1
|
Shinde AH, Sonpal V, Maiti P, Haldar S. Evaluation of a synbiotic formulation for water remediation in a shrimp pond. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65990-66001. [PMID: 37093374 DOI: 10.1007/s11356-023-27006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics. Further, de-potash vinasse (DPV), an environmental hazard, was tested for its prebiotic potential, and its 1% (w/v) concentration was found to be effective for long-term viability (> 66 days) of the probiotic cultures and safe for Artemia. The synbiotic formulation was tested first in a lab-scale microcosm setup successfully and subsequently tried on a shrimp farm; it was observed that the product was congruent to the efficiency of a commercial probiotic regarding almost all physicochemical parameters, sulfide, nitrate-N, nitrite-N, phytoplankton sustenance, Pseudomonas count, coliform count, and heterotrophic count. In addition, it was significantly efficient in maintaining pH, reducing ammonia-N and phosphate-P, Vibrio and Aeromonas count, and a net increase in the yield of shrimp biomass by 625 kg, thus proving to be a better alternative than one of the already available remediation methods.
Collapse
Affiliation(s)
- Ambika H Shinde
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vasavdutta Sonpal
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Pratyush Maiti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Process Design and Engineering Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Saif A, Cuccurullo A, Gallipoli D, Perlot C, Bruno AW. Advances in Enzyme Induced Carbonate Precipitation and Application to Soil Improvement: A Review. MATERIALS 2022; 15:ma15030950. [PMID: 35160900 PMCID: PMC8840754 DOI: 10.3390/ma15030950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023]
Abstract
Climate change and global warming have prompted a notable shift towards sustainable geotechnics and construction materials within the geotechnical engineer’s community. Earthen construction materials, in particular, are considered sustainable due to their inherent characteristics of having low embodied and operational energies, fire resistance, and ease of recyclability. Despite these attributes, they have not been part of the mainstream construction due to their susceptibility to water-induced deterioration. Conventional soil improvement techniques are generally expensive, energy-intensive, and environmentally harmful. Recently, biostabilization has emerged as a sustainable alternative that can overcome some of the limitations of existing soil improvement methods. Enzyme-induced carbonate precipitation (EICP) is a particularly promising technique due to its ease of application and compatibility with different soil types. EICP exploits the urease enzyme as a catalyst to promote the hydrolysis of urea inside the pore water, which, in the presence of calcium ions, results in the precipitation of calcium carbonate. The purpose of this paper is to provide a state-of-the-art review of EICP stabilization, highlighting the potential application of this technique to field problems and identifying current research gaps. The paper discusses recent progress, focusing on the most important factors that govern the efficiency of the chemical reactions and the precipitation of a spatially homogenous carbonate phase. The paper also discusses other aspects of EICP stabilization, including the degree of ground improvement, the prediction of the pore structure of the treated soil by numerical simulations, and the remediation of potentially toxic EICP by-products.
Collapse
Affiliation(s)
- Ahsan Saif
- Université de Pau et des Pays de l’Adour, E2S UPPA, SIAME, 64600 Anglet, France; (A.C.); (C.P.)
- Correspondence:
| | - Alessia Cuccurullo
- Université de Pau et des Pays de l’Adour, E2S UPPA, SIAME, 64600 Anglet, France; (A.C.); (C.P.)
| | - Domenico Gallipoli
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli Studi di Genova, 16145 Genoa, Italy; (D.G.); (A.W.B.)
| | - Céline Perlot
- Université de Pau et des Pays de l’Adour, E2S UPPA, SIAME, 64600 Anglet, France; (A.C.); (C.P.)
- Institut Universitaire de France (IUF), CEDEX 05, 75231 Paris, France
| | - Agostino Walter Bruno
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli Studi di Genova, 16145 Genoa, Italy; (D.G.); (A.W.B.)
| |
Collapse
|
3
|
Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil. Biodegradation 2021; 32:643-662. [PMID: 34487282 DOI: 10.1007/s10532-021-09958-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
A 2,4,6-trinitrophenol (TNP) degrading bacterial strain isolated from a site polluted with explosives was identified as Proteus sp. strain OSES2 via 16S rRNA gene sequencing. Metabolic investigation showed that the organism grew exponentially on 100 mg l-1 of TNP as a source of carbon, nitrogen, and energy. In addition, the growth of the organism was sustainable on 3-nitrotoluene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, 4-nitrophenol, methyl-3-nitrobenzoate, 4-nitroaniline, aniline and nitrobenzene. Strain OSES2 was able to utilize TNP within a concentration range of 100 mg l-1 to 500 mg l-1. The specific growth rate and degradation rates on TNP were 0.01043 h-1 and 0.01766 mg l-1 h-1 respectively. Effective degradation of TNP in a chemically defined medium was evident with a gradual reduction in the concentration of TNP concomitant with an increase in cell density as well as the substantial release of ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-) as metabolites in 96 h. Degradation competence of the organism was enhanced in the presence of starch and acetate. On starch-supplemented TNP, the highest specific growth rate and degradation rates were 0.02634 h-1 and 0.04458 mg l-1 h-1, respectively, while the corresponding values on acetate were 0.02341 h-1 and 0.02811 mg l-1 h-1. However, amendment with nitrogen sources yielded no substantial improvement in degradation. TNP was utilized optimally at pH 7 to 9 and within the temperature range of 30 °C to 37 °C. The enzyme hydride transferase II [HTII], encoded by the npdI gene which is the first step involved in the TNP degradation pathway, was readily expressed by the isolate thus suggesting that substrate was utilized through the classical metabolic pathway.
