1
|
Dottor CA, Iosue CL, Loshnowsky AM, Hopkins RA, Stauffer PL, Ugras JM, Spagnuola JC, Kraut DA, Wykoff DD. Regulation of thiamine and pyruvate decarboxylase genes by Pdc2 in Nakaseomyces glabratus (Candida glabrata) is complex. G3 (BETHESDA, MD.) 2024; 14:jkae132. [PMID: 38861404 PMCID: PMC11304959 DOI: 10.1093/g3journal/jkae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Thiamine (vitamin B1) is essential for glucose catabolism. In the yeast species, Nakaseomyces glabratus (formerly Candida glabrata) and Saccharomyces cerevisiae, the transcription factor Pdc2 (with Thi3 and Thi2) upregulates pyruvate decarboxylase (PDC) genes and thiamine biosynthetic and acquisition (THI) genes during starvation. There have not been genome-wide analyses of Pdc2 binding. Previously, we identified small regions of Pdc2-regulated genes sufficient to confer thiamine regulation. Here, we performed deletion analyses on these regions. We observed that when the S. cerevisiae PDC5 promoter is introduced into N. glabratus, it is thiamine starvation inducible but does not require the Thi3 coregulator. The ScPDC5 promoter contains a 22-bp duplication with an AT-rich spacer between the 2 repeats, which are important for regulation. Loss of the first 22-bp element does not eliminate regulation, but the promoter becomes Thi3 dependent, suggesting cis architecture can generate a Thi3-independent, thiamine starvation inducible response. Whereas many THI promoters only have 1 copy of this element, addition of the first 22-bp element to a Thi3-dependent promoter confers Thi3 independence. Finally, we performed fluorescence anisotropy and chromatin immunoprecipitation sequencing. Pdc2 and Thi3 bind to regions that share similarity to the 22-bp element in the ScPDC5 promoter and previously identified cis elements in N. glabratus promoters. Also, while Pdc2 binds to THI and PDC promoters, neither Pdc2 nor Thi3 appears to bind the evolutionarily new NgPMU3 promoter that is regulated by Pdc2. Further study is warranted because PMU3 is required for cells to acquire thiamine from environments where thiamine is phosphorylated, such as in the human bloodstream.
Collapse
Affiliation(s)
- Cory A Dottor
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Christine L Iosue
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Rachael A Hopkins
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Peyton L Stauffer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Julia M Ugras
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Jack C Spagnuola
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Daniel A Kraut
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Dennis D Wykoff
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
2
|
Strobbe S, Verstraete J, Fitzpatrick TB, Stove C, Van Der Straeten D. A protocol for a turbidimetric assay using a Saccharomyces cerevisiae thiamin biosynthesis mutant to estimate total vitamin B 1 content in plant tissue samples. PLANT METHODS 2023; 19:144. [PMID: 38093342 PMCID: PMC10717716 DOI: 10.1186/s13007-023-01117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Understanding thiamin (thiamine; vitamin B1) metabolism in plants is crucial, as it impacts plant nutritional value as well as stress tolerance. Studies aimed at elucidating novel aspects of thiamin in plants rely on adequate assessment of thiamin content. Mass spectrometry-based methods provide reliable quantification of thiamin as well as closely related biomolecules. However, these techniques require expensive equipment and expertise. Microbiological turbidimetric assays can evaluate the presence of thiamin in a given sample, only requiring low-cost, standard lab equipment. Although these microbiological assays do not reach the accuracy provided by mass spectrometry-based methods, the ease with which they can be deployed in an inexpensive and high-throughput manner, makes them a favorable method in many circumstances. However, the thiamin research field could benefit from a detailed step-by-step protocol to perform such assays as well as a further assessment of its potential and limitations. RESULTS Here, we show that the Saccharomyces cerevisiae thiamin biosynthesis mutant thi6 is an ideal candidate to be implemented in a turbidimetric assay aimed at assessing the content of thiamin and its phosphorylated equivalents (total vitamer B1). An optimized protocol was generated, adapted from a previously established microbiological assay using the thi4 mutant. A step-by-step guidance for this protocol is presented. Furthermore, the applicability of the assay is illustrated by assessment of different samples, including plant as well as non-plant materials. In doing so, our work provides an extension of the applicability of the microbiological assay on top of providing important considerations upon implementing the protocol. CONCLUSIONS An inexpensive, user-friendly protocol, including step-by-step guidance, which allows adequate estimation of vitamer B1 content of samples, is provided. The method is well-suited to screen materials to identify altered vitamer B1 content, such as in metabolic engineering or screening of germplasm.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L, Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, Bücker A, Rosa CA, Dunn B, Sherlock G, Stambuk BU. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J Fungi (Basel) 2023; 9:803. [PMID: 37623574 PMCID: PMC10456111 DOI: 10.3390/jof9080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and cachaça per year using selected Saccharomyces cerevisiae industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five cachaça industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths. Our results show that only two strains (one fuel-ethanol and one cachaça yeast) have amplification of genes encoding invertase, with high specific activity. The other industrial yeast strains had a single locus (SUC2) in their genome, with different patterns of invertase activity. These results indicate that invertase activity probably does not limit sucrose fermentation during fuel-ethanol and cachaça production by these industrial strains. Using this knowledge, we changed the mode of sucrose metabolism of an industrial strain by avoiding extracellular invertase activity, overexpressing the intracellular invertase, and increasing its transport through the AGT1 permease. This approach allowed the direct consumption of the disaccharide by the cells, without releasing glucose or fructose into the medium, and a 11% higher ethanol production from sucrose by the modified industrial yeast, when compared to its parental strain.
