotics from Streptomyces had been discovered. Rediscovery of known compounds has plagued natural product discovery ever since. Recently, there has been increasing interest in identifying other taxa that produce bioactive natural products. Several bioinformatics studies have identified promising taxa with high biosynthetic capacity. However, these studies do not address the question of whether any of the products produced by these taxa are likely to have activities that will make them useful as human therapeutics. We address this gap by applying a recently developed machine learning tool that predicts natural product activity from biosynthetic gene cluster (BGC) sequences to determine which taxa are likely to produce compounds that are not only novel but also bioactive. This machine learning tool is trained on a dataset of BGC-natural product activity pairs and relies on counts of different protein domains and resistance genes in the BGC to make its predictions. We find that rare and understudied actinomycetes are the most promising sources for novel active compounds. There are also several taxa outside of actinomycetes that are likely to produce novel active compounds. We also find that most strains of Streptomyces likely produce both characterized and uncharacterized bioactive natural products. The results of this study provide guidelines to increase the efficiency of future bioprospecting efforts. ONE-SENTENCE SUMMARY This paper combines several bioinformatics workflows to identify which genera of bacteria are most likely to produce novel natural products with useful bioactivities such as antibacterial, antitumor, or antifungal activity.
Collapse
Affiliation(s)
- Max L Beck
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Siyeon Song
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Isra E Shuster
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Aarzu Miharia
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University. 1234 Stevenson Center Lane, Nashville, TN 37240, Untited States
- Department of Biological Sciences, Vanderbilt University. VU Station B, Box 35-1634, Nashville, TN 37235, Untited States
| |
Collapse
|
4
|
Ramadan AA. Bacterial typing methods from past to present: A comprehensive overview. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
6
|
Clark CM, Hernandez A, Mullowney MW, Fitz-Henley J, Li E, Romanowski SB, Pronzato R, Manconi R, Sanchez LM, Murphy BT. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME COMMUNICATIONS 2022; 2:22. [PMID: 37938725 PMCID: PMC9723699 DOI: 10.1038/s43705-022-00105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2023]
Abstract
Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.
Collapse
Affiliation(s)
- Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael W Mullowney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jhewelle Fitz-Henley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emma Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Renata Manconi
- Dipartimento Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Ashfaq MY, Da'na DA, Al-Ghouti MA. Application of MALDI-TOF MS for identification of environmental bacteria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114359. [PMID: 34959061 DOI: 10.1016/j.jenvman.2021.114359] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 05/22/2023]
Abstract
Bacteria play a variety of roles in the environment. They maintain the balance in the ecosystem and provide different ecosystem services such as in biogeochemical cycling of nutrients, biodegradation of toxic pollutants, and others. Therefore, isolation and identification of different environmental bacteria are important to most environmental research. Due to the high cost and time associated with the conventional molecular techniques, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has gained considerable attention for routine identification of bacteria. This review aims to provide an overview of the application of MALDI-TOF MS in various environmental studies through bibliometric analysis and literature review. The bibliometric analysis helped to understand the time-variable application of MALDI-TOF MS in various environmental studies. The categorical literature review covers various environmental studies comprising areas like ecology, food microbiology, environmental biotechnology, agriculture, and plant sciences, which show the application of the technique for identification and characterization of pollutant-degrading, plant-associated, disease-causing, soil-beneficial, and other environmental bacteria. Further research should focus on bridging the gap between the phylogenetic identity of bacteria and their specific environmental functions or metabolic traits that can help in rapid advancements in environmental research, thereby, improving time and cost savings.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana A Da'na
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
9
|
Marine macroalga-associated heterotrophic Bacillus velezensis: a novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens. Arch Microbiol 2021; 203:5561-5575. [PMID: 34436634 DOI: 10.1007/s00203-021-02513-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Increased prevalence of microbial resistance and development of drug-resistant pathogens have triggered an urge among researchers to discover potential antimicrobial compounds, particularly from the marine habitat. The present study highlights the cultivable diversity and bioactivities of heterotrophic bacteria associated with marine macroalgae of southeast Indian coastal region. Culture-dependent isolation method resulted in 40 isolates, in which greater part of the isolates represented Gammaproteobacteria (62%) followed by that comprised of the phylum Firmicutes. One of the most active strains isolated from a macroalga, Laurencia papillosa, was characterized based on the integrated phenotypic and genotypic analysis as Bacillus velezensis MBTDLP1 MTCC 13048, with an inhibition zone of about 35 mm against methicillin-resistant Staphylococcus aureus (MRSA), was selected for bioprospecting studies. Type-I pks gene (MT394492) of 700 bp could be amplified from the heterotrophic B. velezensis. The bacterium exhibited siderophore production and possessed genes implicated in the biosynthesis of siderophore type of metabolites exhibiting 99% similarity with other GenBank sequences in BLAST search. B. velezensis exhibited promising anti-infective properties against methicillin-resistant Staphylococcus aureus (minimum inhibitory concentration 15 µg/mL), and the activities were positively correlated (r2 > 0.9) with iron-chelating activities. Chemical investigation of the organic extract of B. velezensis MBTDLP1 characterized a macrocyclic polyketide exhibiting prospective antibacterial potential against methicillin-resistant S. aureus (MIC 0.38 µg/mL), than that exhibited by positive control chloramphenicol (6.25 µg/mL). Significant antibacterial activity against drug-resistant bacteria combined with the presence of genes coding for bioactive secondary metabolites revealed that this marine symbiotic bacterium could be used against emerging antibiotic resistance.