Collapse
|
4
|
Xu M, Liu Y, Deng Y, Zhang S, Hao X, Zhu P, Zhou J, Yin H, Liang Y, Liu H, Liu X, Bai L, Jiang L, Jiang H. Bioremediation of cadmium-contaminated paddy soil using an autotrophic and heterotrophic mixture. RSC Adv 2020; 10:26090-26101. [PMID: 35519775 PMCID: PMC9055442 DOI: 10.1039/d0ra03935g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/26/2020] [Indexed: 12/02/2022] Open
Abstract
Cadmium (Cd) pollution poses a serious risk to human health and ecological security. Bioremediation can be a promising and effective remediation technology for treating Cd contaminated soils. In this study, seven heterotrophic strains were isolated from Cd contaminated soil and 7 autotrophic strains were isolated from acid mine drainage. Cd removal efficiencies were compared after leaching with autotrophic bacteria (Att-sys), heterotrophic isolates (Htt-sys) and cooperative leaching systems (Co-sys) in laboratory agitating reactors. The results indicated that Cd removal efficiency of Co-sys (32.09%) was significantly higher than that of Att-sys (23.24%) and Htt-sys (0.74%). By analyzing the soil microbial community in different bioleaching systems, we found that the addition of heterotrophic isolates significantly promoted the growth of some heavy metal resistant inhabitants (Massilia, Alicyclobacillus, Micromonospora, etc.), and Co-sys had a minor effect on the growth of soil indigenous microbes. In Co-sys, the content of the four Cd fractions all decreased compared with other leaching systems. The analysis of soil physicochemical parameters during the leaching process showed that pH and ORP (oxidation reduction potential) were not the only determinants for Cd removal efficiency in Co-sys, synergistic metabolic activities of autotrophic and heterotrophic strains may be other determinants. This study demonstrated that cooperative bioremediation may prove to be a safe and efficient technique for field application in heavy metal soil pollution. Bioremediation can be a promising and effective remediation technology for treating Cd contaminated soils. Cooperative bioremediation using heterotrophic and autotrophic mixtures proved to be an efficient, short-term bioremediation strategy for heavy metal contaminated soil.![]()
Collapse
|
5
|
Microbial community response and SDS-PAGE reveal possible mechanism of waste activated sludge acidification enhanced by microaeration coupled thermophilic pretreatment. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Cao X, Diao M, Zhang B, Liu H, Wang S, Yang M. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. CHEMOSPHERE 2017; 183:9-17. [PMID: 28527917 DOI: 10.1016/j.chemosphere.2017.05.092] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 05/13/2023]
Abstract
Spatial distribution of vanadium in surface soils from different processing stages of vanadium-bearing titanomagnetite in Panzhihua mining and smelting area (China) as well as responses of microbial communities including bacteria and fungi to vanadium were investigated by fieldwork and laboratory incubation experiment. The vanadium contents in this region ranged from 149.3 to 4793.6 mg kg-1, exceeding the soil background value of vanadium in China (82 mg kg-1) largely. High-throughput DNA sequencing results showed bacterial communities from different manufacturing locations were quite diverse, but Bacteroidetes and Proteobacteria were abundant in all samples. The contents of organic matter, available P, available S and vanadium had great influences on the structures of bacterial communities in soils. Bacterial communities converged to similar structure after long-term (240 d) cultivation with vanadium containing medium, dominating by bacteria which can tolerate or reduce toxicities of heavy metals. Fungal diversities decreased after cultivation, but Ascomycota and Ciliophora were still the most abundant phyla as in the original soil samples. Results in this study emphasize the urgency of investigating vanadium contaminations in soils and provide valuable information on how vanadium contamination influences bacterial and fungal communities.
