1
|
Zhang F, Shi T, Zhang Z, Wang S, Liu J, Li Y, Wang X, Liu K, Guo L. An M cell-targeting recombinant L. lactis vaccine against four H. pylori adhesins. Appl Microbiol Biotechnol 2024; 108:231. [PMID: 38396242 PMCID: PMC10891252 DOI: 10.1007/s00253-024-13070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting L. lactis surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against Helicobacter pylori. Therefore, a recombinant Lactococcus lactic acid vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key H. pylori adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of H. pylori infection and to some extent eliminating H. pylori already present in the gastrointestinal tract. KEY POINTS: • M-cell-targeting L. lactis surface display system LL- plSAM was designed • This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell • A promising vaccine candidate for controlling H. pylori infection was verified.
Collapse
Affiliation(s)
- Furui Zhang
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Tianyi Shi
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Zhang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Shue Wang
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Liu
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Yonghong Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
| | - Xuequan Wang
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
| | - Kunmei Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Le Guo
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Su R, Shi Z, Li E, Zhu M, Li D, Liu X, Sun Y, Feng N, Wang J, Wang T, Xia X, Sun W, Gao Y. A Trim-RBD-GEM vaccine candidate protects mice from SARS-CoV-2. Virology 2023; 585:145-154. [PMID: 37348143 PMCID: PMC10266888 DOI: 10.1016/j.virol.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The SARS-CoV-2 pandemic has continued for about three years since emerging in late December 2019, resulting in millions of deaths. Therefore, there is an urgent need to develop a safe and effective vaccine to control SARS-CoV-2. In this study, we developed a bacterium-like particle vaccine that displays the SARS-CoV-2 receptor binding domain (RBD) (named Trim-RBD-GEM) using the GEM-PA system. We evaluated the immunogenicity and protective efficacy of the Trim-RBD-GEM vaccine with the oil-in-water adjuvant AddaVax in C57BL/6 N mice intramuscularly. We found that Trim-RBD-GEM&AddaVax induced high levels of humoral immunity in C57BL/6 N mice. Additionally, the lung virus loads in the immunized group were significantly decreased compared to the adjuvant control and mock groups. Therefore, this vaccine provides protection against lethal infection in a C57BL/6 N mouse model. Our Trim-RBD-GEM&AddaVax vaccine is potentially a promising, rapid, and safe subunit vaccine for preventing and controlling SARS-CoV-2.
Collapse
Affiliation(s)
- Rina Su
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Zhuangzhuang Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Entao Li
- College of Life Science and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Menghan Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiawei Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yue Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianzhong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Riangrungroj P, Visessanguan W, Leartsakulpanich U. Production of Lactobacillus plantarum ghosts by conditional expression of a prophage-encoded holin. FEMS Microbiol Lett 2023; 370:fnad095. [PMID: 37738444 DOI: 10.1093/femsle/fnad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Bacterial ghosts (BGs) are nonviable empty bacterial cell envelopes with intact cellular morphology and native surface structure. BGs made from pathogenic bacteria are used for biomedical and pharmaceutical applications. However, incomplete pathogenic cell inactivation during BG preparation raises safety concerns that could limit the intended use. Therefore, safer bacterial cell types are needed for BG production. Here, we produced BGs from the food-grade Gram-positive bacterium Lactobacillus plantarum TBRC 2-4 by conditional expression of a prophage-encoded holin (LpHo). LpHo expression was regulated using the pheromone-inducible pSIP system and LpHo was localized to the cell membrane. Upon LpHo induction, a significant growth retardation and a drastic decrease in cell viability were observed. LpHo-induced cells also showed membrane pores by scanning electron microscopy, membrane depolarization by flow cytometry, and release of nucleic acid contents in the cell culture supernatant, consistent with the role of LpHo as a pore-forming protein and L. plantarum ghost formation. The holin-induced L. plantarum BG platform could be developed as a safer alternative vehicle for the delivery of biomolecules.
Collapse
Affiliation(s)
- Pinpunya Riangrungroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Guo L, Zhang F, Wang S, Li R, Zhang L, Zhang Z, Yin R, Liu H, Liu K. Oral Immunization With a M Cell-Targeting Recombinant L. Lactis Vaccine LL-plSAM-FVpE Stimulate Protective Immunity Against H. Pylori in Mice. Front Immunol 2022; 13:918160. [PMID: 35911756 PMCID: PMC9336465 DOI: 10.3389/fimmu.2022.918160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
There are many virulence factors of H. pylori that contribute in diverse ways to gastric disease. Therefore, designing multivalent epitope vaccines against many key virulence factors virulence factors of H. pylori is a promising strategy to control H. pylori infection. In previous studies, we constructed a multivalent epitope vaccine FVpE against four key virulence factors of H. pylori (Urease, CagA, VacA, and NAP), and oral immunization with the FVpE vaccine plus a polysaccharide adjuvant (PA) containing lycium barbarum polysaccharide and chitosan could provide protection against H. pylori infection in the Mongolian gerbil model. Oral vaccines have many advantages over injected vaccines, such as improved safety and compliance, and easier manufacturing and administration. However, the harsh gastrointestinal (GI) environment, such as gastric acid and proteolytic enzymes, limits the development of oral vaccines to some extent. Oral vaccines need a gastrointestinal delivery system with high safety, low price and promoting vaccine antigen to stimulate immune response in the gastrointestinal mucosa. Lactic acid bacteria are gastrointestinal probiotics that have unique advantages as a delivery system for oral vaccines. In this study, a M cell-targeting surface display system for L. lactis named plSAM was designed to help vaccine antigens to stimulate effective immune responses in the gastrointestinal tract, and a M cell-targeting recombinant L. lactis vaccine LL-plSAM-FVpE was constructed by using the surface display system plSAM. recombinant L. lactis vaccine LL-plSAM-FVpE could secretively express the SAM-FVpE protein and display it on the bacterial surface. Moreover, experimental results confirmed that LL-plSAM-FVpE had an enhanced M cell-targeting property. In addition, LL-plSAM-FVpE had excellent M cell-targeting property to promote the phagocytosis and transport of the antigen SAM-FVpE by gastrointestinal M cells. More importantly, oral immunization of LL-plSAM-FVpE or SAM-FVpE plus PA can stimulate IgG and sIgA antibodies and CD4+ T cell immune responses against four virulence factors of H. pylori (Urease, CagA, VacA, and NAP), thus providing protective immunity against H. pylori infection in mice. The M cell-targeting recombinant L. lactis vaccine against various key H. pylori virulence factors could be a promising vaccine candidate for controlling H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province affifiliated to Wenzhou Medical University, Taizhou, China
| | - Furui Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Wang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runle Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Lele Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zhen Zhang
- Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- *Correspondence: Kunmei Liu, ; Hongpeng Liu,
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
- *Correspondence: Kunmei Liu, ; Hongpeng Liu,
| |
Collapse
|
5
|
Tay PKR, Lim PY, Ow DSW. A SH3_5 Cell Anchoring Domain for Non-recombinant Surface Display on Lactic Acid Bacteria. Front Bioeng Biotechnol 2021; 8:614498. [PMID: 33585415 PMCID: PMC7873443 DOI: 10.3389/fbioe.2020.614498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are a group of gut commensals increasingly recognized for their potential to deliver bioactive molecules in vivo. The delivery of therapeutic proteins, in particular, can be achieved by anchoring them to the bacterial surface, and various anchoring domains have been described for this application. Here, we investigated a new cell anchoring domain (CAD4a) isolated from a Lactobacillus protein, containing repeats of a SH3_5 motif that binds non-covalently to peptidoglycan in the LAB cell wall. Using a fluorescent reporter, we showed that C-terminal CAD4a bound Lactobacillus fermentum selectively out of a panel of LAB strains, and cell anchoring was uniform across the cell surface. Conditions affecting CAD4a anchoring were studied, including temperature, pH, salt concentration, and bacterial growth phase. Quantitative analysis showed that CAD4a allowed display of 105 molecules of monomeric protein per cell. We demonstrated the surface display of a functional protein with superoxide dismutase (SOD), an antioxidant enzyme potentially useful for treating gut inflammation. SOD displayed on cells could be protected from gastric digestion using a polymer matrix. Taken together, our results show the feasibility of using CAD4a as a novel cell anchor for protein surface display on LAB.