Collapse
|
10
|
Davies-Bolorunduro OF, Ajayi A, Adeleye IA, Kristanti AN, Aminah NS. Bioprospecting for antituberculosis natural products – A review. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
There has been an increase in the reported cases of tuberculosis, a disease caused by Mycobacterium tuberculosis, which is still currently affecting most of the world’s population, especially in resource-limited countries. The search for novel antitubercular chemotherapeutics from underexplored natural sources is therefore of paramount importance. The renewed interest in studies related to natural products, driven partly by the growing incidence of MDR-TB, has increased the prospects of discovering new antitubercular drug leads. This is because most of the currently available chemotherapeutics such as rifampicin and capreomycin used in the treatment of TB were derived from natural products, which are proven to be an abundant source of novel drugs used to treat many diseases. To meet the global need for novel antibiotics from natural sources, various strategies for high-throughput screening have been designed and implemented. This review highlights the current antitubercular drug discovery strategies from natural sources.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research , Yaba , Lagos , Nigeria
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
| | - Abraham Ajayi
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research , Yaba , Lagos , Nigeria
- Department of Microbiology, University of Lagos , Akoka , Lagos , Nigeria
| | | | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga , Surabaya , Indonesia
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga , Surabaya , Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga , Surabaya , Indonesia
| |
Collapse
|
11
|
Vogt S, Mattner J. NKT Cells Contribute to the Control of Microbial Infections. Front Cell Infect Microbiol 2021; 11:718350. [PMID: 34595131 PMCID: PMC8477047 DOI: 10.3389/fcimb.2021.718350] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Innate (-like) T lymphocytes such as natural killer T (NKT) cells play a pivotal role in the recognition of microbial infections and their subsequent elimination. They frequently localize to potential sites of pathogen entry at which they survey extracellular and intracellular tissue spaces for microbial antigens. Engagement of their T cell receptors (TCRs) induces an explosive release of different cytokines and chemokines, which often pre-exist as constitutively expressed gene transcripts in NKT cells and underlie their poised effector state. Thus, NKT cells regulate immune cell migration and activation and subsequently, bridge innate and adaptive immune responses. In contrast to conventional T cells, which react to peptide antigens, NKT cells recognize lipids presented by the MHC class I like CD1d molecule on antigen presenting cells (APCs). Furthermore, each NKT cell TCR can recognize various antigen specificities, whereas a conventional T lymphocyte TCR reacts mostly only to one single antigen. These lipid antigens are either intermediates of the intracellular APC`s-own metabolism or originate from the cell wall of different bacteria, fungi or protozoan parasites. The best-characterized subset, the type 1 NKT cell subset expresses a semi-invariant TCR. In contrast, the TCR repertoire of type 2 NKT cells is diverse. Furthermore, NKT cells express a panoply of inhibitory and activating NK cell receptors (NKRs) that contribute to their primarily TCR-mediated rapid, innate like immune activation and even allow an adaption of their immune response in an adoptive like manner. Dueto their primary localization at host-environment interfaces, NKT cells are one of the first immune cells that interact with signals from different microbial pathogens. Vice versa, the mutual exchange with local commensal microbiota shapes also the biology of NKT cells, predominantly in the gastrointestinal tract. Following infection, two main signals drive the activation of NKT cells: first, cognate activation upon TCR ligation by microbial or endogenous lipid antigens; and second, bystander activation due to cytokines. Here we will discuss the role of NKT cells in the control of different microbial infections comparing pathogens expressing lipid ligands in their cell walls to infectious agents inducing endogenous lipid antigen presentation by APCs.
Collapse
Affiliation(s)
- Stefan Vogt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Walker AS, Clardy J. A Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters. J Chem Inf Model 2021; 61:2560-2571. [PMID: 34042443 PMCID: PMC8243324 DOI: 10.1021/acs.jcim.0c01304] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in natural products, the genetically encoded small molecules produced by organisms in an idiosyncratic fashion, deals with molecular structure, biosynthesis, and biological activity. Bioinformatics analyses of microbial genomes can successfully reveal the genetic instructions, biosynthetic gene clusters, that produce many natural products. Genes to molecule predictions made on biosynthetic gene clusters have revealed many important new structures. There is no comparable method for genes to biological activity predictions. To address this missing pathway, we developed a machine learning bioinformatics method for predicting a natural product's antibiotic activity directly from the sequence of its biosynthetic gene cluster. We trained commonly used machine learning classifiers to predict antibacterial or antifungal activity based on features of known natural product biosynthetic gene clusters. We have identified classifiers that can attain accuracies as high as 80% and that have enabled the identification of biosynthetic enzymes and their corresponding molecular features that are associated with antibiotic activity.
Collapse
Affiliation(s)
- Allison S Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World J Microbiol Biotechnol 2021; 37:101. [PMID: 33983510 DOI: 10.1007/s11274-021-03067-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The effluent from the textile industry is a complex mixture of recalcitrant molecules that can harm the environment and human health. Biological treatments are usually applied for this wastewater, particularly activated sludge, due to its high efficiency, and low implementation and operation costs. However, the activated sludge microbiome is rarely well-known. In general, activated sludges are composed of Acidobacteria, Bacillus, Clostridium, Pseudomonas, Proteobacteria, and Streptococcus, in which Bacillus and Pseudomonas are highlighted for bacterial dye degradation. Consequently, the process is not carried out under optimum conditions (treatment yield). Therefore, this review aims to contextualize the potential environmental impacts of azo dye-containing wastewater from the textile industry, including toxicity, activated sludge microbiome identification, in particular using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a novel, rapid and accurate strategy for the identification of activated sludge microbiome (potential to enhance treatment yield).
Collapse
|
14
|
Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep 2021; 38:292-300. [PMID: 32706349 PMCID: PMC7855266 DOI: 10.1039/d0np00029a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The question of whether culturable microorganisms will continue to be a viable source of new drug leads is inherently married to the strategies used to collect samples from the environment, the methods used to cultivate microorganisms from these samples, and the processes used to create microbial libraries. An academic microbial natural products (NP) drug discovery program with the latest innovative chromatographic and spectroscopic technology, high-throughput capacity, and bioassays will remain at the mercy of the quality of its microorganism source library. This viewpoint will discuss limitations of sample collection and microbial strain library generation practices. Additionally, it will offer suggestions to innovate these areas, particularly through the targeted cultivation of several understudied bacterial phyla and the untargeted use of mass spectrometry and bioinformatics to generate diverse microbial libraries. Such innovations have potential to impact downstream therapeutic discovery, and make its front end more informed, efficient, and less reliant on serendipity. This viewpoint is not intended to be a comprehensive review of contributing literature and was written with a focus on bacteria. Strategies to discover NPs from microbial libraries, including a variety of genomics and "OSMAC" style approaches, are considered downstream of sample collection and library creation, and thus are out of the scope of this viewpoint.
Collapse
Affiliation(s)
- Antonio Hernandez
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Linh T Nguyen
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA. and Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi, Vietnam
| | - Radhika Dhakal
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Brian T Murphy
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
15
|
Vidal LMR, Venas TM, Gonçalves ARP, Mattsson HK, Silva RVP, Nóbrega MS, Azevedo GPR, Garcia GD, Tschoeke DA, Vieira VV, Thompson FL, Thompson CC. Rapid screening of marine bacterial symbionts using MALDI-TOF MS. Arch Microbiol 2020; 202:2329-2336. [PMID: 32529508 DOI: 10.1007/s00203-020-01917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
Abstract
Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) is a rapid, cost-effective and high-throughput method for bacteria characterization. However, most previous studies focused on clinical isolates. In this study, we evaluated the use of MALDI-TOF MS as a rapid screening tool for marine bacterial symbionts. A set of 255 isolates from different marine sources (corals, sponge, fish and seawater) was analyzed using cell lysates to obtain a rapid grouping. Cluster analysis of mass spectra and 16S rRNA showed 18 groups, including Vibrio, Bacillus, Pseudovibrio, Alteromonas and Ruegeria. MALDI-TOF distance similarity scores ≥ 60% and ≥ 70% correspond to ≥ 98.7% 16S rRNA gene sequence similarity and ≥ 95% pyrH gene sequence similarity, respectively. MALDI-TOF MS is a useful tool for Vibrio species groups' identification.