Collapse
Affiliation(s)
- Xuelong Cao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Muhe Diao
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China.
| | - Hui Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Song Wang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Meng Yang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| |
Collapse
|
7
|
Singh A, Singh R, Gupta N. Role of Supercomputers in Bioinformatics. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the involvement of effective and client-friendly components (i.e. supercomputers), rapid data analysis is being accomplished. In Bioinformatics, it is expanding many areas of research such as genomics, proteomics, metabolomics, etc. Structure-based drug design is one of the major areas of research to cure human malady. This chapter initiates a discussion on supercomputing in sequence analysis with a detailed table summarizing the software and Web-based programs used for sequence analysis. A brief talk on the supercomputing in virtual screening is given where the databases like DOCK, ZINC, EDULISS, etc. are introduced. As the chapter transitions to the next phase, the intricacies of advanced Quantitative Structure-Activity Relationship technologies like Fragment-Based 2D QSAR, Multiple-Field 3D QSAR, and Amino Acid-Based Peptide Prediction are put forth in a manner similar to the concept of abstraction. The supercomputing in docking studies is stressed where docking software for Protein-Ligand docking, Protein-Protein docking, and Multi-Protein docking are provided. The chapter ends with the applications of supercomputing in widely used microarray data analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Maitreyi College, India & University of Delhi, India
| | - Rajeev Singh
- Division of RCH, Indian Council of Medical Research, India
| | - Neha Gupta
- Northeastern University, USA & Osmania University, India
| |
Collapse
|
8
|
Subba Reddy GV, Rafi MM, Rubesh Kumar S, Khayalethu N, Muralidhara Rao D, Manjunatha B, Philip GH, Reddy BR. Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1. 3 Biotech 2016; 6:51. [PMID: 28330121 PMCID: PMC4746200 DOI: 10.1007/s13205-015-0358-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022] Open
Abstract
A novel aerobic gram-negative bacterial strain capable of utilizing 2-hydroxyquinoxaline (2-HQ) as sole source of carbon and energy was isolated from Indian agricultural soil and named as HQ1. Strain HQ1 was identified as Ochrobactrum sp. on the basis of morphology, physico-biochemical characteristics and 16S rRNA sequence analysis. The generation time of Ochrobactrum sp. HQ1 on 2-HQ at log phase is 0.71 h or 42.6 min. The degradation of 2-HQ by HQ1 under various physico-chemical parameters was analysed by HPLC and observed to be optimum with a high inoculum density (1.0 OD) at pH 7–8, temperatures 37–40°C and a high concentration of 2-HQ (500 ppm). Degradation of 2-HQ was also improved when additional nitrogen sources were used and this was attributed to the enhanced growth of the bacterium on the readily available nitrogen sources. Analysis of 2-HQ degradation by GC–MS resulted in elucidation of the degradation pathway for HQ1, a novel observation for aerobic Gram-negative bacteria. These findings are a possible indication of the application of HQ1 in the bioremediation of pesticide/metabolite contamination.
Collapse
|
9
|
Reddy GVS, Reddy BR, Tlou MG. Biodegradation of 2-hydroxyquinoxaline (2-HQ) by Bacillus sp. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:100-107. [PMID: 24953941 DOI: 10.1016/j.jhazmat.2014.05.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
An aerobic Gram +ve bacterial strain capable of utilizing 2-Hydroxyquinoxaline (2-HQ) as sole source of carbon and energy was isolated from Chrysanthemum indicum Indian agricultural soil and named as HQ2. On the basis of morphology, physico-biochemical characteristics and 16S rRNA sequence analysis, strain HQ2 was identified as Bacillus sp. The generation time of Bacillus sp. in log phase during growth on 2-HQ is 0.79 h or 47.4 min. The optimal conditions for 2-HQ degradation by Bacillus sp. were inoculum density of 1.0 OD, pH of 6-8, temperature of 37-45 °C and 2-HQ concentration of 500 ppm. Among the additional carbon and nitrogen sources, carbon sources did not influence the degradation rate of 2-HQ, but nitrogen sources-yeast extract marginally enhanced the rate of degradation of 2-HQ. GC-MS analysis of the culture Bacillus sp. grown on 2-HQ indicated the formation of dimers from 2 molecules of 2-hydroxyquinoxaline. The formation of dimer for degradation of 2-HQ by the culture appears to be the first report to our scientific knowledge.
Collapse
Affiliation(s)
- G V Subba Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuram - 515 003, A.P., India; Faculty of Science, Department of Biochemistry, University of Johannesburg, PO Box-524, APK Campus, Johannesburg 2006, South Africa.
| | - B R Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuram - 515 003, A.P., India
| | - M G Tlou
- Faculty of Science, Department of Biochemistry, University of Johannesburg, PO Box-524, APK Campus, Johannesburg 2006, South Africa
| |
Collapse
|
10
|
Yan Z, Bouwer EJ, Hilpert M. Coupled effects of chemotaxis and growth on traveling bacterial waves. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 164:138-152. [PMID: 24984293 DOI: 10.1016/j.jconhyd.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.