Collapse
Affiliation(s)
- Gabriela Muller
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Victor R. de Godoy
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Marcelo G. Dário
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Eduarda H. Duval
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Sergio L. Alves-Jr
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Augusto Bücker
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| | - Carlos A. Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Barbara Dunn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; (B.D.); (G.S.)
| | - Boris U. Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; (G.M.); (V.R.d.G.); (M.G.D.); (E.H.D.); (S.L.A.-J.); (A.B.)
| |
Collapse
|
4
|
Wangsanut T, Amsri A, Pongpom M. Antibody screening reveals antigenic proteins involved in Talaromyces marneffei and human interaction. Front Cell Infect Microbiol 2023; 13:1118979. [PMID: 37404721 PMCID: PMC10315666 DOI: 10.3389/fcimb.2023.1118979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Talaromycosis is a fungal infection that generally affects immunocompromised hosts and is one of the most frequent systemic mycoses in HIV patients, especially in endemic areas such as Southeast Asia. Talaromyces marneffei, the causative agent of talaromycosis, grows as a mold in the environment but adapts to the human body and host niches by transitioning from conidia to yeast-like cells. Knowledge of the human host and T. marneffei interaction has a direct impact on the diagnosis, yet studies are still lacking. The morbidity and mortality rates are high in taloromycosis patients if the diagnosis and treatments are delayed. Immunogenic proteins are excellent candidates for developing detection tools. Previously, we identified antigenic proteins that were recognized by antibodies from talaromycosis sera. Three of these identified proteins have been previously characterized in detail, while the others have not been explored. To expedite the progress of antigen discovery, the complete list of antigenic proteins and their features was fully reported in this study. Functional annotation and Gene Ontology examination revealed that these proteins showed a high association with membrane trafficking. Further bioinformatics analyses were performed to search for antigenic protein characteristics, including functional domains, critical residues, subcellular localization, secretory signals, and epitope peptide sequences. Expression profiling of these antigenic encoding genes was investigated using quantitative real-time PCR. The results demonstrated that most genes were expressed at low levels in the mold form, but were highly upregulated in the pathogenic yeast phase, consistent with the antigenic role of these genes during the human-host interaction. Most transcripts accumulated in the conidia, suggesting a role during phase transition. The collection of all antigen-encoding DNA sequences described here is freely accessible at GenBank, which could be useful for the research community to develop into biomarkers, diagnostic tests, research detection tools, and even vaccines.
Collapse
|
5
|
Iosue CL, Ugras JM, Bajgain Y, Dottor CA, Stauffer PL, Hopkins RA, Lang EC, Wykoff DD. Pyruvate decarboxylase and thiamine biosynthetic genes are regulated differently by Pdc2 in S. cerevisiae and C. glabrata. PLoS One 2023; 18:e0286744. [PMID: 37285346 DOI: 10.1371/journal.pone.0286744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding metabolism in the pathogen Candida glabrata is key to identifying new targets for antifungals. The thiamine biosynthetic (THI) pathway is partially defective in C. glabrata, but the transcription factor CgPdc2 upregulates some thiamine biosynthetic and transport genes. One of these genes encodes a recently evolved thiamine pyrophosphatase (CgPMU3) that is critical for accessing external thiamine. Here, we demonstrate that CgPdc2 primarily regulates THI genes. In Saccharomyces cerevisiae, Pdc2 regulates both THI and pyruvate decarboxylase (PDC) genes, with PDC proteins being a major thiamine sink. Deletion of PDC2 is lethal in S. cerevisiae in standard growth conditions, but not in C. glabrata. We uncover cryptic cis elements in C. glabrata PDC promoters that still allow for regulation by ScPdc2, even when that regulation is not apparent in C. glabrata. C. glabrata lacks Thi2, and it is likely that inclusion of Thi2 into transcriptional regulation in S. cerevisiae allows for a more complex regulation pattern and regulation of THI and PDC genes. We present evidence that Pdc2 functions independent of Thi2 and Thi3 in both species. The C-terminal activation domain of Pdc2 is intrinsically disordered and critical for species differences. Truncation of the disordered domains leads to a gradual loss of activity. Through a series of cross species complementation assays of transcription, we suggest that there are multiple Pdc2-containing complexes, and C. glabrata appears to have the simplest requirement set for THI genes, except for CgPMU3. CgPMU3 has different cis requirements, but still requires Pdc2 and Thi3 to be upregulated by thiamine starvation. We identify the minimal region sufficient for thiamine regulation in CgTHI20, CgPMU3, and ScPDC5 promoters. Defining the cis and trans requirements for THI promoters should lead to an understanding of how to interrupt their upregulation and provide targets in metabolism for antifungals.
Collapse
Affiliation(s)
- Christine L Iosue
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Julia M Ugras
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Yakendra Bajgain
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Cory A Dottor
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Peyton L Stauffer
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Rachael A Hopkins
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Emma C Lang
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Dennis D Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| |
Collapse
|
6
|
Roca-Mesa H, Delgado-Yuste E, Mas A, Torija MJ, Beltran G. Importance of micronutrients and organic nitrogen in fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. Int J Food Microbiol 2022; 381:109915. [PMID: 36084391 DOI: 10.1016/j.ijfoodmicro.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current use of non-Saccharomyces yeasts in mixed fermentations increases the relevance of the interactions between yeast species. In this work, the interactions between Saccharomyces cerevisiae and Torulaspora delbrueckii were analyzed. For this purpose, fermentations with and without contact between strains of those yeast species were performed in synthetic must. Fermentation kinetics, yeast growth and dynamics were measured over time. Additionally, the effects of nitrogen and other nutrient supplementations on the mixed fermentations were determined. Our results showed that S. cerevisiae did not always dominate the sequential fermentations, and experiments without yeast contact (in which T. delbrueckii cells were removed from the medium before inoculating S. cerevisiae at 48 h) resulted in stuck fermentations except when the inoculum size was increased (from 2 × 106 to 108 cells/mL) or there was a supplementation of thiamine, zinc and amino acids at the same concentration as initially found in the synthetic must. Our findings highlight the importance of inoculum size and ensuring the availability of enough micronutrients for all yeast species, especially in sequential fermentations.