Collapse
Affiliation(s)
- Pei Kun Richie Tay
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pei Yu Lim
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cells Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
6
|
Pham ML, Tran AM, Kittibunchakul S, Nguyen TT, Mathiesen G, Nguyen TH. Immobilization of β-Galactosidases on the Lactobacillus Cell Surface Using the Peptidoglycan-Binding Motif LysM. Catalysts 2019; 9:443. [PMID: 31595189 PMCID: PMC6783300 DOI: 10.3390/catal9050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lysin motif (LysM) domains are found in many bacterial peptidoglycan hydrolases. They can bind non-covalently to peptidoglycan and have been employed to display heterologous proteins on the bacterial cell surface. In this study, we aimed to use a single LysM domain derived from a putative extracellular transglycosylase Lp_3014 of Lactobacillus plantarum WCFS1 to display two different lactobacillal β-galactosidases, the heterodimeric LacLM-type from Lactobacillus reuteri and the homodimeric LacZ-type from Lactobacillus delbrueckii subsp. bulgaricus, on the cell surface of different Lactobacillus spp. The β-galactosidases were fused with the LysM domain and the fusion proteins, LysM-LacLMLreu and LysM-LacZLbul, were successfully expressed in Escherichia coli and subsequently displayed on the cell surface of L. plantarum WCFS1. β-Galactosidase activities obtained for L. plantarum displaying cells were 179 and 1153 U per g dry cell weight, or the amounts of active surface-anchored β-galactosidase were 0.99 and 4.61 mg per g dry cell weight for LysM-LacLMLreu and LysM-LacZLbul, respectively. LysM-LacZLbul was also displayed on the cell surface of other Lactobacillus spp. including L. delbrueckii subsp. bulgaricus, L. casei and L. helveticus, however L. plantarum is shown to be the best among Lactobacillus spp. tested for surface display of fusion LysM-LacZLbul, both with respect to the immobilization yield as well as the amount of active surface-anchored enzyme. The immobilized fusion LysM-β-galactosidases are catalytically efficient and can be reused for several repeated rounds of lactose conversion. This approach, with the β-galactosidases being displayed on the cell surface of non-genetically modified food-grade organisms, shows potential for applications of these immobilized enzymes in the synthesis of prebiotic galacto-oligosaccharides.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Anh-Minh Tran
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Department of Biology, Faculty of Fundamental Sciences, Ho Chi Minh City University of Medicine and Pharmacy, 217 Hong Bang, Ho Chi Minh City, Vietnam
| | - Suwapat Kittibunchakul
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Tien-Thanh Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Correspondence: ; Tel.: +43-1-47654-75215; Fax: +43-1-47654-75039
| |
Collapse
|
7
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Recovery of recombinant Mycobacterium tuberculosis antigens fused with cell wall-anchoring motif (LysM) from inclusion bodies using non-denaturing reagent (N-laurylsarcosine). BMC Biotechnol 2019; 19:27. [PMID: 31088425 PMCID: PMC6518676 DOI: 10.1186/s12896-019-0522-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The current limitations of conventional BCG vaccines highlights the importance in developing novel and effective vaccines against tuberculosis (TB). The utilization of probiotics such as Lactobacillus plantarum for the delivery of TB antigens through in-trans surface display provides an effective and safe vaccine approach against TB. Such non-recombinant probiotic surface display strategy involves the fusion of candidate proteins with cell wall binding domain such as LysM, which enables the fusion protein to anchor the L. plantarum cell wall externally, without the need for vector genetic modification. This approach requires sufficient production of these recombinant fusion proteins in cell factory such as Escherichia coli which has been shown to be effective in heterologous protein production for decades. However, overexpression in E. coli expression system resulted in limited amount of soluble heterologous TB-LysM fusion protein, since most of it are accumulated as insoluble aggregates in inclusion bodies (IBs). Conventional methods of denaturation and renaturation for solubilizing IBs are costly, time-consuming and tedious. Thus, in this study, an alternative method for TB antigen-LysM protein solubilization from IBs based on the use of non-denaturating reagent N-lauroylsarcosine (NLS) was investigated. RESULTS Expression of TB antigen-LysM fusion genes was conducted in Escherichia coli, but this resulted in IBs deposition in contrast to the expression of TB antigens only. This suggested that LysM fusion significantly altered solubility of the TB antigens produced in E. coli. The non-denaturing NLS technique was used and optimized to successfully solubilize and purify ~ 55% of the recombinant cell wall-anchoring TB antigen from the IBs. Functionality of the recovered protein was analyzed via immunofluorescence microscopy and whole cell ELISA which showed successful and stable cell wall binding to L. plantarum (up to 5 days). CONCLUSION The presented NLS purification strategy enables an efficient and rapid method for obtaining higher yields of soluble cell wall-anchoring Mycobacterium tuberculosis antigens-LysM fusion proteins from IBs in E. coli.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
8
|
Mustafa AD, Kalyanasundram J, Sabidi S, Song AAL, Abdullah M, Abdul Rahim R, Yusoff K. Proof of concept in utilizing in-trans surface display system of Lactobacillus plantarum as mucosal tuberculosis vaccine via oral administration in mice. BMC Biotechnol 2018; 18:63. [PMID: 30309359 PMCID: PMC6182793 DOI: 10.1186/s12896-018-0461-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
Background Tuberculosis is one of the most common and deadliest infectious diseases worldwide affecting almost a third of the world’s population. Although this disease is being prevented and controlled by the Bacille Calmette Guérin (BCG) vaccine, the protective efficacy is highly variable and substandard (0–80%) in adults. Therefore, novel and effective tuberculosis vaccine that can overcome the limitations from BCG vaccine need to be developed. Results A novel approach of utilizing an in-trans protein surface display system of Lactobacillus plantarum carrying and displaying combination of Mycobacterium tuberculosis subunit epitope antigens (Ag85B, CFP-10, ESAT-6, Rv0475 and Rv2031c) fused with LysM anchor motif designated as ACERL was constructed, cloned and expressed in Esherichia coli Rossetta expression host. Subsequently the binding capability of ACERL to the cell wall of L. plantarum was examined via the immunofluorescence microscopy and whole cell ELISA where successful attachment and consistent stability of cell wall binding up to 4 days was determined. The immunization of the developed vaccine of L. plantarum surface displaying ACERL (Lp ACERL) via the oral route was studied in mice for its immunogenicity effects. Lp ACERL immunization was able to invoke significant immune responses that favor the Th1 type cytokine response of IFN-γ, IL-12 and IL-2 as indicated