Collapse
Affiliation(s)
- Zhifeng Yan
- Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Edward J Bouwer
- Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Lan WS, Lu TK, Qin ZF, Shi XJ, Wang JJ, Hu YF, Chen B, Zhu YH, Liu Z. Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:840-850. [PMID: 24648032 DOI: 10.1007/s10646-014-1224-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Bioremediation of pesticide residues by bacteria is an efficient and environmentally friendly method to deal with environmental pollution. In this study, a genetically modified microorganism (GMM) named UT26XEGM was constructed by introducing a parathion hydrolase gene into an initially γ-hexachlorocyclohexane (γ-HCH) degrading bacterium Spingomonas paucimobilis UT26. In order to reduce its potential risk of gene escaping into the environment for the public concern on biosafety, a suicide system was also designed that did not interfere with the performance of the GMM until its physiological function was activated by specific signal. The system was designed with circuiting suicide cassettes consisting of killing genes gef and ecoRIR from Escherichia coli controlled by Pm promoter and the xylS gene. The cell viability and original degradation characteristics were not affected by the insertion of exogenous genes. The novel GMM was capable of degrading methyl-parathion and γ-HCH simultaneously. In laboratory scale testing, the recombinant bacteria were successfully applied to the bioremediation of mixed pesticide residues with the activity of self-destruction after 3-methylbenzoate induction.
Collapse
Affiliation(s)
- Wen S Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, Animal & Plant Inspection and Quarantine Technical Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, 1011 Fuqiang Road, Shenzhen, 518045, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Samuel MS, Sivaramakrishna A, Mehta A. Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:53. [PMID: 24581307 PMCID: PMC3996030 DOI: 10.1186/2052-336x-12-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 02/19/2014] [Indexed: 05/31/2023]
Abstract
BACKGROUND p-Nitrophenol (PNP) occurs as contaminants of industrial effluents and it is the most important environmental pollutant and causes significant health and environmental risks, because it is toxic to many living organisms. Nevertheless, the information regarding PNP degradation pathways and their enzymes remain limited. OBJECTIVE To evaluate the efficacy of the Pseudomonas Putida 1274 for removal of PNP. METHODS P. putida MTCC 1274 was obtained from MTCC Chandigarh, India and cultured in the minimal medium in the presence of PNP. PNP degradation efficiency was compared under different pH and temperature ranges. The degraded product was isolated and analyzed with different chromatographic and spectroscopic techniques. RESULTS P. putida 1274 shows good growth and PNP degradation at 37°C in neutral pH. Acidic and alkali pH retarded the growth of P. putida as well as the PNP degradation. On the basis of specialized techniques, hydroquinone was identified as major degraded product. The pathway was identified for the biodegradation of PNP. It involved initial removal of the nitrate group and formation of hydroquinone as one of the intermediates. CONCLUSION Our results suggested that P. putida 1274 strain would be a suitable aspirant for bioremediation of nitro-aromatic compounds contaminated sites in the environment.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - Alka Mehta
- School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Arora PK, Srivastava A, Singh VP. Bacterial degradation of nitrophenols and their derivatives. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:42-59. [PMID: 24374564 DOI: 10.1016/j.jhazmat.2013.12.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
This review intends to provide an overview of bacterial degradation of nitrophenols (NPs) and their derivatives. The main scientific focus is on biochemical and genetic characterization of bacterial degradation of NPs. Other aspects such as bioremediation and chemotaxis correlated with biodegradation of NPs are also discussed. This review will increase our current understanding of bacterial degradation of NPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
14
|
Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 132:121-8. [PMID: 24291585 DOI: 10.1016/j.jenvman.2013.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/04/2013] [Accepted: 11/08/2013] [Indexed: 05/26/2023]
Abstract
The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process.
Collapse
Affiliation(s)
- Alicja Szulc
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland.
| | - Damian Ambrożewicz
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Mateusz Sydow
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Agnieszka Piotrowska-Cyplik
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Roman Marecik
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznań, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| |
Collapse
|
15
|
Biodegradation of p-nitrophenol sorbed onto crystal violet-modified organoclay by Arthrobacter sp. 4Hβ. Appl Microbiol Biotechnol 2013; 98:1321-7. [DOI: 10.1007/s00253-013-4999-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
16
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
17
|
Martín-Hernández M, Suárez-Ojeda ME, Carrera J. Bioaugmentation for treating transient or continuous p-nitrophenol shock loads in an aerobic sequencing batch reactor. BIORESOURCE TECHNOLOGY 2012; 123:150-156. [PMID: 22940312 DOI: 10.1016/j.biortech.2012.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
Bioaugmentation with an enriched microbial population was applied in an aerobic sequencing batch reactor (SBR) receiving transient or continuous shock loads of p-nitrophenol (PNP). The effect of the amount of biomass added for bioaugmentation was assessed by using two different dosages (2% or 5% w/w of the total biomass in the seeded SBR). In both cases, total PNP removal was achieved during the transient PNP shock load occurring after bioaugmentation. However, after a long PNP starvation period the only experiment still showing total PNP removal during a second PNP shock load was the one where a dosage of 5% w/w was applied. The results suggested that the dosage is a key factor for the implementation of a successful bioaugmentation strategy. In addition, the performance of a bioaugmented SBR receiving a continuous PNP shock load was enhanced when compared to a non-bioaugmented SBR.