Collapse
Affiliation(s)
- Livia M R Vidal
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tainá M Venas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Aline R P Gonçalves
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hannah K Mattsson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Raphael V P Silva
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria S Nóbrega
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo P R Azevedo
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gizele D Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Departamento de Ensino de Graduação, Campus UFRJ - Macaé Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Diogo A Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Biomedical Engineer Program - COPPE (UFRJ), Rio de Janeiro, Brazil
| | - Verônica V Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Tomachewski D, Galvão CW, de Campos Júnior A, Guimarães AM, Ferreira da Rocha JC, Etto RM. Ribopeaks: a web tool for bacterial classification through m/z data from ribosomal proteins. Bioinformatics 2019; 34:3058-3060. [PMID: 29659702 DOI: 10.1093/bioinformatics/bty215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 11/12/2022] Open
Abstract
Summary MALDI-TOF MS is a rapid, sensitive and economic tool for bacterial identification. Highly abundant bacterial proteins are detected by this technique, including ribosomal proteins (r-protein), and the generated mass spectra are compared with a MALDI-TOF MS spectra database. Currently, it allows mainly the classification of clinical bacteria due to the limited number of environmental bacteria included in the spectra database. We present a wide-ranging bacterium classifier tool, called Ribopeaks, which was created based on r-protein data from the Genbank. The Ribopeaks database has more than 28 500 bacterial taxonomic records. It compares the incoming m/z data from MALDI-TOF MS analysis with models stored in the Ribopeaks database created by machine learning and then taxonomically classifies the bacteria. Availability and implementation The software is available at http://www.ribopeaks.com. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Douglas Tomachewski
- Postgraduate Program in Applied Computing, Department of Computer Science, State University of Ponta Grossa, PR, Brazil.,Microbial Molecular Biology Laboratory, Sector of Biological and Health Sciences, State University of Ponta Grossa, PR, Brazil
| | - Carolina Weigert Galvão
- Microbial Molecular Biology Laboratory, Sector of Biological and Health Sciences, State University of Ponta Grossa, PR, Brazil
| | - Arion de Campos Júnior
- Postgraduate Program in Applied Computing, Department of Computer Science, State University of Ponta Grossa, PR, Brazil
| | - Alaine Margarete Guimarães
- Postgraduate Program in Applied Computing, Department of Computer Science, State University of Ponta Grossa, PR, Brazil
| | - José Carlos Ferreira da Rocha
- Postgraduate Program in Applied Computing, Department of Computer Science, State University of Ponta Grossa, PR, Brazil
| | - Rafael Mazer Etto
- Postgraduate Program in Applied Computing, Department of Computer Science, State University of Ponta Grossa, PR, Brazil.,Microbial Molecular Biology Laboratory, Sector of Biological and Health Sciences, State University of Ponta Grossa, PR, Brazil
| |
Collapse
|
17
|
Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T, Van der Jeugt F, De Canck E, Cnockaert M, Wieme AD, Cleenwerck I, Peiren J, Dawyndt P, Vandamme P, Carlier A. Introducing SPeDE: High-Throughput Dereplication and Accurate Determination of Microbial Diversity from Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry Data. mSystems 2019; 4:e00437-19. [PMID: 31506264 PMCID: PMC6739102 DOI: 10.1128/msystems.00437-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
The isolation of microorganisms from microbial community samples often yields a large number of conspecific isolates. Increasing the diversity covered by an isolate collection entails the implementation of methods and protocols to minimize the number of redundant isolates. Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry methods are ideally suited to this dereplication problem because of their low cost and high throughput. However, the available software tools are cumbersome and rely either on the prior development of reference databases or on global similarity analyses, which are inconvenient and offer low taxonomic resolution. We introduce SPeDE, a user-friendly spectral data analysis tool for the dereplication of MALDI-TOF mass spectra. Rather than relying on global similarity approaches to classify spectra, SPeDE determines the number of unique spectral features by a mix of global and local peak comparisons. This approach allows the identification of a set of nonredundant spectra linked to operational isolation units. We evaluated SPeDE on a data set of 5,228 spectra representing 167 bacterial strains belonging to 132 genera across six phyla and on a data set of 312 spectra of 78 strains measured before and after lyophilization and subculturing. SPeDE was able to dereplicate with high efficiency by identifying redundant spectra while retrieving reference spectra for all strains in a sample. SPeDE can identify distinguishing features between spectra, and its performance exceeds that of established methods in speed and precision. SPeDE is open source under the MIT license and is available from https://github.com/LM-UGent/SPeDEIMPORTANCE Estimation of the operational isolation units present in a MALDI-TOF mass spectral data set involves an essential dereplication step to identify redundant spectra in a rapid manner and without sacrificing biological resolution. We describe SPeDE, a new algorithm which facilitates culture-dependent clinical or environmental studies. SPeDE enables the rapid analysis and dereplication of isolates, a critical feature when long-term storage of cultures is limited or not feasible. We show that SPeDE can efficiently identify sets of similar spectra at the level of the species or strain, exceeding the taxonomic resolution of other methods. The high-throughput capacity, speed, and low cost of MALDI-TOF mass spectrometry and SPeDE dereplication over traditional gene marker-based sequencing approaches should facilitate adoption of the culturomics approach to bacterial isolation campaigns.