Collapse
Affiliation(s)
- Helena Roca-Mesa
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Ester Delgado-Yuste
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| | - María-Jesús Torija
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain.
| | - Gemma Beltran
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, c/ Marcel·lí Domingo, 1, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
7
|
Strobbe S, Verstraete J, Fitzpatrick TB, Faustino M, Lourenço TF, Oliveira MM, Stove C, Van Der Straeten D. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. THE NEW PHYTOLOGIST 2022; 234:748-763. [PMID: 35037254 PMCID: PMC9303440 DOI: 10.1111/nph.17974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in PlantsDepartment of Botany and Plant BiologyUniversity of GenevaQuai E. Ansermet 301211GenevaSwitzerland
| | - Maria Faustino
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| |
Collapse
|
8
|
Labuschagne PWJ, Rollero S, Divol B. Comparative uptake of exogenous thiamine and subsequent metabolic footprint in Saccharomyces cerevisiae and Kluyveromyces marxianus under simulated oenological conditions. Int J Food Microbiol 2021; 354:109206. [PMID: 34088559 DOI: 10.1016/j.ijfoodmicro.2021.109206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
Managed inoculation of non-Saccharomyces yeast species is regarded as a practical way to introduce new characteristics to wine. However, these yeasts struggle to survive until fermentation is complete. Kluyveromyces marxianus IWBT Y885 is one such yeast. Although it displays interesting oenological properties, a longer persistence during alcoholic fermentation would warranty a stronger impact on wine composition. A key factor for survival, growth and sustained metabolic activity of all yeasts is their nutrient requirements. Thus, identifying nutrients that are essential for maximising fermentation performance, and subsequently ensuring adequate levels of nutrients, is a means to ensure significant contribution of yeasts to wine properties. This study aimed to identify essential nutrients, other than previously studied sugars and nitrogen, for maximum impact of K. marxianus Y885, as well as to characterise the outcomes of their utilisation. A multifactorial experimental design was employed to investigate the impact of nutrient concentrations on fermentation performance with K. marxianus Y885 in synthetic must. B-complex vitamins most significantly impacted fermentation performance of K. marxianus Y885 compared to other nutrient groups investigated. Considering the well-established role of the vitamin, thiamine, for maximum fermentation performance during winemaking and the fact that it may be supplemented to wine fermentations legally, the responses to specifically exogenous thiamine concentration for K. marxianus Y885 and Saccharomyces cerevisiae EC1118 were compared in terms of population viability, fermentation rate, total sugars utilised, thiamine assimilation kinetics, and final wine composition. A saturation effect for initial thiamine concentration of K. marxianus Y885 fermentations was characterised, with a maximum fermentation rate and over 90% of available sugars utilisation obtained at 0.25 mg/L. An appreciably larger comparative increase in exponential cell growth rate, maximum population, fermentation rate and total CO2 production for K. marxianus Y885 compared to S. cerevisiae EC1118 revealed a greater necessity for thiamine to ensure maximum fermentation performance. A delayed uptake of thiamine at higher concentrations for K. marxianus Y885 suggested differential regulation of thiamine uptake compared to S. cerevisiae EC1118. In addition, different trends in metabolites produced between species suggest that thiamine concentration impacts the carbon metabolic flux differently in these two yeasts, potentially impacting final wine properties.
Collapse
Affiliation(s)
- Pieter W J Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa
| | - Stéphanie Rollero
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
9
|
Labuschagne P, Divol B. Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. Appl Microbiol Biotechnol 2021; 105:953-973. [PMID: 33404836 DOI: 10.1007/s00253-020-11080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts. KEY POINTS: • Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed. • Multiple factors affect thiamine synthesis, availability and uptake for wine yeast. • Thiamine availability impacts fermentation kinetics and wine's sensory properties.
Collapse
Affiliation(s)
- Pwj Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
10
|
Rajabi-Khamseh S, Danesh Shahraki A, Rafieiolhossaini M, Saeidi K. Bacterial inoculation positively affects the quality and quantity of flax under deficit irrigation regimes. J Appl Microbiol 2020; 131:321-338. [PMID: 33211366 DOI: 10.1111/jam.14934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/27/2022]
Abstract
AIM The present research was conducted to investigate the effect of plant growth-promoting rhizobacteria (PGPR) and deficit irrigation on quality and quantity of flax under field and pot conditions to determine bacterial efficiency and to decrease water deficit effects. METHODS AND RESULTS Initially, in vitro experiments were performed to determine the growth-promoting characteristics of bacteria. Then in the field, the effects of bacterial inoculation (control, Azotobacter chroococcum, Azospirillum lipoferum, Bacillus amyloliquefaciens, Bacillus sp. strain1 and Pseudomonas putida) on flax traits were evaluated at different irrigation levels (100, 75 and 50% crop water requirement). Bacterial treatments in the pot experiment were selected based on the field experiment results. The irrigation regimes in the pot and field experiments were the same and bacterial treatments included single, doublet and triplet applications of the bacteria. All the bacterial strains could solubilize phosphate, produce ammonia (except for Bacillus sp. strain1), indole acetic acid and siderophore (except P. putida). Field results indicated that the bacteria significantly mitigated the effects of water deficit. Compared with control plants, bacterial treatments increased the oil, linolenic acid, protein and sulphur content; the number of shoots and capsules; and the harvest index in the flax plants. Pot experimental results revealed that the combined inoculations were more effective than single inoculum treatments. CONCLUSIONS Bacterial inoculation alleviates deficit irrigation effects in flax plants. SIGNIFICANCE AND IMPACT OF THE STUDY The effectiveness of applying A. chroococcum, B. amyloliquefaciens and Bacillus sp. strain1 was confirmed, especially as a combination to protect flax against water deficit and to improve its nutritional quality and growth.