Collapse
Affiliation(s)
- Mariángel Martín-Hernández
- Department of Chemical Engineering, Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | |
Collapse
|
18
|
Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1568-75. [PMID: 21216097 DOI: 10.1016/j.jhazmat.2010.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/09/2010] [Indexed: 05/06/2023]
Abstract
The combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp. strain ITRI53 and Pantoea sp. strain BTRH79) in the rhizosphere and shoot interior of Italian ryegrass vegetated in diesel contaminated soils. High colonization, gene abundance and expression in loamy soils were observed. By contrast, low colonization, gene abundance and absence of gene expression in sandy soil were found. The highest levels of genes expression and hydrocarbon degradation were seen in loamy soil that had been inoculated with BTRH79 and were significantly higher compared to those in other soils. A positive correlation was observed between gene expression and hydrocarbon degradation indicating that catabolic gene expression is necessary for contaminant degradation. These results suggest that soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant degradation.
Collapse
Affiliation(s)
- Muhammad Afzal
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
19
|
Sagban FOT. Impacts of wastewater sludge amendments in restoring nitrogen cycle in p-nitrophenol contaminated soil. J Environ Sci (China) 2011; 23:616-623. [PMID: 21793404 DOI: 10.1016/s1001-0742(09)60366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30-45 days, indicating the effectiveness of sludge as a useful soil amendment.
Collapse
Affiliation(s)
- F Olcay Topac Sagban
- Department of Environmental Engineering, Uludağ University, Görükle 16059, Bursa, Turkey.
| |
Collapse
|
20
|
Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK. Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1069-1077. [PMID: 20050667 DOI: 10.1021/es9034123] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A bacterial strain Rhodococcus imtechensis RKJ300 (= MTCC 7085(T) = JCM 13270(T)) was isolated from pesticide-contaminated soil of Punjab by the enrichment technique on minimal medium containing 4-nitrophenol. Strain RKJ300 is capable of utilizing 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol as sole sources of carbon and energy. The strain involved both oxidative and reductive catabolic mechanisms for initial transformation of these compounds. In the case of 2-chloro-4-nitrophenol, colorimetric analysis indicated that nitrite release was followed by stoichiometric elimination of chloride ions. Experiments using whole cells and cell-free extracts showed chlorohydroquinone and hydroquinone as the intermediates of 2-chloro-4-nitrophenol degradation. This is the first report of degradation on 2-chloro-4-nitrophenol by a bacterium under aerobic condition to the best of our knowledge. However, pathways for degradation of 4-nitrophenol and 2,4-dinitrophenol were similar to those reported in other strains of Rhodococcus. Laboratory-scale soil microcosm studies demonstrated that the organism was capable of degrading a mixture of nitrophenols simultaneously, indicating its applicability toward in situ bioremediation of contaminated sites. The fate of the augmented strain as monitored by the plate-counting method and hybridization technique was found to be fairly stable throughout the period of microcosm experiments.
Collapse
Affiliation(s)
- Anuradha Ghosh
- Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | | | |
Collapse
|
21
|
Qiu X, Wu P, Zhang H, Li M, Yan Z. Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. BIORESOURCE TECHNOLOGY 2009; 100:5243-5248. [PMID: 19540107 DOI: 10.1016/j.biortech.2009.05.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 05/27/2023]
Abstract
A soil bacterium strain, capable of using p-nitrophenol (PNP) as its sole source of carbon and energy, was isolated by enrichment on minimal salt medium (MSM). On the basis of a phylogenetic analysis of 16S rRNA gene sequences the bacterium is a species of Arthrobacter, closely related to Arthrobacter ureafaciens DSM 20126. This strain has an unusually high substrate tolerance for PNP degradation in MSM. Greatest degradation of PNP was observed at 30 degrees C and under slightly alkaline pH (pH 7-9) conditions. Effective degradation rates slowed as the concentration of PNP was increased. Addition of glucose from 0.1% to 0.5% generally enhanced the degradation of PNP at high concentration (400 mg/l) although acidification as a result of glucose metabolism had a negative effect on PNP depletion. Biodegradation of PNP at high concentration was greatly accelerated by beta-cyclodextrin at a concentration of 0.5%, indicating that beta-cyclodextrin could be a promising addictive for effective PNP bioremediation.