by the outcome from the cytokine profiling of spleen, lung, gastrointestinal tract (GIT), and the re-stimulation of the splenocytes from the immunized mice. Co-administration of an adjuvant consisting of Lactococcus lactis secreting mouse IL-12 (LcIL-12) with Lp ACERL was also investigated. It was shown that the addition of LcIL-12 was able to further generate significant Th1 type cytokines immune responses, similar or better than that of Lp ACERL alone which can be observed from the cytokine profiling of the immunized mice’s spleen, lung and GIT. Conclusions This study represents a proof of concept in the development of L. plantarum as a carrier for a non-genetically modified organism (GMO) tuberculosis vaccine, which may be the strategy in the future for tuberculosis vaccine development. Electronic supplementary material The online version of this article (10.1186/s12896-018-0461-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anhar Danial Mustafa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarah Sabidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Malaysia Genome Institute, 43000, Kajang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Jin YB, Yang WT, Shi CW, Feng B, Huang KY, Zhao GX, Li QY, Xie J, Huang HB, Jiang YL, Wang JZ, Wang G, Kang YH, Yang GL, Wang CF. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets. Appl Microbiol Biotechnol 2018; 102:8403-8417. [PMID: 30022263 PMCID: PMC7080080 DOI: 10.1007/s00253-018-9205-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023]
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.
Collapse
Affiliation(s)
- Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo Feng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ke-Yan Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guang-Xun Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qiong-Yan Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Xie
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
11
|
Zahirović A, Lunder M. Microbial Delivery Vehicles for Allergens and Allergen-Derived Peptides in Immunotherapy of Allergic Diseases. Front Microbiol 2018; 9:1449. [PMID: 30013543 PMCID: PMC6036130 DOI: 10.3389/fmicb.2018.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Allergen-specific immunotherapy represents the only available curative approach to allergic diseases. The treatment has proven effective, but it requires repetitive administrations of allergen extracts over 3-5 years and is often associated with adverse events. This implies the need for novel therapeutic strategies with reduced side effects and decreased treatment time, which would improve patients' compliance. Development of vaccines that are molecularly well defined and have improved safety profile in comparison to whole allergen extracts represents a promising approach. Molecular allergy vaccines are based on major allergen proteins or allergen-derived peptides. Often, such vaccines are associated with lower immunogenicity and stability and therefore require an appropriate delivery vehicle. In this respect, viruses, bacteria, and their protein components have been intensively studied for their adjuvant capacity. This article provides an overview of the microbial delivery vehicles that have been tested for use in allergy immunotherapy. We review in vitro and in vivo data on the immunomodulatory capacity of different microbial vehicles for allergens and allergen-derived peptides and evaluate their potential in development of allergy vaccines. We also discuss relevant aspects and challenges concerning the use of microbes and their components in immunotherapy of allergic diseases.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
13
|
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 2017; 16:55. [PMID: 28376880 PMCID: PMC5379754 DOI: 10.1186/s12934-017-0669-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Saccharomyces [corrected] cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Lionel L A In
- Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Block B and D, MAEPS Building, MARDI Complex, Jalan MAEPS Perdana, 43400, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis. Biotechnol Prog 2016; 33:154-162. [PMID: 27802566 DOI: 10.1002/btpr.2400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 104 molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 104 molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fez-Shin Chen
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol 2016; 100:9407-9421. [DOI: 10.1007/s00253-016-7842-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
|
16
|
Mao R, Zhou K, Han Z, Wang Y. Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Fact 2016; 15:80. [PMID: 27176475 PMCID: PMC4866291 DOI: 10.1186/s12934-016-0478-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background Purified from the supernatant of Bacillus subtilis QK02 culture broth, Subtilisin QK-2 is a type of effective thrombolytic reagent that has great exploitable potential. However, the unbearable flavor that occurs with fermentation and the complicated methods that are required to obtain pure products limit the application of this enzyme. Lactic acid bacteria (LAB)-based delivery vehicles are promising as cheap and safe options for medicinal compounds. The secretory expression and surface display using LAB may popularize Subtilisin QK-2 more easily and conveniently with minimal adverse effects. Results Subtilisin QK-2 was expressed successfully in two forms using lactic acid bacteria. For the secretory expression in Lactococcus lactis, Subtilisin QK-2 was efficiently secreted into the culture using the promoter PnisA and signal peptide SPUsp. The expression levels were not different in L. lactis NZ9000 and NZ3900 without the effect of different selection markers. However, leaky expression was only detected in L. lactis NZ3900. The biological activity of this secreted Subtilisin QK-2 was enhanced by modulating the pH of medium to slightly alkaline during induction and by codon optimization of either the entire gene sequence (qk′) or only the propeptide gene sequence (qkpro′). For surface display onto gram-positive enhancer matrix (GEM) particles, n LysM repeats from the C-terminal region of the major autolysin AcmA of L. lactis were fused to either the C-terminus (n = 1, 3, 5) or the N-terminus (n = 1) of the Subtilisin QK-2. These fusion proteins were secreted into the culture medium, and the QK-3LysM was able to bind to the surface of various LAB GEM particles without a loss of fibrinolytic activity. Furthermore, the binding capacity significantly increased with a higher concentration of QK-3LysM. Compared to the free-form Subtilisin QK-2, the QK-3LysM displayed on the surface of GEM particles was more stable in the simulated gastric juice. Conclusions Combined with the safety and popularity of LAB, Subtilisin QK-2 may be easily applied worldwide to prevent and control thrombosis diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Kangping Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhenwei Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
17
|
Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 2016; 15:70. [PMID: 27142045 PMCID: PMC4855500 DOI: 10.1186/s12934-016-0468-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB.