Collapse
Affiliation(s)
- S Rajabi-Khamseh
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - A Danesh Shahraki
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - M Rafieiolhossaini
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - K Saeidi
- Department of Horticulture, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
11
|
Wang Y, Wang M, Ye X, Liu H, Takano T, Tsugama D, Liu S, Bu Y. Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110639. [PMID: 33180716 DOI: 10.1016/j.plantsci.2020.110639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, many saline-alkali soils are rich in NaHCO3 and Na2CO3, which are characterized by a high pH Carbonate stress caused by this kind of soil severely damages plant cells and inhibits plant growth. Biotin and HCO3- participate in the first and rate-limiting reaction of the fatty acid biosynthesis pathway, but whether biotin contributes to plant responses to carbonate stress is unclear. In this study, we revealed that high carbonate and biotin concentrations inhibited Arabidopsis (Arabidopsis thaliana) seedling growth. However, specific concentrations of carbonate and biotin decreased the inhibitory effects of the other compound at the germination and seedling stages. Additionally, a carbonate treatment increased the endogenous biotin content and expression of AtBIO2, which encodes a biotin synthase. Moreover, phenotypic analyses indicated that the overexpression of AtBIO2 in Arabidopsis enhanced the tolerance to carbonate stress, whereas mutations to AtBIO2 had the opposite effect. Furthermore, the carbonate stress-induced accumulation of reactive oxygen species was lower in plants overexpressing AtBIO2 than in the wild-type and bio2 mutants. Accordingly, biotin, which is an essential vitamin for plants, can enhance the resistance to carbonate stress.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hua Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), University of Tokyo, Nishitokyo, Tokyo, 188-0002, Japan
| | - Shenkui Liu
- Department of Silviculture, State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang, 311300, China.
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
12
|
Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int J Biol Macromol 2020; 153:561-572. [PMID: 32151720 DOI: 10.1016/j.ijbiomac.2020.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/22/2023]
|
13
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
14
|
A Novel cis Element Achieves the Same Solution as an Ancestral cis Element During Thiamine Starvation in Candida glabrata. G3-GENES GENOMES GENETICS 2020; 10:321-331. [PMID: 31732505 PMCID: PMC6945020 DOI: 10.1534/g3.119.400897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulatory networks often converge on very similar cis sequences to drive transcriptional programs due to constraints on what transcription factors are present. To determine the role of constraint loss on cis element evolution, we examined the recent appearance of a thiamine starvation regulated promoter in Candida glabrata. This species lacks the ancestral transcription factor Thi2, but still has the transcription factor Pdc2, which regulates thiamine starvation genes, allowing us to determine the effect of constraint change on a new promoter. We identified two different cis elements in C. glabrata - one present in the evolutionarily recent gene called CgPMU3, and the other element present in the other thiamine (THI) regulated genes. Reciprocal swaps of the cis elements and incorporation of the S. cerevisiaeThi2 transcription factor-binding site into these promoters demonstrate that the two elements are functionally different from one another. Thus, this loss of an imposed constraint on promoter function has generated a novel cis sequence, suggesting that loss of trans constraints can generate a non-convergent pathway with the same output.
Collapse
|
15
|
Kaya C, Aslan M. Hydrogen sulphide partly involves in thiamine-induced tolerance to cadmium toxicity in strawberry (Fragaria x ananassa Duch) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:941-953. [PMID: 31820241 DOI: 10.1007/s11356-019-07056-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Although thiamine (THI) and hydrogen sulphide (H2S) both have widely been tested in the plant under stress conditions, cross talk between THI and H2S in the acquisition of cadmium (Cd) stress tolerance needs to be studied. So, an experiment was designed to study the participation of endogenous H2S in THI-induced tolerance to Cd stress in strawberry plants. A foliar spray solution containing THI (50 mg L-1) was sprayed once a week for 4 weeks to the foliage of strawberry plants under Cd stress (1.0 mM CdCl2). The plant dry weight, total chlorophyll, maximum efficiency of PSII (Fv/Fm), leaf potassium (K+) and calcium (Ca2+) as well as leaf water potential were significantly reduced, but the proline, ascorbate (AsA), glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL) and leaf Cd as well as endogenous H2S and NO were increased by Cd stress. Application of THI alleviated the oxidative damage due to Cd stress and caused a further elevation in endogenous H2S and NO contents. Remarkably, THI-induced Cd stress tolerance was further improved by addition of sodium hydrosulfide (0.2 mM NaHS), a H2S donor. To get an insight whether or not H2S involved in THI-improved tolerance to Cd toxicity in strawberry plants, an H2S scavenger, hypotaurine (HT 0.1 mM), was supplied along with the THI and NaHS treatments. THI-improved tolerance to Cd stress was partly reversed by HT by reducing leaf H2S and NO to the level and above of these under Cd toxicity alone, respectively. The findings evidently showed that leaf H2S and NO together involved in induced tolerance to Cd toxicity by THI. This evidence was also proved by the partly increases in MDA and H2O2 and decreases in antioxidant defence enzymes such as superoxide dismutase, catalase and peroxidase as well as the plant biomass and partly enhanced leaf Cd content by exogenous applied HT along with THI.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey.
| | - Mustafa Aslan
- Biology Department, Education Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
16
|
Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM. Role of Exogenous and Endogenous Hydrogen Sulfide (H 2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:545453. [PMID: 33488636 PMCID: PMC7817613 DOI: 10.3389/fpls.2020.545453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/27/2020] [Indexed: 05/08/2023]
Abstract
Improving growth and productivity of plants that are vulnerable to environmental stresses, such as heavy metals, is of significant importance for meeting global food and energy demands. Because heavy metal toxicity not only causes impaired plant growth, it has also posed many concerns related to human well-being, so mitigation of heavy metal pollution is a necessary priority for a cleaner environment and healthier world. Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in metal-related oxidative stress mitigation and increased stress tolerance in plants. It performs multifunctional roles in plant growth regulation while reducing the adverse effects of abiotic stress. Most effective function of H2S in plants is to eliminate metal-related oxidative toxicity by regulating several key physiobiochemical processes. Soil pollution by heavy metals presents significant environmental challenge due to the absence of vegetation cover and the resulting depletion of key soil functions. However, the use of stress alleviators, such as H2S, along with suitable crop plants, has considerable potential for an effective management of these contaminated soils. Overall, the present review examines the imperative role of exogenous application of different H2S donors in reducing HMs toxicity, by promoting plant growth, stabilizing their physiobiochemical processes, and upregulating antioxidative metabolic activities. In addition, crosstalk of different growth regulators with endogenous H2S and their contribution to the mitigation of metal phytotoxicity have also been explored.