Collapse
Affiliation(s)
- Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | |
Collapse
|
22
|
Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0172-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Martín-Hernández M, Carrera J, Pérez J, Suárez-Ojeda ME. Enrichment of a K-strategist microbial population able to biodegrade p-nitrophenol in a sequencing batch reactor. WATER RESEARCH 2009; 43:3871-3883. [PMID: 19560183 DOI: 10.1016/j.watres.2009.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/21/2009] [Accepted: 06/01/2009] [Indexed: 05/28/2023]
Abstract
The biological treatment of a high-strength p-nitrophenol (PNP) wastewater in an aerobic Sequencing Batch Reactor (SBR) has been studied. A specific operational strategy was applied with the main aim of developing a K-strategist PNP-degrading activated sludge. The enrichment of a K-strategist microbial population was performed using a non-acclimated biomass coming from a municipal WWTP as inoculum, and following a feeding strategy in which the PNP-degrading biomass was under endogenous conditions during more than 50% of the aerobic reaction phase. Hundred per cent of PNP removal was achieved in the whole operating period with a maximum specific PNP loading rate of 0.26 g PNP g(-1)VSS d(-1). A kinetic characterization of the obtained PNP-degrading population was carried out using respirometry assays in specifically designed batch tests. With the experimental data obtained a kinetic model including substrate inhibition has been used to describe the time-course of the PNP concentration and specific oxygen uptake rate (SOUR), simultaneously. The kinetic parameters obtained through optimization, validated with an additional respirometric test, were k(max)=1.02 mg PNP mg(-1) COD d(-1), K(s)=1.6 mg PNP L(-1) and K(i)=54 mg PNP L(-1). The values obtained for the K(s) and k(max) are lower than those reported in the literature for mixed populations, meaning that the biomass is a K-strategist type, and therefore demonstrating the success of the operational strategy imposed to obtain such a K-strategist population. Moreover, our measured K(i) value is higher than those reported by most of the bibliographic references; therefore the acclimated activated sludge used in this work was evidently more adapted to PNP inhibition than the other reported cultures.
Collapse
Affiliation(s)
- Mariángel Martín-Hernández
- Department of Chemical Engineering, Escola Tècnica Superior d'Enginyeria (ETSE), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
24
|
Önneby K, Jonsson A, Stenström J. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms. Biodegradation 2009; 21:21-9. [DOI: 10.1007/s10532-009-9278-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
25
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
26
|
Tang J, Liu L, Hu S, Chen Y, Chen J. Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). BIORESOURCE TECHNOLOGY 2009; 100:480-483. [PMID: 18585910 DOI: 10.1016/j.biortech.2008.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
A simple technique, REMI (restriction enzyme-mediated integration), was used to construct transformants of Trichoderma atroviride with improved capability of degrading organophosphate pesticide dichlorvos. Linearized DNA of plasmid pV2 bearing the hygromycin B phosphotransferase (hph) gene was inserted into chromosomes of wild strain T23 and transformation was confirmed by PCR and Southern blot analysis, respectively. Of 247 transformants, 76% showed improved dichlorvos degradation ability as compared to the parent strain T23 based on the least significant difference (LSD) test at p=0.01. Among them, 8 transformants exhibited 30% higher in degradation rate than the parent isolate. The highest dichlorvos degradation rate of the transformants was up to 96%. This study provided an effective approach for improving organophosphate pesticide-degrading capability of T. atroviride.
Collapse
Affiliation(s)
- Jun Tang
- Department of Plant Science, School of Agriculture and Biology, Key laboratory of Microorganism Metabolism, Ministry of Education, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
27
|
Zheng Y, Liu D, Liu S, Xu S, Yuan Y, Xiong L. Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D38. J Environ Sci (China) 2009; 21:1194-1199. [PMID: 19999965 DOI: 10.1016/s1001-0742(08)62403-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The kinetics and mechanisms of p-nitrophenol (PNP) biodegradation by Pseudomonas aeruginosa HS-D38 were investigated. PNP could be used by HS-D38 strain as the sole carbon, nitrogen and energy sources, and PNP was mineralized at the maximum concentration of 500 mg/L within 24 h in an mineral salt medium (MSM). The analytical results indicated that the biodegradation of PNP fit the first order kinetics model. The rate constant kPNP is 2.039 x 10(-2)/h in MSM medium, KPNP+N is 3.603 x 10(-2)/h with the addition of ammonium chloride and KPNP+C is 9.74 x 10(-3)/h with additional glucose. The addition of ammonium chloride increased the degradation of PNP. On the contrary, the addition of glucose inhibited and delayed the biodegradation of PNP. Chemical analysis results by thin-layer chromatography (TLC), UV-Vis spectroscopy and gas chromatography (GC) techniques suggested that PNP was converted to hydroquinone (HQ) and further degraded via 1,2,4-benzenetriol (1,2,4-BT) pathway.