Collapse
Affiliation(s)
- C. Michon
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - P. Langella
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - V. G. H. Eijsink
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - G. Mathiesen
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J. M. Chatel
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
18
|
Baradaran A, Yusoff K, Shafee N, Rahim RA. Newcastle Disease Virus Hemagglutinin Neuraminidase as a Potential Cancer Targeting Agent. J Cancer 2016; 7:462-6. [PMID: 26918060 PMCID: PMC4749367 DOI: 10.7150/jca.13566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) with its immunotherapeutic activities and sialic acid binding abilities is a promising cancer adjuvant. The HN was surfaced displayed on Lactococcus lactis and its cancer targeting ability was investigated via attachment to the MDA-MB231 breast cancers. To surface display the HN protein on the bacterial cell wall, HN was fused to N-acetylmuraminidase (AcmA) anchoring motif of L. lactis and expressed in Chinese hamster ovary cells. The expressed recombinant fusion proteins were purified and mixed with a culture of L. lactis and Lactobacillus plantarum. Immunofluorescence assay showed the binding of the recombinant HN-AcmA protein on the surface of the bacterial cells. The bacterial cells carrying the HN-AcmA protein interacted with the MDA-MB231 breast cancer cells. Direct and fluorescent microscopy confirmed that L. lactis and Lb. plantarum surface displaying the recombinant HN were attached to the breast cancer MDA-MB231 cells, providing evidence for the potential ability of HN in targeting to cancer cells.
Collapse
Affiliation(s)
- Ali Baradaran
- 1. Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- 2. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Norazizah Shafee
- 2. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- 1. Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;; 3. Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
19
|
Kalyanasundram J, Chia SL, Song AAL, Raha AR, Young HA, Yusoff K. Surface display of glycosylated Tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol 2015; 15:113. [PMID: 26715153 PMCID: PMC4696278 DOI: 10.1186/s12896-015-0231-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/22/2015] [Indexed: 01/27/2023] Open
Abstract
Background The exploitation of the surface display system of food and commensal lactic acid bacteria (LAB) for bacterial, viral, or protozoan antigen delivery has received strong interest recently. The Generally Regarded as Safe (GRAS) status of the Lactococcus lactis coupled with a non-recombinant strategy of in-trans surface display, provide a safe platform for therapeutic drug and vaccine development. However, production of therapeutic proteins fused with cell-wall anchoring motifs is predominantly limited to prokaryotic expression systems. This presents a major disadvantage in the surface display system particularly when glycosylation has been recently identified to significantly enhance epitope presentation. In this study, the glycosylated murine Tyrosinase related protein-2 (TRP-2) with the ability to anchor onto the L. lactis cell wall was produced in suspension adapted Chinese Hamster Ovary (CHO-S) cells by expressing TRP-2 fused with cell wall anchoring LysM motif (cA) at the C-terminus. Results A total amount of 33 μg of partially purified TRP-2-cA from ~6.0 g in wet weight of CHO-S cells was purified by His-tag affinity chromatography. The purified TRP-2-cA protein was shown to be N-glycosylated and successfully anchored to the L. lactis cell wall. Conclusions Thus cell surface presentation of glycosylated mammalian antigens may now permit development of novel and inexpensive vaccine platforms.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Abdul Rahim Raha
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Chamcha V, Jones A, Quigley BR, Scott JR, Amara RR. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut. THE JOURNAL OF IMMUNOLOGY 2015; 195:5025-34. [PMID: 26482408 DOI: 10.4049/jimmunol.1501243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
Abstract
The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV.
Collapse
Affiliation(s)
- Venkateswarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Andrew Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and
| | - Bernard R Quigley
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - June R Scott
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; and Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329
| |
Collapse
|
21
|
Ashrafi F, Fallah Mehrabadi J, Siadat SD, Aghasadeghi MR. Expression and Purification of the Uropathogenic Escherichia coli PapG Protein and its Surface Absorption on Lactobacillus reuteri: Implications for Surface Display System Vaccines. Jundishapur J Microbiol 2015; 8:e25595. [PMID: 26487922 PMCID: PMC4609037 DOI: 10.5812/jjm.25595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Uropathogenic Escherichia coli (UPEC) is one of the most common bacteria that can cause urinary tract infections (UTIs). Unfortunately, no human vaccine against UTIs has been developed. Therefore, it is necessary to develop an efficient and safe vaccine that is able to induce mucosal and systemic immune responses. The use of lactic acid bacteria as a delivery system is a promising method to induce the immune system. Objectives: The aim of this study was to establish Lactobacillus reuteri harboring the E. coli PapG antigen on its surface. Materials and Methods: In this study, the gene encoding PapG was fused to the AcmA gene (which encodes an anchor protein in Lactobacillus) and cloned into the pEX A vector. The PapG.AcmA fusion gene was digested with BamHI and NdeI and sub-cloned into the pET21a expression vector at the digestion sites. Subsequently, the recombinant plasmids (pET21a-PapG.AcmA and pET21a-PapG) were transformed into the E. coli Origami strain using the calcium chloride method and the fusion protein was expressed under 1 mM IPTG induction. The expression of the fusion protein was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. Purification of the PapG and PapG.AcmA proteins was carried out using a Ni-NTA column, and surface adsorption was estimated on Lactobacillus. Finally, surface localization of the fusion protein was verified by an enzyme-linked immunosorbent assay (ELISA). Results: The PapG.AcmA fusion was successfully sub-cloned in the pET21a expression vector. The expression of PapG and PapG.AcmA proteins in the E. coli Origami strain was indicated as protein bands in SDS-PAGE and confirmed by western blotting. In addition, the fusion protein was displayed on the surface of L. reuteri. Conclusions: In conclusion, we developed a method to express the PapG.AcmA protein on the surface of Lactobacillus. This is the first report on the successful application of lactic acid bacteria displaying the PapG.AcmA fusion protein. It will be interesting to determine the immune responses against the PapG protein in near future using this surface display strategy.