Collapse
Affiliation(s)
- Charles Dumolin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aerts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Simon Schellaert
- Computational Biology Laboratory, Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Tim Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Felix Van der Jeugt
- Computational Biology Laboratory, Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Ilse Cleenwerck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Jindrich Peiren
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Dawyndt
- Computational Biology Laboratory, Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Daae HL, Heldal KK, Madsen AM, Olsen R, Skaugset NP, Graff P. Occupational exposure during treatment of offshore drilling waste and characterization of microbiological diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:533-540. [PMID: 31121403 DOI: 10.1016/j.scitotenv.2019.05.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The exposure for workers handling and recycling offshore drilling waste are previously not described, and given the potential for exposure to hazardous components, there is a need for characterizing this occupational exposure. In this study five plants recycling offshore drilling waste with different techniques were included. Measurements were conducted in both winter and summer to include seasonal exposure variations. Altogether >200 personal air-exposure measurements for oil mist, oil vapor, volatile organic compounds (VOC), hydrogen sulfide (H2S) and solvents were carried out respectively. Microorganisms related to drilling waste were identified in bulk samples and in stationary air measurements from two of the plants. The exposure to oil mist and oil vapor were below 10% of the current Norwegian occupational exposure limits (OEL) for all measured components. The plants using the Resoil or TCC method had a statistically significant higher exposure to oil vapor than the plant using complete combustion (p-value <0.05). No statistically significant difference was found between the different treatment methods for oil mist. The exposure to solvents was generally low (additive factor < 0.03). Endotoxin measurements done during winter showed a median concentration of 5.4 endotoxin units (EU)/m3. Levels of H2S above the odor threshold of 0.1 ppm were measured at four plants. Both drill mud and slop water contained a high number and diversity of bacteria (2-4 × 104 colony forming unit (CFU)/mL), where a large fraction was Gram-negative species. Some of the identified microorganisms are classified as potentially infectious pathogens for humans and thus might be a hazard to workers.
Collapse
Affiliation(s)
- Hanne Line Daae
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Kari Kulvik Heldal
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Raymond Olsen
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Pål Graff
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway.
| |
Collapse
|
19
|
A classification of liquid chromatography mass spectrometry techniques for evaluation of chemical composition and quality control of traditional medicines. J Chromatogr A 2019; 1609:460501. [PMID: 31515074 DOI: 10.1016/j.chroma.2019.460501] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Natural products (NPs) and traditional medicines (TMs) are used for treatment of various diseases and also to develop new drugs. However, identification of drug leads within the immense biodiversity of living organisms is a challenging task that requires considerable time, labor, and computational resources as well as the application of modern analytical instruments. LC-MS platforms are widely used for both drug discovery and quality control of TMs and food supplements. Moreover, a large dataset generated during LC-MS analysis contains valuable information that could be extracted and handled by means of various data mining and statistical tools. Novel sophisticated LC-MS based approaches are being introduced every year. Therefore, this review is prepared for the scientists specialized in pharmacognosy and analytical chemistry of NPs as well as working in related areas, in order to navigate them in the world of diverse LC-MS based techniques and strategies currently employed for NP discovery and dereplication, quality control, pattern recognition and sample comparison, and also in targeted and untargeted metabolomic studies. The suggested classification system includes the following LC-MS based procedures: elemental composition determination, isotopic fine structure analysis, mass defect filtering, de novo identification, clustering of the compounds in Molecular Networking (MN), diagnostic fragment ion (or neutral loss) filtering, manual dereplication using MS/MS data, database-assisted peak annotation, annotation of spectral trees, MS fingerprinting, feature extraction, bucketing of LC-MS data, peak profiling, predicted metabolite screening, targeted quantification of biomarkers, quantitative analysis of multi-component system, construction of chemical fingerprints, multi-targeted and untargeted metabolite profiling.
Collapse
|
20
|
Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing Taxonomic and Natural Product Redundancy in Microbial Libraries Using MALDI-TOF MS and the Bioinformatics Pipeline IDBac. JOURNAL OF NATURAL PRODUCTS 2019; 82:2167-2173. [PMID: 31335140 PMCID: PMC7197193 DOI: 10.1021/acs.jnatprod.9b00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Libraries of microorganisms have been a cornerstone of drug discovery efforts since the mid-1950s, but strain duplication in some libraries has resulted in unwanted natural product redundancy. In the current study, we implemented a workflow that minimizes both the natural product overlap and the total number of bacterial isolates in a library. Using a collection expedition to Iceland as an example, we purified every distinct bacterial colony off isolation plates derived from 86 environmental samples. We employed our mass spectrometry (MS)-based IDBac workflow on these isolates to form groups of taxa based on protein MS fingerprints (3-15 kDa) and further distinguished taxa subgroups based on their degree of overlap within corresponding natural product spectra (0.2-2 kDa). This informed the decision to create a library of 301 isolates spanning 54 genera. This process required only 25 h of data acquisition and 2 h of analysis. In a separate experiment, we reduced the size of an existing library based on the degree of metabolic overlap observed in natural product MS spectra of bacterial colonies (from 833 to 233 isolates, a 72.0% size reduction). Overall, our pipeline allows for a significant reduction in costs associated with library generation and minimizes natural product redundancy entering into downstream biological screening efforts.
Collapse
Affiliation(s)
- Maria S Costa
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Sesselja Ómarsdóttir
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| |
Collapse
|
21
|
Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique. PLoS One 2019; 14:e0217078. [PMID: 31120945 PMCID: PMC6532876 DOI: 10.1371/journal.pone.0217078] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/05/2019] [Indexed: 12/14/2022] Open
Abstract
In the presented work identification of microorganisms isolated from various types of honeys was performed. Martix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequencing were applied to study environmental bacteria strains.With both approches, problematic spore-forming Bacillus spp, but also Staphylococcus spp., Lysinibacillus spp., Micrococcus spp. and Brevibacillus spp were identified. However, application of spectrometric technique allows for an unambiguous distinction between species/species groups e.g.B. subtilis or B. cereus groups. MALDI TOF MS and 16S rDNA sequencing allow for construction of phyloproteomic and phylogenetic trees of identified bacterial species. Furthermore, the correlation beetween physicochemical properties, geographical and botanical origin and the presence bacterial species in honey samples were investigated.
Collapse
|
22
|
de Oliveira BFR, Cavalcanti MD, de Oliveira Nunes S, Lobo LA, Domingues RMCP, Muricy G, Laport MS. Paraclostridium is the Main Genus of Anaerobic Bacteria Isolated from New Species of the Marine Sponge Plakina in the Brazilian Southeast Coast. Curr Microbiol 2019; 76:713-722. [DOI: 10.1007/s00284-019-01684-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/01/2019] [Indexed: 02/05/2023]
|
23
|
Huschek D, Witzel K. Rapid dereplication of microbial isolates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: A mini-review. J Adv Res 2019; 19:99-104. [PMID: 31341675 PMCID: PMC6629721 DOI: 10.1016/j.jare.2019.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
MALDI-TOF MS is applicable as high-resolution and high-throughput tool. The classification and characterization of cultivable microorganisms is targeted. Advantageous are its simple sample preparation and short measurement time. It accelerates the dereplication of isolates from large-scale screening campaigns. Applications for studying microbial diversity and future trends are discussed.
Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has become one of the most popular methods for the rapid, cost-effective and accurate classification and characterization of cultivable microorganisms. Due to its simple sample preparation and short measurement time, MALDI-TOF MS is an excellent choice for the high-throughput study of microbial isolates from rhizospheres or plants grown under diverse environmental conditions. While clinical isolates have a higher identification rate than environmental isolates due to the focus of commercial mass spectral libraries on the former, no identification is necessary in the dereplication step of large environmental studies. The grouping of large sets of isolates according to their intact protein profiles can be performed without knowledge of their taxonomy. Thus, this method is easily applicable to environmental samples containing microorganisms from yet undescribed phylogenetic origins. The main strategies applied to achieve effective dereplication are, first, expanding existing mass spectral libraries and, second, using an additional statistical analysis step to group measured mass spectra and identify unique isolates. In this review, these aspects are addressed. It closes with a prospective view on how MALDI-TOF MS-based microbial characterisation can accelerate the exploitation of plant-associated microbiota.
Collapse
Affiliation(s)
- Doreen Huschek
- German Rheumatism Research Centre - A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
24
|
Sashidhara KV, Rosaiah JN. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Natural products are the most consistently successful source of drug leads. The rapid identification of known compounds from natural product extracts, or ‘dereplication’, is an important step in an efficiently run drug discovery program. Modern spectroscopic methods have largely revolutionized compound identification and tremendously accelerated the pace at which isolated compounds can be identified. Dereplication strategies use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. This prevents wasted effort on samples with no potential for development and allows resources to be focused on the most promising lead. In the past few years, advances in technology have allowed the development of tandem analytical techniques, such as HPLC-PDA, LC-MS, LC-MS-MS, LC-NMR, and LC-NMR-MS. This review describes the principles and performance of a number of hyphenated techniques involving LC-MS that can be used for dereplication of natural products for rapid lead identification.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Chatter Manzil Palace, Lucknow-226001, India
| | - Jammikuntla N Rosaiah
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Chatter Manzil Palace, Lucknow-226001, India
| |
Collapse
|
25
|
Ashfaq MY, Al-Ghouti MA, Qiblawey H, Rodrigues DF, Hu Y, Zouari N. Isolation, identification and biodiversity of antiscalant degrading seawater bacteria using MALDI-TOF-MS and multivariate analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:910-920. [PMID: 30625677 DOI: 10.1016/j.scitotenv.2018.11.477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Seawater reverse osmosis (SWRO) is a commonly used desalination technique owing to its lesser environmental and economic impacts as compared to thermal desalination techniques. Antiscalants are used in SWRO to reduce membrane scaling caused by the supersaturation of salts present in feed water. However, to remain effective in reducing membrane scaling, antiscalants should be highly stable and resistant to biological degradation by seawater microorganisms. In this research, several bacteria from Qatar's seawater were isolated and screened for their ability to use antiscalants as a carbon and energy source. The biodiversity of antiscalant degrading seawater bacteria was demonstrated through combining the techniques of MALDI-TOF MS and principle component analysis. It was found that the bacteria isolated from Qatar's seawater such as H. aquamarina, H. elongata, P. fragi, P. stutzeri and others can degrade antiscalants and use them as a carbon and energy source. It was observed that the growth rates varied based on the type of antiscalant and the bacteria used. Among the tested strains, H. aquamarina, which is also known for its potential to cause biofouling, demonstrated the highest growth rates in antiscalants media. Thus, it was concluded that there is wide variety of bacteria in Qatar's seawater that can biodegrade the antiscalants; reducing their efficiency to combat membrane scaling. Since, these antiscalants will be used as a source of carbon and energy, microbial growth will increase resulting in enhanced membrane biofouling in SWRO.
Collapse
Affiliation(s)
- Mohammad Y Ashfaq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Yandi Hu
- Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
26
|
Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates. Front Microbiol 2018; 9:1294. [PMID: 29971049 PMCID: PMC6018384 DOI: 10.3389/fmicb.2018.01294] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
Many ecological experiments are based on the extraction and downstream analyses of microorganisms from different environmental samples. Due to its high throughput, cost-effectiveness and rapid performance, Matrix Assisted Laser Desorption/Ionization Mass Spectrometry with Time-of-Flight detector (MALDI-TOF MS), which has been proposed as a promising tool for bacterial identification and classification, could be advantageously used for dereplication of recurrent bacterial isolates. In this study, we compared whole-cell MALDI-TOF MS-based analyses of 49 bacterial cultures to two well-established bacterial identification and classification methods based on nearly complete 16S rRNA gene sequence analyses: a phylotype-based approach, using a closest type strain assignment, and a sequence similarity-based approach involving a 98.65% sequence similarity threshold, which has been found to best delineate bacterial species. Culture classification using reference-based MALDI-TOF MS was comparable to that yielded by phylotype assignment up to the genus level. At the species level, agreement between 16S rRNA gene analysis and MALDI-TOF MS was found to be limited, potentially indicating that spectral reference databases need to be improved. We also evaluated the mass spectral similarity technique for species-level delineation which can be used independently of reference databases. We established optimal mass spectral similarity thresholds which group MALDI-TOF mass spectra of common environmental isolates analogically to phylotype- and sequence similarity-based approaches. When using a mass spectrum similarity approach, we recommend a mass range of 4-10 kDa for analysis, which is populated with stable mass signals and contains the majority of phylotype-determining peaks. We show that a cosine similarity (CS) threshold of 0.79 differentiate mass spectra analogously to 98.65% species-level delineation sequence similarity threshold, with corresponding precision and recall values of 0.70 and 0.73, respectively. When matched to species-level phylotype assignment, an optimal CS threshold of 0.92 was calculated, with associated precision and recall values of 0.83 and 0.64, respectively. Overall, our research indicates that a similarity-based MALDI-TOF MS approach can be routinely used for efficient dereplication of isolates for downstream analyses, with minimal loss of unique organisms. In addition, MALDI-TOF MS analysis has further improvement potential unlike 16S rRNA gene analysis, whose methodological limits have reached a plateau.