Collapse
Affiliation(s)
- Muhammad Saleem Arif
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Tahira Yasmeen, ;
| | - Zohaib Abbas
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
- Shafaqat Ali, ;
| | - Muhammad Rizwan
- Department of Environmental Science and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 2019; 116:22219-22228. [PMID: 31611373 DOI: 10.1073/pnas.1909844116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Collapse
|
18
|
Li Y, Zhang Y, Liu M, Qin Y, Liu Y. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiol 2019; 79:147-155. [DOI: 10.1016/j.fm.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 10/28/2022]
|
19
|
Yao S, Zhou R, Jin Y, Huang J, Wu C. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii. Food Res Int 2019; 121:348-358. [PMID: 31108757 DOI: 10.1016/j.foodres.2019.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Zygosaccharomyces rouxii and Tetragenococcus halophilus are widely existed and play vital roles during the manufacture of fermented foods such as soy sauce. The aim of this study was to elucidate the effect of T. halophilus CGMCC 3792 on the physiological characterizations and transcription profiling of Z. rouxii CGMCC 3791. Salt tolerance analysis revealed that co-culture with T. halophilus enhanced the salt tolerance of Z. rouxii during salt stress. Analysis of the volatile compounds revealed that co-culture reduced the level of 1-butanol, improved the level of octanoic acid which all were produced by T. halophilus and reduced the level of phenylethyl alcohol produced by Z. rouxii. The presence of Z. rouxii decreased the contents of 3,4-dimethylbenzaldehyde and acetic acid produced by T. halophilus. In addition, co-culture improved the content of benzyl alcohol significantly. Analysis of membrane fatty acid showed that co-culture improved the content of palmitic (C16:0) and stearic (C18:0) acids in cells of Z. rouxii, and reduced the contents of myristic (C14:0), palmitoleic acid (C16:1) and oleic acid (C18:1). In order to further explore the interactions between the two strains, RNA-seq technology was used to investigate the effect of co-culture with T. halophilus on the transcription profiling of Z. rouxii. By comparing cells incubated in co-culture group with cells incubated in single-culture group, a total of 967 genes were considered as differentially expressed genes (DEGs). Among the DEGs, 72 genes were up-regulated, while 895 genes were down-regulated. These DEGs took party in various activities in cells of Z. rouxii, and the result showed co-culture with T. halophilus had a positive effect on proteolysis, the attachment of a cell to another cell, extracellular protein accumulation, energy metabolism, and a negative effect on oxidative phosphorylation, small molecular substances metabolism, DNA replication and repair, and transcription in cells of Z. rouxii. Results presented in this study may contribute to further understand the interactions between Zygosaccharomyces rouxii and Tetragenococcus halophilus.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Nosaka K, Uchiyama R, Tadano K, Endo Y, Hayashi M, Konno H, Mimuro H. Thiamin transport in Helicobacter pylori lacking the de novo synthesis of thiamin. MICROBIOLOGY-SGM 2019; 165:224-232. [PMID: 30620266 DOI: 10.1099/mic.0.000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori lacks the genes involved in the de novo synthesis of thiamin, and is therefore a thiamin auxotroph. The PnuT transporter, a member of the Pnu transporter family, mediates the uptake of thiamin across the membrane. In the genome of H. pylori, the pnuT gene is clustered with the thiamin pyrophosphokinase gene thi80. In this study, we found that [3H]thiamin is incorporated into the H. pylori SS1 strain via facilitated diffusion with a Km value of 28 µM. The incorporation of radioactive thiamin was inhibited to some extent by 2-methyl-4-amino-5-hydroxymethylpyrimidine or pyrithiamine, but was largely unaffected by thiamin phosphate or thiamin pyrophosphate. RT-PCR analysis demonstrated that the pnuT and thi80 genes are cotranscribed as a single transcript. The estimated Km value for thiamin in the thiamin pyrophosphokinase activity exerted by the recombinant Thi80 protein was 0.40 µM, which is much lower than the Km value of thiamin transport in H. pylori cells. These findings suggested that the incorporated thiamin from the environment is efficiently trapped by pyrophosphorylation to make the transport directional. In addition, the thiamin transport activity in the pnuT-deficient H. pylori strain was less than 20 % of that in the wild-type strain at extracellular thiamin concentration of 1 µM, but the incorporated scintillation signals of the pnuT-deficient strain with 100 nM [3H]thiamin were nearly at the background level. We also found that the pnuT-deficient strain required 100-times more thiamin to achieve growth equal to that of the wild-type. These findings reflect the presence of multiple routes for entry of thiamin into H. pylori, and PnuT is likely responsible for the high-affinity thiamin transport and serves as a target for antimicrobial agents against H. pylori.
Collapse
Affiliation(s)
- Kazuto Nosaka
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Ryosuke Uchiyama
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kyo Tadano
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Yurina Endo
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Maria Hayashi
- 12nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hiroyuki Konno
- 2Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hitomi Mimuro
- 3Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,4Division of Bacteriology, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Ata Ö, Rebnegger C, Tatto NE, Valli M, Mairinger T, Hann S, Steiger MG, Çalık P, Mattanovich D. A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nat Commun 2018; 9:4911. [PMID: 30464212 PMCID: PMC6249229 DOI: 10.1038/s41467-018-07430-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
The Crabtree phenotype defines whether a yeast can perform simultaneous respiration and fermentation under aerobic conditions at high growth rates. It provides Crabtree positive yeasts an evolutionary advantage of consuming glucose faster and producing ethanol to outcompete other microorganisms in sugar rich environments. While a number of genetic events are associated with the emergence of the Crabtree effect, its evolution remains unresolved. Here we show that overexpression of a single Gal4-like transcription factor is sufficient to convert Crabtree-negative Komagataella phaffii (Pichia pastoris) into a Crabtree positive yeast. Upregulation of the glycolytic genes and a significant increase in glucose uptake rate due to the overexpression of the Gal4-like transcription factor leads to an overflow metabolism, triggering both short-term and long-term Crabtree phenotypes. This indicates that a single genetic perturbation leading to overexpression of one gene may have been sufficient as the first molecular event towards respiro-fermentative metabolism in the course of yeast evolution. Aerobic ethanol production, a phenomenon referred as Crabtree effect, allows yeast to outcompete other microorganisms in sugar rich environments. Here, the authors show that overexpression of a Gal4-like transcription factor can transform Komagataella phaffii from Crabtree effect negative to positive.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Corinna Rebnegger
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,CD-Laboratory for Growth-Decoupled Protein Production in Yeast, Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Nadine E Tatto
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,School of Bioengineering, University of Applied Sciences FH-Campus, 1190, Vienna, Austria
| | - Minoska Valli
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria
| | - Teresa Mairinger
- Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 8600, Dübendorf, Switzerland
| | - Stephan Hann
- Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Matthias G Steiger
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria
| | - Pınar Çalık
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Department of Chemical Engineering, Industrial Biotechnology and Metabolic Engineering Laboratory, Middle East Technical University, 06800, Ankara, Turkey
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.