Collapse
Affiliation(s)
- Fatemeh Ashrafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
| | - Jalil Fallah Mehrabadi
- Department of Biology, School of Basic Science, University of Qom, Qom, IR Iran
- Corresponding author: Jalil Fallah Mehrabadi, Department of Biology, School of Basic Science, University of Qom, Qom, IR Iran. Tel: +98-2532103000, E-mail:
| | | | | |
Collapse
|
22
|
Lei X, Cui S, Zhao Z, Wang J. Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
23
|
Cui LC, Guan XT, Liu ZM, Tian CY, Xu YG. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): A promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 2015; 33:3092-9. [PMID: 25981489 DOI: 10.1016/j.vaccine.2015.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
Spring viremia of carp virus (SVCV) and koi herpesvirus (KHV) are highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Although DNA vaccines reported in recent years could induce protective immune responses in carps against these viruses via injection, there are a number of consequences and uncertainties related to DNA vaccination. Therefore, more effective and practical method to induce protective immunity such as oral administration would be highly desirable. In this study, we investigated the utilities of a genetically engineered Lactobacillus plantarum (L. plantarum) coexpressing glycoprotein (G) of SVCV and ORF81 protein of KHV as oral vaccine to induce protective immunity in carps via oral vaccination. The surface-displayed recombinant plasmid pYG-G-ORF81 was electroporated into L. plantarum, giving rise to LP/pYG-G-ORF81, where expression and localization of G-ORF81 fusion protein from the LP/pYG-G-ORF81 was identified by SDS-PAGE, Western blotting and immunofluorescence assay. Bait feed particles containing the LP/pYG-G-ORF81 were used as vaccine to immunize carps via gastrointestinal route. Compared to control groups, the carps orally immunized with the LP/pYG-G-ORF81 were induced significant levels of immunoglobulin M (IgM), and its immunogenicity was confirmed by viral loads reduction detected by PCR assay after virus challenge followed by an effective protection rate 71% in vaccinated carps and 53% in vaccinated koi until at days 65 post challenge, respectively. Our study here demonstrates, for the first time, the ability of recombinant L. plantarum as oral vaccine against SVCV and KHV infection in carps, suggesting a practical multivalent strategy for the control of spring viremia of carp and koi herpesvirus disease.
Collapse
Affiliation(s)
- Li-Chun Cui
- College of Wildlife Resource, Northeast Forestry University, Harbin, China
| | - Xue-Ting Guan
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhong-Mei Liu
- Technology Center, Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, China
| | | | - Yi-Gang Xu
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
24
|
Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 2015; 99:2967-77. [PMID: 25750046 PMCID: PMC4365182 DOI: 10.1007/s00253-015-6498-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.
Collapse
Affiliation(s)
- Agnieszka Wyszyńska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | |
Collapse
|
25
|
Kobierecka P, Wyszyńska A, Maruszewska M, Wojtania A, Żylińska J, Bardowski J, Jagusztyn-Krynicka EK. Lactic Acid Bacteria as a Surface Display Platform for Campylobacter jejuni Antigens. J Mol Microbiol Biotechnol 2015; 25:1-10. [DOI: 10.1159/000368780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> Food poisoning and diarrheal diseases continue to pose serious health care and socioeconomic problems worldwide. <i>Campylobacter</i> spp. is a very widespread cause of gastroenteritis. Over the past decade there has been increasing interest in the use of lactic acid bacteria (LAB) as mucosal delivery vehicles. They represent an attractive opportunity for vaccination in addition to vaccination with attenuated bacterial pathogens. <b><i>Methods:</i></b> We examined the binding ability of hybrid proteins to nontreated or trichloroacetic acid (TCA)-pretreated LAB cells by immunofluorescence and Western blot analysis. <b><i>Results:</i></b> In this study we evaluated the possibility of using GEM (Gram-positive enhancer matrix) particles of <i>Lactobacillus salivarius</i> as a binding platform for 2 conserved, immunodominant, extracytoplasmic <i>Campylobacter jejuni</i> proteins: CjaA and CjaD. We analyzed the binding ability of recombinant proteins that contain <i>C. jejuni</i> antigens (CjaA or CjaD) fused with the protein anchor (PA) of the <i>L. lactis </i>peptidoglycan hydrolase AcmA, which comprises 3 LysM motifs and determines noncovalent binding to the cell wall peptidoglycan. Both fused proteins, i.e. 6HisxCjaAx3LysM and 6HisxCjaDx3LysM, were able to bind to nontreated or TCA-pretreated <i>L. salivarius</i> cells. <b><i>Conclusion:</i></b> Our results documented that the LysM-mediated binding system allows us to construct GEM particles that present 2 <i>C. jejuni</i> antigens.
Collapse
|
26
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
27
|
Growth phase-dependent proteomes of the Malaysian isolated Lactococcus lactis dairy strain M4 using label-free qualitative shotgun proteomics analysis. ScientificWorldJournal 2014; 2014:642891. [PMID: 24982972 PMCID: PMC3984853 DOI: 10.1155/2014/642891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MSE) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.
Collapse
|
28
|
Song L, Cui H, Tang L, Qiao X, Liu M, Jiang Y, Cui W, Li Y. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J Microbiol Methods 2014; 102:37-44. [DOI: 10.1016/j.mimet.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/19/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
29
|
Visweswaran GRR, Leenhouts K, van Roosmalen M, Kok J, Buist G. Exploiting the peptidoglycan-binding motif, LysM, for medical and industrial applications. Appl Microbiol Biotechnol 2014; 98:4331-45. [PMID: 24652063 PMCID: PMC4004799 DOI: 10.1007/s00253-014-5633-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N-acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of prokaryotes and eukaryotes. Since the mid-1990s, domains containing one or more of these LysM sequences originating from different LysM-containing proteins have been examined for purely scientific reasons as well as for their possible use in various medical and industrial applications. These studies range from detecting localized binding of LysM-containing proteins onto bacteria to actual bacterial cell surface analysis. On a more applied level, the possibilities of employing the LysM domains for cell immobilization, for the display of peptides, proteins, or enzymes on (bacterial) surfaces as well as their utility in the development of novel vaccines have been scrutinized. To serve these purposes, the chimeric proteins containing one or more of the LysM sequences have been produced and isolated from various prokaryotic and eukaryotic expression hosts. This review gives a succinct overview of the characteristics of the LysM domain and of current developments in its application potential.