Collapse
Affiliation(s)
- Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | | | | | | |
Collapse
|
27
|
Buysschaert B, Kerckhof FM, Vandamme P, De Baets B, Boon N. Flow cytometric fingerprinting for microbial strain discrimination and physiological characterization. Cytometry A 2017; 93:201-212. [DOI: 10.1002/cyto.a.23302] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/16/2017] [Accepted: 11/30/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin Buysschaert
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology; Ghent University, Coupure links 653; Ghent B-9000 Belgium
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology; Ghent University, Coupure links 653; Ghent B-9000 Belgium
| | - Peter Vandamme
- Laboratory of Microbiology (LM-UGent); Ghent University, K. L. Ledeganckstraat 35; Ghent B-9000 Belgium
| | - Bernard De Baets
- Department of Mathematical Modeling, Statistics and Bioinformatics (Biomath); Ghent University, Coupure links 653; Ghent B-9000 Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology; Ghent University, Coupure links 653; Ghent B-9000 Belgium
| |
Collapse
|
28
|
Conde-Martínez N, Acosta-González A, Díaz LE, Tello E. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiol 2017; 17:230. [PMID: 29216824 PMCID: PMC5721385 DOI: 10.1186/s12866-017-1136-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 12/04/2022] Open
Abstract
Background Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). Results Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3–29 and A1SM3–36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3–36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract. The extract of this strain was subjected to a bioautography assay, and 3 different fractions exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Based on the amount obtained for each fraction, F3 was selected to isolate and identify its metabolites. The major compound was identified by NMR and HRMS as 13-cis-docosenamide, an amide that has been previously reported to be an antimicrobial and cytotoxic compound. Conclusions Our results shows the utility of our strategy in detecting bioactive molecules in initial mixed cultures by biological assays, resulting in the isolation and characterization of Vibrio sp. A1SM3–36-8, a halophilic strain with great antibacterial and cytotoxic potential. Electronic supplementary material The online version of this article (10.1186/s12866-017-1136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Conde-Martínez
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Alejandro Acosta-González
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Luis E Díaz
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Edisson Tello
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia.
| |
Collapse
|
29
|
Timperio AM, Gorrasi S, Zolla L, Fenice M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 2017; 12:e0181860. [PMID: 28738078 PMCID: PMC5524297 DOI: 10.1371/journal.pone.0181860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
MALDI-TOF Mass Spectrometry in association with the MALDI BioTyper 3.1 software has been evaluated for the identification and classification of 45 Arctic bacteria isolated from Kandalaksha Bay (White Sea, Russia). The high reliability of this method has been already demonstrated, in clinical microbiology, by a number of studies showing high attribution concordance with other credited analyses. Recently, it has been employed also in other branches of microbiology with controversial performance. The phyloproteomic results reported in this study were validated with those obtained by the "gold standard" 16S rDNA analysis. Concordance between the two methods was 100% at the genus level, while at the species level it was 48%. These percentages appeared to be quite high compared with other studies regarding environmental bacteria. However, the performance of MALDI BioTyper changed in relation to the taxonomical group analyzed, reflecting known identification problems related to certain genera. In our case, attribution concordance for Pseudomonas species was rather low (29%), confirming the problematic taxonomy of this genus, whereas that of strains from other genera was quite high (> 60%). Among the isolates tested in this study, two strains (Exiguobacterium oxidotolerans and Pseudomonas costantinii) were misidentified by MALDI BioTyper due to absence of reference spectra in the database. Accordingly, missing spectra were acquired for the database implementation.
Collapse
Affiliation(s)
| | - Susanna Gorrasi
- Dipartimento di Ecologia e Biologia, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
| | - Massimiliano Fenice
- Dipartimento di Ecologia e Biologia, University of Tuscia, Viterbo, Italy
- Laboratorio di Microbiologia Marina Applicata, CONISMA, University of Tuscia, Viterbo, Italy
- * E-mail:
| |
Collapse
|
30
|
Santos IC, Hildenbrand ZL, Schug KA. Mass Spectrometry for the Study of Microbial Communities in Environmental Waters. ADVANCES IN CHEMICAL POLLUTION, ENVIRONMENTAL MANAGEMENT AND PROTECTION 2017. [DOI: 10.1016/bs.apmp.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. ENVIRONMENTAL RESEARCH 2017; 152:7-16. [PMID: 27741451 DOI: 10.1016/j.envres.2016.09.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 05/20/2023]
Abstract
Identification of bacteria in aquatic and environmental applications, for monitoring purposes and research, for health assessments and therapy considerations of farmed and free-living aquatic organisms, still relies on conventional phenotypic and biochemical protocols. Although molecular techniques based on DNA amplification and sequencing are finding ways into diagnostic laboratories, they are time-consuming, costly and difficult in the case of multiplex assays. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a rapid and accurate proteomic method reliable for identification of unknown bacteria to the genus and species level. Upon extension of databases, it will certainly find its position in environmental sciences. The paper presents an overview of the principle of the method, its effectiveness in comparison with conventional and molecular identification procedures, and applicability on environmental and aquatic isolates, discussing its advantages and shortcomings, as well as possible future implementations.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry, Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| |
Collapse
|
32
|
Remus-Emsermann MN, Schmid M, Gekenidis MT, Pelludat C, Frey JE, Ahrens CH, Drissner D. Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites. Stand Genomic Sci 2016; 11:75. [PMID: 28300228 PMCID: PMC5037603 DOI: 10.1186/s40793-016-0190-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/31/2016] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae. We isolated strain P3B5 from the phyllosphere of basil plants (Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis. Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.
Collapse
Affiliation(s)
| | - Michael Schmid
- Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Maria-Theresia Gekenidis
- Agroscope, Institute for Food Sciences IFS, Wädenswil, Switzerland
- ETH Zurich, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Cosima Pelludat
- Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland
| | - Jürg E. Frey
- Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland
| | - Christian H. Ahrens
- Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences IFS, Wädenswil, Switzerland
| |
Collapse
|
33
|
Rahi P, Prakash O, Shouche YS. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists. Front Microbiol 2016; 7:1359. [PMID: 27625644 PMCID: PMC5003876 DOI: 10.3389/fmicb.2016.01359] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.
Collapse
Affiliation(s)
- Praveen Rahi
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Om Prakash
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| | - Yogesh S Shouche
- Microbial Culture Collection, National Centre for Cell Science Pune, India
| |
Collapse
|
34
|
Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs 2016; 14:E129. [PMID: 27399731 PMCID: PMC4962019 DOI: 10.3390/md14070129] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota.