| |
Collapse
|
22
|
Kartal B, Akçay A, Palabiyik B. Oxidative Stress Upregulates the Transcription of Genes Involved in Thiamine Metabolism. Turk J Biol 2018; 42:447-452. [PMID: 30930628 PMCID: PMC6438119 DOI: 10.3906/biy-1801-51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Thiamine is a major vitamin that acts as a cofactor in energy metabolism in all organisms, as well as in lipid and amino acid metabolisms, and is associated with many diseases. It is known that glucose starvation decreases the intracellular thiamine pool while increasing oxidative stress tolerance. Earlier, in whole genome analysis, we detected major differences in the expression of genes related to thiamine pathway against oxidative stress in Schizosaccharomyces pombe. We investigated the effects of oxidative stress and glucose repression to thiamine pathway in S. pombe by comparing some genes encoding key enzymes of each related pathway at the transcription level. In the present study, we found that the expression of genes related to thiamine biosynthesis and transport (thi2, thi3, and pho1) increased in wild type and ird11 cells grown in thiamine-rich media under oxidative stress induced by H2O2. Based on our findings, we suggested that there might be an important effect of oxidative stress on thiamine biosynthesis and transport.
Collapse
Affiliation(s)
- Burcu Kartal
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University , Antalya , Turkey.,Department of Molecular Biology and Genetics, Institute of Graduate Studies in Science and Engineering, İstanbul University , İstanbul , Turkey
| | - Ahmet Akçay
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Science and Engineering, İstanbul University , İstanbul , Turkey
| | - Bedia Palabiyik
- Department of Molecular Biology and Genetics, Faculty of Science, İstanbul University , İstanbul , Turkey
| |
Collapse
|
23
|
Li J, Liu J, Wen W, Zhang P, Wan Y, Xia X, Zhang Y, He Z. Genome-wide association mapping of vitamins B1 and B2 in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2018; 102:3723-3737. [DOI: 10.1007/s00253-018-8862-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
25
|
Determination of the native forms of vitamin B1 in bovine milk using a fast and simplified UHPLC method. Food Chem 2017; 229:452-457. [DOI: 10.1016/j.foodchem.2017.02.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/05/2016] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
|
26
|
Chen Y, Lu Z, Chen D, Wei Y, Chen X, Huang J, Guan N, Lu Q, Wu R, Huang R. Transcriptomic analysis and driver mutant prioritization for differentially expressed genes from a Saccharomyces cerevisiae strain with high glucose tolerance generated by UV irradiation. RSC Adv 2017. [DOI: 10.1039/c7ra06146c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Driver mutations of a Saccharomyces cerevisiae mutant phenotype strain with high sugar tolerance were sought by the PheNetic network.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Zhilong Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Jun Huang
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Ni Guan
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery
- Guangxi Academy of Sciences
- Nanning
- P. R. China
| | - Renzhi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
- Guangxi University
- Nanning
- P. R. China
- College of Life Science and Technology
| |
Collapse
|
27
|
Biochemistry and Physiology of Vitamins in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:65-90. [DOI: 10.1007/978-3-319-54910-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Hayashi M, Nosaka K. Characterization of Thiamin Phosphate Kinase in the Hyperthermophilic Archaeon Pyrobaculum calidifontis. J Nutr Sci Vitaminol (Tokyo) 2016; 61:369-74. [PMID: 26639844 DOI: 10.3177/jnsv.61.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thiamin pyrophosphate is an essential cofactor in all living systems. In its biosynthesis, the thiamin structure is initially formed as thiamin phosphate from a thiazole and a pyrimidine moiety, and then thiamin pyrophosphate is synthesized from thiamin phosphate. Many eubacterial cells directly synthesize thiamin pyrophosphate by the phosphorylation of thiamin phosphate by thiamin phosphate kinase (ThiL), whereas this final step occurs in two stages in eukaryotic cells and some eubacterial cells: hydrolysis of thiamin phosphate to free thiamin and its pyrophosphorylation by thiamin pyrophosphokinase. In addition, some eubacteria have thiamin kinase, a salvage enzyme that converts the incorporated thiamin from the environment to thiamin phosphate. This final step in thiamin biosynthesis has never been experimentally investigated in archaea, although the putative thiL genes are found in their genome database. In this study, we observed thiamin phosphate kinase activity in the soluble fraction of the hyperthermophilic archaeon Pyrobaculum calidifontis. On the other hand, neither thiamin pyrophosphokinase nor thiamin kinase activity was detected, suggesting that in this archaeon the phosphorylation of thiamin phosphate is only way to synthesize thiamin pyrophosphate and it cannot use exogenous thiamin for the salvage synthesis of thiamin pyrophosphate. We also investigated the kinetic properties of thiamin phosphate kinase activity using the recombinant ThiL protein from P. calidifontis. Furthermore, the results obtained by site-directed mutagenesis suggest that the Ser196 of ThiL protein plays a pivotal role in the catalytic process.