Collapse
Affiliation(s)
- Ganesh Ram R Visweswaran
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
31
|
Lin CF, Lin CK, Liu YJ, Chiang CH, Pan MJ, Baldeck PP, Lin CL. Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip. RSC Adv 2014. [DOI: 10.1039/c4ra12600a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serviceable bioprobes, fabricated by laser-induced cross-linking technology, for simple and direct screening of Gram-positive bacteria on a biochip.
Collapse
Affiliation(s)
- Chuen-Fu Lin
- National Chiayi University
- Department of Veterinary Medicine
- Chiayi, Taiwan
| | - Che-Kuan Lin
- Feng Chia University
- Department of Automatic Control Engineering
- Taichung, Taiwan
| | - Yi-Jui Liu
- Feng Chia University
- Department of Automatic Control Engineering
- Taichung, Taiwan
| | - Chung-Han Chiang
- Central Taiwan University of Science and Technology
- Institute of Biomedical Engineering and Materials Science
- Taichung, Taiwan
| | - Ming-Jeng Pan
- Central Taiwan University of Science and Technology
- Graduate Institute of Biotechnology
- Taichung, Taiwan
| | | | - Chih-Lang Lin
- Central Taiwan University of Science and Technology
- Institute of Biomedical Engineering and Materials Science
- Taichung, Taiwan
| |
Collapse
|
32
|
Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:431315. [PMID: 23476790 PMCID: PMC3586462 DOI: 10.1155/2013/431315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/15/2012] [Accepted: 12/29/2012] [Indexed: 12/25/2022]
Abstract
In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis.
The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using
L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis.
We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the
epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative
vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides
and proteins on the surface of L. lactis to be useful as a delivery vehicle.
Collapse
|
33
|
Berlec A, Malovrh T, Zadravec P, Steyer A, Ravnikar M, Sabotič J, Poljšak-Prijatelj M, Štrukelj B. Expression of a hepatitis A virus antigen in Lactococcus lactis and Escherichia coli and evaluation of its immunogenicity. Appl Microbiol Biotechnol 2013; 97:4333-42. [DOI: 10.1007/s00253-013-4722-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/23/2022]
|
34
|
Wieczorek AS, Martin VJJ. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis. Microb Cell Fact 2012; 11:160. [PMID: 23241215 PMCID: PMC3542058 DOI: 10.1186/1475-2859-11-160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. RESULTS We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. CONCLUSIONS The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.
Collapse
Affiliation(s)
- Andrew S Wieczorek
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Vincent JJ Martin
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
35
|
Lin KH, Hsu AP, Shien JH, Chang TJ, Liao JW, Chen JR, Lin CF, Hsu WL. Avian reovirus sigma C enhances the mucosal and systemic immune responses elicited by antigen-conjugated lactic acid bacteria. Vaccine 2012; 30:5019-29. [PMID: 22531554 PMCID: PMC7115360 DOI: 10.1016/j.vaccine.2012.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
Mucosal surfaces are common sites of pathogen colonization/entry. Effective mucosal immunity by vaccination should provide protection at this primary infection site. Our aim was to develop a new vaccination strategy that elicits a mucosal immune response. A new strain of Enterococcus faecium, a non pathogenic lactic acid bacteria (LAB) with strong cell adhesion ability, was identified and used as a vaccine vector to deliver two model antigens. Specifically, sigma (σ) C protein of avian reovirus (ARV), a functional homolog of mammalian reovirus σ1 protein and responsible for M-cell targeting, was administered together with a subfragment of the spike protein of infectious bronchitis virus (IBV). Next, the effect of immunization route on the immune response was assessed by delivering the antigens via the LAB strain. Intranasal (IN) immunization induced stronger humoral responses than intragastic (IG) immunization. IN immunization produced antigen specific IgA both systemically and in the lungs. A higher IgA titer was induced by the LAB with ARV σC protein attached. Moreover, the serum of mice immunized with LAB displaying divalent antigens had much stronger immune reactivity against ARV σC protein compared to IBV-S1. Our results indicate that ARV σC protein delivered by LAB via the IN route elicits strong mucosal immunity. A needle-free delivery approach is a convenient and cost effective method of vaccine administration, especially for respiratory infections in economic animals. Furthermore, ARV σC, a strong immunogen of ARV, may be able to serve as an immunoenhancer for other vaccines, especially avian vaccines.
Collapse
Affiliation(s)
- Kuan-Hsun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein. Microb Cell Fact 2011; 10:86. [PMID: 22035337 PMCID: PMC3215925 DOI: 10.1186/1475-2859-10-86] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB). In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. RESULTS Multiple sequence alignment revealed that the C-terminal region (LcsB) of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP) or beta-galactosidase (Gal) was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. CONCLUSION The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological application.
Collapse
|
37
|
Immunogenicity of recombinant classic swine fever virus CD8(+) T lymphocyte epitope and porcine parvovirus VP2 antigen coexpressed by Lactobacillus casei in swine via oral vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1979-86. [PMID: 21940406 DOI: 10.1128/cvi.05204-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8(+) CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV.
Collapse
|
38
|
Yi L, Lu J, Kung HF, He ML. The virology and developments toward control of human enterovirus 71. Crit Rev Microbiol 2011; 37:313-27. [PMID: 21651436 DOI: 10.3109/1040841x.2011.580723] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications and even death. Current large outbreaks of EV71 make this virus being a major public health issue. Intense effort has been made to address its underlying pathogenesis and to develop effective means for combating EV71 infections. Here, we aimed to provide an overview of cellular mechanisms underlying EV71 infection and to assess potential agents for prevention and treatment of EV71 infections.