Collapse
Affiliation(s)
- Yongliang Zheng
- Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
28
|
Li YY, Zhou B, Li W, Peng X, Zhang JS, Yan YC. Mineralization of p-nitrophenol by a new isolate Arthrobacter sp. Y1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:692-697. [PMID: 18941993 DOI: 10.1080/03601230802388793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arthrobacter sp. Y1, capable of metabolizing p-nitrophenol (PNP) as the sole carbon, nitrogen and energy source was isolated from activated sludge. The bacterium could tolerate concentrations of PNP up to 600 mg L(- 1), and degradation of PNP was achieved within 120 h of incubation. PNP and its metabolites were analyzed by high performance liquid chromatography (HPLC). The metabolite formed indicated that the organism followed the 4-nitrocathechol (4-NC) pathway for metabolism of this compound. The relevant degrading-enzyme was extracellular. Addition of other carbon source (glucose 0 approximately 30 g L(- 1)) led to accelerated degradation. If the glucose concentration exceeded 30 g L(- 1), however, degradation was repressed. Spectrophotometry assay of the nitrite and genotoxic study showed that strain Y1 could detoxify PNP. Therefore, the present study may provide a basis for the development of the bioremediation strategies to remedy the pollutants in the environment.
Collapse
Affiliation(s)
- Ying Y Li
- College of Life Sciences, Shandong Agricultural University, Shandong, China
| | | | | | | | | | | |
Collapse
|
29
|
Jain R, Paul D, Labana S, Pandey J, Ghosh A, Chauhan A. Restoration of p-nitrophenol contaminated site using Arthrobacter protophormiae and evaluation of structural dynamics of its community during the process. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Liu Z, Yang C, Qiao C. Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 2008; 277:150-6. [PMID: 18031334 DOI: 10.1111/j.1574-6968.2007.00940.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A bacterium named LZ-1 capable of utilizing high concentrations of p-nitrophenol (PNP) (up to 500 mg L(-1)) as the sole source of carbon, nitrogen and energy was isolated from an activated sludge. Based on the results of phenotypic features and phylogenetic similarity of 16S rRNA gene sequences, strain LZ-1 was identified as a Stenotrophomonas sp. Other p-substituted phenols such as 4-chlorophenol (4-CP) were also degraded by strain LZ-1, and both PNP and 4-CP were degraded via the hydroquinone pathway exclusively. Strain LZ-1 could degrade PNP and 4-CP simultaneously and the degradation of PNP was greatly accelerated due to the increased biomass supported by 4-CP. An indigenous plasmid was found to be responsible for phenols degradation. In soil samples, 100 mg kg(-1) of PNP and 4-CP in mixtures were removed by strain LZ-1 (10(6) cells g(-1)) within 14 and 16 days respectively, and degradation activity was maintained over a wide range of temperatures (4-35 degrees C). Therefore, strain LZ-1 can potentially be used in bioremediation of phenolic compounds either individually or as a mixture in the environment.
Collapse
|
31
|
Sheibani M, Azghandi AV, Nemati SH. Induction of somatic embryogenesis in saffron using thidiazuron (TDZ). Pak J Biol Sci 2007; 10:3564-3570. [PMID: 19093463 DOI: 10.3923/pjbs.2007.3564.3570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In vitro propagation of saffron either through somatic embryogenesis or cormogenesis is considered to be an efficient alternative method for large-scale propagation of pathogen-free corms. In order to develop an efficient protocol for in vitro propagation of saffron, a factorial experiment was carried out based on completely randomized design to investigate the effects of various concentrations of TDZ (0, 0.1, 0.25 and 0.5 mg L(-1)) on somatic embryogenesis induction from 5 different types of corm explants (terminal or axillary buds, upper or lower parts of the corm tissue and terminal buds from pre-treated corms at 4 degrees C for 2 weeks). The results revealed that TDZ concentrations affected the induction of somatic embryogenesis significantly while different types of corm explants showed no significant effect on this process. Among TDZ concentrations used, 0.5 mg L(-1) was the most effective treatment for embryogenesis induction. Embryogenic calli (globular stage) proliferated well when subcultured into MS medium supplemented with 0.25 mg L(-1) TDZ before transferring to hormone-free MS medium containing 6% sucrose for maturation (scutellar or horn-shape stage). Matured embryos were transferred to half strength MS medium without growth regulators for further development, from which microcorms were produced at the basal part after 3 months.