Collapse
Affiliation(s)
- Maria Hayashi
- 2nd Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | | |
Collapse
|
29
|
Shimizu M, Masuo S, Itoh E, Zhou S, Kato M, Takaya N. Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans. Biosci Biotechnol Biochem 2016; 80:1768-75. [DOI: 10.1080/09168451.2016.1158631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression and it is located on A. nidulans thiA pre-messenger RNA. The thiA riboswitch was not fully derepressed under thiamine-limited conditions, and fully derepressed under environmental stressors. Upon exposure to hypoxic stress, the fungus accumulated more ThiA and NmtA proteins, and more thiamine than under aerobic conditions. The thiA gene was required for the fungus to upregulate hypoxic branched-chain amino acids and ethanol fermentation that involve enzymes containing TPP. These findings indicate that hypoxia modulates thiA expression through the thiamine riboswitch, and alters cellular fermentation mechanisms by regulating the activity of the TPP enzymes.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, Department of Applied Biological Chemistry, Meijo University, Nagoya, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shengmin Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masashi Kato
- Faculty of Agriculture, Department of Applied Biological Chemistry, Meijo University, Nagoya, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Landes N, Gasser B, Vorauer-Uhl K, Lhota G, Mattanovich D, Maurer M. The vitamin-sensitive promoter PTHI11enables pre-defined autonomous induction of recombinant protein production inPichia pastoris. Biotechnol Bioeng 2016; 113:2633-2643. [DOI: 10.1002/bit.26041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Nils Landes
- Department of Biotechnology; BOKU-University of Natural Resources and Life Sciences Vienna; Muthgasse 18 Vienna 1190 Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Vienna Austria
| | - Brigitte Gasser
- Department of Biotechnology; BOKU-University of Natural Resources and Life Sciences Vienna; Muthgasse 18 Vienna 1190 Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Vienna Austria
| | - Karola Vorauer-Uhl
- Department of Biotechnology; BOKU-University of Natural Resources and Life Sciences Vienna; Muthgasse 18 Vienna 1190 Austria
| | - Gabriele Lhota
- Department of Biotechnology; BOKU-University of Natural Resources and Life Sciences Vienna; Muthgasse 18 Vienna 1190 Austria
| | - Diethard Mattanovich
- Department of Biotechnology; BOKU-University of Natural Resources and Life Sciences Vienna; Muthgasse 18 Vienna 1190 Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Vienna Austria
| | - Michael Maurer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Vienna Austria
- School of Bioengineering; University of Applied Sciences; FH Campus Vienna Austria
| |
Collapse
|
31
|
Iosue CL, Attanasio N, Shaik NF, Neal EM, Leone SG, Cali BJ, Peel MT, Grannas AM, Wykoff DD. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata. PLoS One 2016; 11:e0152042. [PMID: 27015653 PMCID: PMC4807840 DOI: 10.1371/journal.pone.0152042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine.
Collapse
Affiliation(s)
- Christine L. Iosue
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nicholas Attanasio
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Noor F. Shaik
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Erin M. Neal
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Sarah G. Leone
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Brian J. Cali
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael T. Peel
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Amanda M. Grannas
- Department of Chemistry, Villanova University, Villanova, Pennsylvania, United States of America
| | - Dennis D. Wykoff
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochem J 2016; 473:157-66. [DOI: 10.1042/bj20150805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023]
Abstract
To make thiamin diphosphate (ThDP), plants and many micro-organisms first dephosphorylate thiamin monophosphate (ThMP). This dephosphorylation has been thought to be mediated by non-specific enzymes. However, comparative genomic, genetic and biochemical evidences implicate specific HAD family phosphatases in bacteria and plants.
Collapse
|
33
|
Abstract
Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae.
Collapse
|
34
|
Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R, Wolf YI, Khusnutdinova A, Evdokimova E, Jin K, Tan K, Hanson AD, Hasnain G, Zallot R, de Crécy-Lagard V, Babu M, Savchenko A, Joachimiak A, Edwards AM, Koonin EV, Yakunin AF. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS. J Biol Chem 2015; 290:18678-98. [PMID: 26071590 DOI: 10.1074/jbc.m115.657916] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Boguslaw Nocek
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Greg Brown
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kira S Makarova
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Robert Flick
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Yuri I Wolf
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Anna Khusnutdinova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ke Jin
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Kemin Tan
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrew D Hanson
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Ghulam Hasnain
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Rémi Zallot
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Valérie de Crécy-Lagard
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Mohan Babu
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Aled M Edwards
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Eugene V Koonin
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexander F Yakunin
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada,
| |
Collapse
|
35
|
Brion C, Ambroset C, Delobel P, Sanchez I, Blondin B. Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genomics 2014; 15:1085. [PMID: 25494835 PMCID: PMC4299793 DOI: 10.1186/1471-2164-15-1085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3. RESULTS We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1. CONCLUSIONS This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Blondin
- INRA, UMR1083, Science pour l'Œnologie, 2 Place Viala, F-34060, Montpellier, France.
| |
Collapse
|
36
|
Fitzpatrick TB, Thore S. Complex behavior: from cannibalism to suicide in the vitamin B1 biosynthesis world. Curr Opin Struct Biol 2014; 29:34-43. [DOI: 10.1016/j.sbi.2014.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
37
|
McRose D, Guo J, Monier A, Sudek S, Wilken S, Yan S, Mock T, Archibald JM, Begley TP, Reyes-Prieto A, Worden AZ. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages. ISME JOURNAL 2014; 8:2517-29. [PMID: 25171333 PMCID: PMC4260697 DOI: 10.1038/ismej.2014.146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/30/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022]
Abstract
Vitamin B1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with ‘incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.