Collapse
Affiliation(s)
- Lina Yi
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
39
|
Noreen N, Hooi WY, Baradaran A, Rosfarizan M, Sieo CC, Rosli MI, Yusoff K, Raha AR. Lactococcus lactis M4, a potential host for the expression of heterologous proteins. Microb Cell Fact 2011; 10:28. [PMID: 21518457 PMCID: PMC3101652 DOI: 10.1186/1475-2859-10-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/26/2011] [Indexed: 01/02/2023] Open
Abstract
Background Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins. Results Several bacterial strains were isolated from cow's milk and eight of those were identified as Lactococcus lactis by 16S rRNA sequence analysis. Antibiotic susceptibility tests that were carried out showed that 50% of the isolates had almost identical antibiotic resistance patterns compared to the control strains MG1363 and ATCC 11454. Plasmid profiling results indicated the lack of low molecular weight plasmids for strain M4. Competent L. lactis M4 and MG1363 were prepared and electrotransformed with several lactococcal plasmids such as pMG36e, pAR1411, pAJ01 and pMG36e-GFP. Plasmid isolation and RE analyses showed the presence of these plasmids in both M4 and the control strain after several generations, indicating the ability of M4 to maintain heterologous plasmids. SDS-PAGE and Western blot analyses also confirmed the presence of GFP, demonstrating the potential of heterologous protein expression in M4. Conclusions Based on the 16S rRNA gene molecular analysis, eight Gram-positive cocci milk isolates were identified as L. lactis subsp. lactis. One of the strains, L. lactis M4 was able to maintain transformed low molecular weight plasmid vectors and expressed the GFP gene. This strain has the potential to be developed into a new lactococcal host for the expression of heterologous proteins.
Collapse
Affiliation(s)
- Nanyan Noreen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus. Appl Microbiol Biotechnol 2010; 90:77-88. [DOI: 10.1007/s00253-010-3050-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
41
|
Wieczorek AS, Martin VJJ. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact 2010; 9:69. [PMID: 20840763 PMCID: PMC2949795 DOI: 10.1186/1475-2859-9-69] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. RESULTS Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase), and were displayed with efficiencies approaching 104 complexes/cell. CONCLUSIONS We report the successful display of cellulosome-inspired recombinant complexes on the surface of Lactococcus lactis. Significant differences in display efficiency among constructs were observed and attributed to their structural characteristics including protein conformation and solubility, scaffold size, and the inclusion and exclusion of non-cohesin modules. The surface-display of functional scaffold proteins described here represents a key step in the development of recombinant microorganisms capable of carrying out a variety of metabolic processes including the direct conversion of cellulosic substrates into fuels and chemicals.
Collapse
Affiliation(s)
- Andrew S Wieczorek
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Vincent JJ Martin
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
42
|
Kylä-Nikkilä K, Alakuijala U, Saris PEJ. Immobilization of Lactococcus lactis to cellulosic material by cellulose-binding domain of Cellvibrio japonicus. J Appl Microbiol 2010; 109:1274-83. [PMID: 20497279 DOI: 10.1111/j.1365-2672.2010.04757.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Immobilization of whole cells can be used to accumulate cells in a bioreactor and thus increase the cell density and potentially productivity, also. Cellulose is an excellent matrix for immobilization purposes because it does not require chemical modifications and is commercially available in many different forms at low price. The aim of this study was to construct a Lactococcus lactis strain capable of immobilizing to a cellulosic matrix. METHODS AND RESULTS In this study, the Usp45 signal sequence fused with the cellulose-binding domain (CBD) (112 amino acids) of XylA enzyme from Cellvibrio japonicus was fused with PrtP or AcmA anchors derived from L. lactis. A successful surface display of L. lactis cells expressing these fusion proteins under the P45 promoter was achieved and detected by whole-cell ELISA. A rapid filter paper assay was developed to study the cellulose-binding capability of these recombinant strains. As a result, an efficient immobilization to filter paper was demonstrated for the L. lactis cells expressing the CBD-fusion protein. The highest immobilization (92%) was measured for the strain expressing the CBD in fusion with the 344 amino acid PrtP anchor. CONCLUSIONS The result from the binding tests indicated that a new phenotype for L. lactis with cellulose-binding capability was achieved with both PrtP (LPXTG type anchor) and AcmA (LysM type anchor) fusions with CBD. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated that an efficient immobilization of recombinant L. lactis cells to cellulosic matrix is possible. This is a step forward in developing efficient immobilization systems for lactococcal strains for industrial-scale fermentations.
Collapse
Affiliation(s)
- K Kylä-Nikkilä
- Department of Applied Chemistry and Microbiology, Division of Microbiology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
43
|
Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. J Biomed Biotechnol 2010; 2010:708460. [PMID: 20625406 PMCID: PMC2896853 DOI: 10.1155/2010/708460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/19/2009] [Accepted: 03/26/2010] [Indexed: 12/28/2022] Open
Abstract
The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.
Collapse
|
44
|
Tabuchi S, Ito J, Adachi T, Ishida H, Hata Y, Okazaki F, Tanaka T, Ogino C, Kondo A. Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module. Appl Microbiol Biotechnol 2010; 87:1783-9. [PMID: 20499230 PMCID: PMC2903697 DOI: 10.1007/s00253-010-2664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/27/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein.
Collapse
Affiliation(s)
- Soichiro Tabuchi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria. Appl Environ Microbiol 2010; 76:2410-8. [PMID: 20173067 DOI: 10.1128/aem.01752-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endolysin Lyb5, from Lactobacillus fermentum temperate bacteriophage phiPYB5, showed a broad lytic spectrum against Gram-positive as well as Gram-negative bacteria. Sequence analysis revealed that the C terminus of the endolysin Lyb5 (Ly5C) contained three putative lysin motif (LysM) repeat regions, implying that Ly5C was involved in bacterial cell wall binding. To investigate the potential of Ly5C for surface display, green fluorescent protein (GFP) was fused to Ly5C at its N or C terminus and the resulting fusion proteins were expressed in Escherichia coli. After being mixed with various cells in vitro, GFP was successfully displayed on the surfaces of Lactococcus lactis, Lactobacillus casei, Lb. brevis, Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Lb. helveticus, and Streptococcus thermophilus cells. Increases in the fluorescence intensities of chemically pretreated L. lactis and Lb. casei cells compared to those of nonpretreated cells suggested that the peptidoglycan was the binding ligand for Ly5C. Moreover, the pH and concentration of sodium chloride were optimized to enhance the binding capacity of GFP-Ly5C, and high-intensity fluorescence of cells was observed under optimal conditions. All results suggested that Ly5C was a novel anchor for constructing a surface display system for lactic acid bacteria (LAB). To demonstrate the applicability of the Ly5C-mediated surface display system, beta-galactosidase (beta-Gal) from Paenibacillus sp. strain K1, replacing GFP, was functionally displayed on the surfaces of LAB cells via Ly5C. The success in surface display of GFP and beta-Gal opened up the feasibility of employing the cell wall anchor of bacteriophage endolysin for surface display in LAB.