Collapse
Affiliation(s)
- Clément Offret
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florie Desriac
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Patrick Le Chevalier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Camille Jégou
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Yannick Fleury
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
35
|
Sala-Comorera L, Vilaró C, Galofré B, Blanch AR, García-Aljaro C. Use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for bacterial monitoring in routine analysis at a drinking water treatment plant. Int J Hyg Environ Health 2016; 219:577-584. [PMID: 26809219 DOI: 10.1016/j.ijheh.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
The study of bacterial communities throughout a drinking water treatment plant could provide a basic understanding of the effects of water processing that could then be used to improve the management of such plants. However, it is necessary to develop new analytical techniques that are sufficiently efficient, robust and fast for their effective and useful application in routine analysis. The aim of this study is therefore to assess the performance of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), as compared to the PhenePlate™ system, for routine analysis in a drinking water treatment plant. To this end we studied a total of 277 colonies isolated in different seasons and from different points throughout the water treatment process, including: raw water, sand filtration, ultrafiltration, reverse osmosis and chlorination. The colonies were analysed using MALDI-TOF MS by direct deposition of the cells on the plate. The colonies were also biochemically fingerprinted using the PhenePlate™ system, clustered according to their similarity and a representative strain was selected for 16S rRNA gene sequencing and API® gallery-based identification. The use of MALDI-TOF MS was reliable compared to the PhenePlate™ system and has the advantage of being faster and relatively cheap. Bacteria typing by MALDI-TOF MS is therefore a promising method to replace conventional routine phenotypic methods for the identification of bacteria in drinking water laboratories, thanks to its robustness. The major limiting factor for MALDI-TOF MS is the lack of a suitable mass spectra database; although each laboratory can develop its own library. This methodology will provide a tracking tool for companies to use in risk management and the detection of possible failures in both the water treatment processes and the distribution network, as well as offering characterization of the intrinsic microbial populations.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carles Vilaró
- Aigües de Barcelona, EMGCIA, C/General Batet 1-7, 08028 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, EMGCIA, C/General Batet 1-7, 08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
36
|
Emami K, Nelson A, Hack E, Zhang J, Green DH, Caldwell GS, Mesbahi E. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas. Front Microbiol 2016; 7:104. [PMID: 26903983 PMCID: PMC4751257 DOI: 10.3389/fmicb.2016.00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
The genus Pseudoalteromonas constitutes an ecologically significant group of marine Gammaproteobacteria with potential biotechnological value as producers of bioactive compounds and of enzymes. Understanding their roles in the environment and bioprospecting for novel products depend on efficient ways of identifying environmental isolates. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) biotyping has promise as a rapid and reliable method of identifying and distinguishing between different types of bacteria, but has had relatively limited application to marine bacteria and has not been applied systematically to Pseudoalteromonas. Therefore, we constructed a MALDI-TOF MS database of 31 known Pseudoalteromonas species, to which new isolates can be compared by MALDI-TOF biotyping. The ability of MALDI-TOF MS to distinguish between species was scrutinized by comparison with 16S rRNA gene sequencing. The patterns of similarity given by the two approaches were broadly but not completely consistent. In general, the resolution of MALDI-TOF MS was greater than that of 16S rRNA gene sequencing. The database was tested with 13 environmental Pseudoalteromonas isolates from UK waters. All of the test strains could be identified to genus level by MALDI-TOF MS biotyping, but most could not be definitely identified to species level. We conclude that several of these isolates, and possibly most, represent new species. Thus, further taxonomic investigation of Pseudoalteromonas is needed before MALDI-TOF MS biotyping can be used reliably for species identification. It is, however, a powerful tool for characterizing and distinguishing among environmental isolates and can make an important contribution to taxonomic studies.
Collapse
Affiliation(s)
- Kaveh Emami
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University Newcastle upon Tyne, UK
| | - Ethan Hack
- School of Biology, Newcastle University Newcastle upon Tyne, UK
| | - Jinwei Zhang
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee Dundee, UK
| | - David H Green
- Microbial and Molecular Biology, Scottish Association for Marine Science, Scottish Marine Institute Oban, UK
| | - Gary S Caldwell
- School of Marine Science and Technology, Newcastle University Newcastle upon Tyne, UK
| | - Ehsan Mesbahi
- Faculty of Science, Agriculture and Engineering, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Santos IC, Hildenbrand ZL, Schug KA. Applications of MALDI-TOF MS in environmental microbiology. Analyst 2016; 141:2827-37. [DOI: 10.1039/c6an00131a] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is an emerging technique for microbial identification, characterization, and typing.
Collapse
Affiliation(s)
- Inês C. Santos
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Zacariah L. Hildenbrand
- Inform Environmental
- LLC
- Dallas
- USA
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation
| |
Collapse
|
38
|
Koyama S, Nishi S, Tokuda M, Uemura M, Ishikawa Y, Seya T, Chow S, Ise Y, Hatada Y, Fujiwara Y, Tsubouchi T. Electrical Retrieval of Living Microorganisms from Cryopreserved Marine Sponges Using a Potential-Controlled Electrode. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:678-92. [PMID: 26242755 PMCID: PMC4540769 DOI: 10.1007/s10126-015-9651-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/06/2015] [Indexed: 05/19/2023]
Abstract
The purpose of this study was to develop a novel electrical retrieval method (ER method) for living sponge-associated microorganisms from marine sponges frozen at -80 °C. A -0.3-V vs. Ag/AgCl constant potential applied for 2 h at 9 °C induced the attachment of the sponge-associated microorganisms to an indium tin oxide/glass (ITO) or a gallium-doped zinc oxide/glass (GZO) working electrode. The electrically attached microorganisms from homogenized Spirastrella insignis tissues had intact cell membranes and showed intracellular dehydrogenase activity. Dead microorganisms were not attracted to the electrode when the homogenized tissues were autoclaved for 15 min at 121 °C before use. The electrically attached microorganisms included cultivable microorganisms retrieved after detachment from the electrode by application of a 9-MHz sine-wave potential. Using the ER method, we obtained 32 phyla and 72 classes of bacteria and 3 archaea of Crenarchaeota thermoprotei, Marine Group I, and Thaumarchaeota incertae sedis from marine sponges S. insignis and Callyspongia confoederata. Employment of the ER method for extraction and purification of the living microorganisms holds potential of single-cell cultivation for genome, transcriptome, proteome, and metabolome analyses of bioactive compounds producing sponge-associated microorganisms.
Collapse
Affiliation(s)
- Sumihiro Koyama
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
40
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
41
|
Liew PX, Kubes P. Intravital imaging - dynamic insights into natural killer T cell biology. Front Immunol 2015; 6:240. [PMID: 26042123 PMCID: PMC4438604 DOI: 10.3389/fimmu.2015.00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Natural killer T (NKT) cells were first recognized more than two decades ago as a separate and distinct lymphocyte lineage that modulates an expansive range of immune responses. As innate immune cells, NKT cells are activated early during inflammation and infection, and can subsequently stimulate or suppress the ensuing immune response. As a result, researchers hope to harness the immunomodulatory properties of NKT cells to treat a variety of diseases. However, many questions still remain unanswered regarding the biology of NKT cells, including how these cells traffic from the thymus to peripheral organs and how they play such contrasting roles in different immune responses and diseases. In this new era of intravital fluorescence microscopy, we are now able to employ this powerful tool to provide quantitative and dynamic insights into NKT cell biology including cellular dynamics, patrolling, and immunoregulatory functions with exquisite resolution. This review will highlight and discuss recent studies that use intravital imaging to understand the spectrum of NKT cell behavior in a variety of animal models.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary , Calgary, AB , Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
42
|
Cerebrosides from a Far-Eastern Glass Sponge Aulosaccus sp. Lipids 2014; 50:57-69. [DOI: 10.1007/s11745-014-3974-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
43
|
Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review. Mar Drugs 2014; 12:5089-122. [PMID: 25272328 PMCID: PMC4210886 DOI: 10.3390/md12105089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022] Open
Abstract
Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.