Collapse
Affiliation(s)
- M Sheibani
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, P.O. Box 9177948978, Mashhad, Iran
| | | | | |
Collapse
|
32
|
Reungsang A, Sangyoka S, Chaiprasert P, Imai T. Factors affecting hydrogen production from cassava wastewater by a co-culture of anaerobic sludge and Rhodospirillum rubrum. Pak J Biol Sci 2007; 10:3571-7. [PMID: 19093464 DOI: 10.3923/pjbs.2007.3571.3577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Series of batch experiments were used to investigate the effects of environmental factors, i.e., total nitrogen and total phosphorus concentrations, initial pH, illumination pattern and stirring conditions on hydrogen production from cassava wastewater by a co-culture of anaerobic sludge and Rhodospirillum rubrum. The maximum of the hydrogen yield of 150.46 and 340.19 mL g-COD(-1) was obtained at the total nitrogen and total phosphorus concentrations of 0.2 and 0.04 M, respectively. An effect of initial pH was investigated at COD:N:P ratio of 100:10:1. Results indicated that an optimum initial pH for hydrogen production was pH 7 with a high hydrogen yield of 158.78 mL g-COD(-1) was obtained. No significantly different (p < 0.05) in the effect of illumination pattern (24 h of light and 12 h dark/light cycle) on hydrogen production were observed under continuous-illumination and periodic-illumination with hydrogen yield of 131.84 and 126.92 mL g-COD(-1), respectively. Therefore, a periodic-illumination was applicable in hydrogen fermentation due to its cost-effective. Hydrogen fermentation with a stirring at 100 rpm provided more effective hydrogen production (164.83 mL g-COD(-1)) than static-fermentation (93.93 mL g-COD(-1)). The major soluble products from hydrogen fermentation were acetic and butyric acids, in the ranges of 28.33-48.30 and 35.23-66.07%, respectively, confirming an ability of a co-culture to produce hydrogen from cassava wastewater.
Collapse
Affiliation(s)
- Alissara Reungsang
- Department of Biotechnology, Fermentation Research Centre for Value Added Agricultural Products, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | |
Collapse
|
33
|
Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: an overview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2007; 85:496-512. [PMID: 17703873 DOI: 10.1016/j.jenvman.2007.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Nitro-aromatic compounds are produced by incomplete combustion of fossil fuel or nitration reactions and are used as chemical feedstock for synthesis of explosives, pesticides, herbicides, dyes, pharmaceuticals, etc. The indiscriminate use of nitro-aromatics in the past due to wide applications has resulted in inexorable environmental pollution. Hence, nitro-aromatics are recognized as recalcitrant and given Hazardous Rating-3. Although several conventional pump and treat clean up methods are currently in use for the removal of nitro-aromatics, none has proved to be sustainable. Recently, remediation by biological systems has attracted worldwide attention to decontaminate nitro-aromatics polluted sources. The incredible versatility inherited in microbes has rendered these compounds as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or non-specific transformation of nitro-aromatics either by aerobic or anaerobic processes. Aerobic degradation of nitro-aromatics applies mainly to mono-, dinitro-derivatives and to some extent to poly-nitro-aromatics through oxygenation by: (i) monooxygenase, (ii) dioxygenase catalyzed reactions, (iii) Meisenheimer complex formation, and (iv) partial reduction of aromatic ring. Under anaerobic conditions, nitro-aromatics are reduced to amino-aromatics to facilitate complete mineralization. The nitro-aromatic explosives from contaminated sediments are effectively degraded at field scale using in situ bioremediation strategies, while ex situ techniques using whole cell/enzyme(s) immobilized on a suitable matrix/support are gaining acceptance for decontamination of nitrophenolic pesticides from soils at high chemical loading rates. Presently, the qualitative and quantitative performance of biological approaches of remediation is undergoing improvement due to: (i) knowledge of catabolic pathways of degradation, (ii) optimization of various parameters for accelerated degradation, and (iii) design of microbe(s) through molecular biology tools, capable of detoxifying nitro-aromatic pollutants. Among them, degradative plasmids have provided a major handle in construction of recombinant strains. Although recombinants designed for high performance seem to provide a ray of hope, their true assessment under field conditions is required to address ecological considerations for sustainable bioremediation.
Collapse
Affiliation(s)
- Meenal Kulkarni
- School of Life Sciences, North Maharashtra University, P.B. No. 80, Jalgaon 425 001, Maharashtra, India
| | | |
Collapse
|
34
|
Singh OV. Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 2007; 6:5481-92. [PMID: 16972298 DOI: 10.1002/pmic.200600200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microbial-mediated attenuation of toxic aromatic pollutants offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. However, incomplete biological information regarding the regulation of growth and metabolism in many microbial communities restricts progress in the site-specific mineralization process. In the postgenomic era, recent advances in MS have allowed enormous progress in proteomics and elucidated many complex biological interactions. These research forefronts are now expanding toward the analysis of low-molecular-weight primary and secondary metabolites analysis, i.e., metabolomics. The advent of 2-DE in conjunction with MS offers a promising approach to address the molecular mechanisms of bioremediation. The two fields of proteomics and metabolomics have thus far worked separately to identify proteins and primary and secondary metabolites during bioremediation. A simultaneous study combining functional proteomics and metabolomics, i.e., proteometabolomics would create a system-wide approach to studying site-specific microorganisms during active mineralization processes. This article deals with advances in environmental proteomics and metabolomics and advocates the simultaneous study of both technologies to implement cell-free bioremediation.
Collapse
Affiliation(s)
- Om V Singh
- Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|