Collapse
|
46
|
Pang QF, Ji Y, Bermúdez-Humarán LG, Zhou QM, Hu G, Zeng Y. Protective effects of a heme oxygenase-1-secreting Lactococcus lactis on mucosal injury induced by hemorrhagic shock in rats. J Surg Res 2008; 153:39-45. [PMID: 18694575 DOI: 10.1016/j.jss.2008.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/13/2008] [Accepted: 03/28/2008] [Indexed: 01/23/2023]
Abstract
AIM To investigate the protective effects of a heme oxygenase-1 (HO-1)-secreting Lactococcus lactis (LL-HO-1) on mucosal injury induced by hemorrhagic shock in rats. METHODS The ability of recombinant LL-HO-1 to secrete biological active HO-1 in the rat intestine was determined in situ after 3 d of daily intragastric administration. The therapeutic potential of LL-HO-1 strain was then evaluated on mucosal injury induced by hemorrhagic shock in rats. After successful resuscitation, mean arterial blood pressure was recorded at 5, 10, 20, and 30 min. One hour after resuscitation, the ileum was harvested for evaluation of mucosal injury by blinded microscopic inflammatory score (Chiu's grade 0-5), myeloperoxidase activity, bacterial translocation, and by the secretion of pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-10, respectively). RESULTS Intragastric administration of HO-1-secreting L. lactis strain led to bioactive delivery of HO-1 at intestinal mucosa and significantly enhanced mean arterial blood pressure and interleukin-10 levels. Moreover, intragastric administration of LL-HO-1 significantly decreased Chiu's score, myeloperoxidase activity, bacterial translocation, and tumor necrosis factor-alpha levels when compared with rats treated with the wild-type strain. The protective effect of recombinant LL-HO-1 could be abolished by co-administration of a HO-1 inhibitor, the zinc protoporphyrin-IX. CONCLUSION These results suggest that intragastric administration with HO-1-secreting L. lactis reduces mucosal injury induced by hemorrhagic shock.
Collapse
Affiliation(s)
- Qing-feng Pang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl Environ Microbiol 2007; 74:1117-23. [PMID: 18156338 DOI: 10.1128/aem.02012-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here, we established a system for displaying heterologous protein to the C terminus of the peptidoglycan-binding domain (cA domain) of AcmA (a major autolysin from Lactococcus lactis). Western blot and flow cytometric analyses revealed that the fusion proteins (cA-AmyA) of the cA domain and alpha-amylase from Streptococcus bovis 148 (AmyA) are efficiently expressed and successfully displayed on the surfaces of L. lactis cells. AmyA was also displayed on the cell surface while retaining its activity. Moreover, with an increase in the number of cA domains, the quantity of cA-AmyA fusion proteins displayed on the cell surface increased. When three repeats of the cA domain were used as an anchor protein, 82% of alpha-amylase activity was detected on the cells. The raw starch-degrading activity of AmyA was significantly higher when AmyA was fused to the C terminus of the cA domain than when it was fused to the N terminus. In addition, cA-AmyA fusion proteins were successfully displayed on the cell surfaces of Lactobacillus plantarum and Lactobacillus casei.
Collapse
|
48
|
Abstract
As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Compounding
- Gastrointestinal Tract/immunology
- Humans
- Immune Tolerance
- Immunity, Mucosal
- Vaccination/methods
- Vaccination/trends
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/chemistry
- Vaccines, Edible/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/chemistry
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Dmytro S Silin
- Queen's University Belfast, Laboratory of Molecular Virology, Medical and Biology Center, School of Biomedical Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
49
|
van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, Kuipers A, Post E, Steen A, Kok J, Buist G, Kuipers OP, Robillard G, Leenhouts K. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 2006; 38:144-9. [PMID: 16414272 DOI: 10.1016/j.ymeth.2005.09.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022] Open
Abstract
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.
Collapse
|
50
|
Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine 2006; 24:3900-8. [PMID: 16545511 PMCID: PMC7115539 DOI: 10.1016/j.vaccine.2006.02.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/18/2022]
Abstract
A putative protective protein from Plasmodium falciparum merozoites, MSA2, was expressed in two different ways on the cell surface of the Gram-positive food-grade bacterium, Lactococcus lactis. The first display format exploits an LPXTG-type anchoring motif of the lactococcal proteinase PrtP to covalently anchor MSA2 to the genetically modified producer cells. In a second display format, MSA2 was fused to the peptidoglycan-binding domain (Protein Anchor) of the lactococcal cell wall hydrolase AcmA and was non-covalently rebound to the surface of non-genetically modified, non-living high-binder L. lactis cells, termed Gram-positive enhancer matrix (GEM) particles. The L. lactis recombinants carrying covalently bound MSA2 were used to immunise rabbits through nasal and oral routes. The highest levels of IgG antibodies reacting with near-native MSA2 on merozoites was elicited by oral administration. Intestinal antibodies to MSA2 were produced only after oral immunisation. MSA2-specific T(h)-cell activation could be demonstrated. Based on these results, the immunogenicity in oral immunisations of MSA2, bound non-covalently to non-genetically modified L. lactis GEM particles, was compared with MSA2 that was bound covalently to genetically modified L. lactis. These two forms elicited similar titres of serum antibodies. The results illustrate the potential of using non-genetically modified L. lactis as a safe vaccine delivery vehicle to elicit systemic antibodies, thereby avoiding the dissemination of recombinant DNA into the environment.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Surface/analysis
- Feces/chemistry
- Fluorescent Antibody Technique, Indirect
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Lactococcus lactis/genetics
- Lactococcus lactis/immunology
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Microscopy, Immunoelectron
- Models, Animal
- Muramidase/genetics
- Organisms, Genetically Modified/genetics
- Organisms, Genetically Modified/immunology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protein Sorting Signals/genetics
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Rabbits
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- R. Ramasamy
- BioMaDe Technology, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- National Science Foundation, 47/5 Maitland Place, Colombo 7, Sri Lanka
| | - S. Yasawardena
- Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - A. Zomer
- Groningen Biomolecular Science and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - G. Venema
- Groningen Biomolecular Science and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - J. Kok
- Groningen Biomolecular Science and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - K. Leenhouts
- BioMaDe Technology, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen Biomolecular Science and Biotechnology Institute, Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Corresponding author. Tel.: +31 50 3638146; fax: +31 50 3634429.
| |
Collapse
|