Collapse
|
44
|
Cox DG, Oh J, Keasling A, Colson KL, Hamann MT. The utility of metabolomics in natural product and biomarker characterization. Biochim Biophys Acta Gen Subj 2014; 1840:3460-3474. [PMID: 25151044 DOI: 10.1016/j.bbagen.2014.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms. SCOPE OF REVIEW We review here some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers. MAJOR CONCLUSIONS This review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states. GENERAL SIGNIFICANCE This review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers.
Collapse
Affiliation(s)
- Daniel G Cox
- Department of Pharmacognosy, Pharmacology, Chemistry and Biochemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Joonseok Oh
- Department of Pharmacognosy, Pharmacology, Chemistry and Biochemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Adam Keasling
- Department of Pharmacognosy, Pharmacology, Chemistry and Biochemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kim L Colson
- R&D Division, Bruker BioSpin, 15 Fortune Drive Billerica, MA 01821, USA
| | - Mark T Hamann
- Department of Pharmacognosy, Pharmacology, Chemistry and Biochemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
45
|
Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 2014; 185:41-50. [PMID: 24929682 DOI: 10.1016/j.ijfoodmicro.2014.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 11/26/2022]
Abstract
Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry.
Collapse
Affiliation(s)
- Anneleen D Wieme
- Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium; Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Freek Spitaels
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Maarten Aerts
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Katrien De Bruyne
- Applied Maths N.V., Keistraat 120, B-9830 Sint-Martens-Latem, Belgium
| | - Anita Van Landschoot
- Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| |
Collapse
|
46
|
Spitaels F, Wieme AD, Janssens M, Aerts M, Daniel HM, Van Landschoot A, De Vuyst L, Vandamme P. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One 2014; 9:e95384. [PMID: 24748344 PMCID: PMC3991685 DOI: 10.1371/journal.pone.0095384] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022] Open
Abstract
Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.
Collapse
Affiliation(s)
- Freek Spitaels
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D. Wieme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Janssens
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maarten Aerts
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Heide-Marie Daniel
- Mycothèque de l'Université catholique de Louvain (MUCL), Belgian Coordinated Collection of Microorganisms (BCCM), Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anita Van Landschoot
- Laboratory of Biochemistry and Brewing, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Zhang L, Borror CM, Sandrin TR. A designed experiments approach to optimization of automated data acquisition during characterization of bacteria with MALDI-TOF mass spectrometry. PLoS One 2014; 9:e92720. [PMID: 24662978 PMCID: PMC3963954 DOI: 10.1371/journal.pone.0092720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023] Open
Abstract
MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated data acquisition to yield spectra with reproducibility comparable to those acquired manually. Fractional factorial design was used to design experiments for robust optimization of settings, in which values of five parameters (peak selection mass range, signal to noise ratio (S:N), base peak intensity, minimum resolution and number of shots summed) commonly used to facilitate automated data acquisition were varied. Pseudomonas aeruginosa was used as a model bacterium in the designed experiments, and spectra were acquired using an intact cell sample preparation method. Optimum automated data acquisition settings (i.e., those settings yielding the highest reproducibility of replicate mass spectra) were obtained based on statistical analysis of spectra of P. aeruginosa. Finally, spectrum quality and reproducibility obtained from non-optimized and optimized automated data acquisition settings were compared for P. aeruginosa, as well as for two other bacteria, Klebsiella pneumoniae and Serratia marcescens. Results indicated that reproducibility increased from 90% to 97% (p-value[Formula: see text]0.002) for P. aeruginosa when more shots were summed and, interestingly, decreased from 95% to 92% (p-value [Formula: see text] 0.013) with increased threshold minimum resolution. With regard to spectrum quality, highly reproducible spectra were more likely to have high spectrum quality as measured by several quality metrics, except for base peak resolution. Interaction plots suggest that, in cases of low threshold minimum resolution, high reproducibility can be achieved with fewer shots. Optimization yielded more reproducible spectra than non-optimized settings for all three bacteria.
Collapse
Affiliation(s)
- Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Connie M. Borror
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
48
|
Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol 2013; 80:1528-38. [PMID: 24362425 DOI: 10.1128/aem.03708-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the growth medium used on the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation.
Collapse
|
49
|
Pavlovic M, Huber I, Konrad R, Busch U. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria. Open Microbiol J 2013; 7:135-41. [PMID: 24358065 PMCID: PMC3866695 DOI: 10.2174/1874285801307010135] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/03/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality.
This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed.
Collapse
Affiliation(s)
- Melanie Pavlovic
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, 85354 Oberschleißheim, Germany
| |
Collapse
|
50
|
Christie-Oleza JA, Miotello G, Armengaud J. Proteogenomic definition of biomarkers for the large Roseobacter clade and application for a quick screening of new environmental isolates. J Proteome Res 2013; 12:5331-9. [PMID: 24044462 DOI: 10.1021/pr400554e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Whole-cell, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has become a routine and reliable method for microbial characterization due to its simplicity, low cost, and high reproducibility. The identification of microbial isolates relies on the spectral resemblance of low-molecular-weight proteins to already-existing isolates within the databases. This is a gold standard for clinicians who have a finite number of well-defined pathogenic strains but represents a problem for environmental microbiologists with an overwhelming number of organisms to be defined. Here we set a milestone for implementing whole-cell MALDI-TOF mass spectrometry to identify isolates from the biosphere. To make this technique accessible for environmental studies, we propose to (i) define biomarkers that will always show up with an intense m/z signal in the MALDI-TOF spectra and (ii) create a database with all the possible m/z values that these biomarkers can generate to screen new isolates. We tested our method with the relevant marine Roseobacter lineage. The use of shotgun nanoLC-MS/MS proteomics on the small proteome fraction of nine Roseobacter strains and the proteogenomic toolbox helped us to identify potential biomarkers in terms of protein abundance and low variability among strains. We show that the DNA binding protein, HU, and the ribosomal proteins, L29 and L30, are the most robust biomarkers within the Roseobacter clade. The molecular weights of these three biomarkers, as for other conserved homologous proteins, vary due to sequence variation above the genus level. Therefore, we calculated the m/z values expected for each one of the known Roseobacter genera and tested our strategy during an extensive screening of natural marine isolates obtained from coastal waters of the Western Mediterranean Sea. The use of this technique versus standard sequencing methods is discussed.
Collapse
|