Collapse
Affiliation(s)
- Darcy McRose
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Jian Guo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Adam Monier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Shuangchun Yan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - John M Archibald
- 1] Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada [2] Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Adrian Reyes-Prieto
- 1] Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada [2] Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Alexandra Z Worden
- 1] Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA [2] Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Begley TP, Ealick SE, McLafferty FW. Thiamin biosynthesis: still yielding fascinating biological chemistry. Biochem Soc Trans 2012; 40:555-60. [PMID: 22616866 PMCID: PMC3771315 DOI: 10.1042/bst20120084] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present paper describes the biosynthesis of the thiamin thiazole in Bacillus subtilis and Saccharomyces cerevisiae. The two pathways are quite different: in B. subtilis, the thiazole is formed by an oxidative condensation of glycine, deoxy-D-xylulose 5-phosphate and a protein thiocarboxylate, whereas, in S. cerevisiae, the thiazole is assembled from glycine, NAD and Cys205 of the thiazole synthase.
Collapse
Affiliation(s)
- Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, U.S.A.
| | | | | |
Collapse
|
39
|
Xu G, Hua Q, Duan N, Liu L, Chen J. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast 2012; 29:209-17. [DOI: 10.1002/yea.2902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/11/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Ningjun Duan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi; China
| | | | | |
Collapse
|
40
|
Nosaka K, Esaki H, Onozuka M, Konno H, Hattori Y, Akaji K. Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamin starvation. FEMS Microbiol Lett 2012; 330:140-7. [PMID: 22404710 DOI: 10.1111/j.1574-6968.2012.02543.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 11/30/2022] Open
Abstract
In Saccharomyces cerevisiae, genes involved in thiamin pyrophosphate (TPP) synthesis (THI genes) and the pyruvate decarboxylase structural gene PDC5 are transcriptionally induced in response to thiamin starvation. Three positive regulatory factors (Thi2p, Thi3p, and Pdc2p) are involved in the expression of THI genes, whereas only Pdc2p is required for the expression of PDC5. Thi2p and Pdc2p serve as transcriptional activators and each factor can interact with Thi3p. The target consensus DNA sequence of Thi2p has been deduced. When TPP is not bound to Thi3p, the interactions between the regulatory factors are increased and THI gene expression is upregulated. In this study, we demonstrated that Pdc2p interacts with the upstream region of THI genes and PDC5. The association of Pdc2p or Thi2p with THI gene promoters was enhanced by thiamin starvation, suggesting that Pdc2p and Thi2p assist each other in their recruitment to the THI promoters via interaction with Thi3p. It is highly likely that, under thiamin-deprived conditions, a ternary Thi2p/Thi3p/Pdc2p complex is formed and transactivates THI genes in yeast cells. On the other hand, the association of Pdc2p with PDC5 was unaffected by thiamin. We also identified a DNA element in the upstream region of PDC5, which can bind to Pdc2p and is required for the expression of PDC5.
Collapse
Affiliation(s)
- Kazuto Nosaka
- Department of Chemistry, Hyogo College of Medicine, Nishinomiya, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
French JB, Begley TP, Ealick SE. Structure of trifunctional THI20 from yeast. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:784-91. [PMID: 21904031 DOI: 10.1107/s0907444911024814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/24/2011] [Indexed: 11/10/2022]
Abstract
In a recently characterized thiamin-salvage pathway, thiamin-degradation products are hydrolyzed by thiaminase II, yielding 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP). This compound is an intermediate in thiamin biosynthesis that, once phosphorylated by an HMP kinase, can be used to synthesize thiamin monophosphate. Here, the crystal structure of Saccharomyces cerevisiae THI20, a trifunctional enzyme containing an N-terminal HMP kinase/HMP-P kinase (ThiD-like) domain and a C-terminal thiaminase II (TenA-like) domain, is presented. Comparison to structures of the monofunctional enzymes reveals that while the ThiD-like dimer observed in THI20 resembles other ThiD structures, the TenA-like domain, which is tetrameric in all previously reported structures, forms a dimer. Similarly, the active site of the ThiD-like domain of THI20 is highly similar to other known ThiD enzymes, while the TenA-like active site shows unique features compared with previously structurally characterized TenAs. In addition, a survey of known TenA structures revealed two structural classes, both of which have distinct conserved features. The TenA domain of THI20 possesses some features of both classes, consistent with its ability to hydrolyze both thiamin and the thiamin-degradation product 2-methyl-4-amino-5-aminomethylpyrimidine.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | |
Collapse
|
42
|
The rhodanese domain of ThiI is both necessary and sufficient for synthesis of the thiazole moiety of thiamine in Salmonella enterica. J Bacteriol 2011; 193:4582-7. [PMID: 21724998 DOI: 10.1128/jb.05325-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, ThiI is a bifunctional enzyme required for the synthesis of both the 4-thiouridine modification in tRNA and the thiazole moiety of thiamine. In 4-thiouridine biosynthesis, ThiI adenylates the tRNA uridine and transfers sulfur from a persulfide formed on the protein. The role of ThiI in thiazole synthesis is not yet well understood. Mutational analysis described here found that ThiI residues required for 4-thiouridine synthesis were not involved in thiazole biosynthesis. The data further showed that the C-terminal rhodanese domain of ThiI was sufficient for thiazole synthesis in vivo. Together, these data support the conclusion that sulfur mobilization in thiazole synthesis is mechanistically distinct from that in 4-thiouridine synthesis and suggest that functional annotation of ThiI in genome sequences should be readdressed. Nutritional studies described here identified an additional cysteine-dependent mechanism for sulfur mobilization to thiazole that did not require ThiI, IscS, SufS, or glutathione. The latter mechanism may provide insights into the chemistry used for sulfur mobilization to thiazole in organisms that do not utilize ThiI.
Collapse
|
43
|
Zhao W, Cheng X, Huang Z, Fan H, Wu H, Ling HQ. Tomato LeTHIC is an Fe-Requiring HMP-P Synthase Involved in Thiamine Synthesis and Regulated by Multiple Factors. ACTA ACUST UNITED AC 2011; 52:967-82. [DOI: 10.1093/pcp/pcr048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Tokui M, Kubodera T, Gomi K, Yamashita N, Nishimura A. Construction of a thiamine pyrophosphate high-producing strain of Aspergillus oryzae by overexpression of three genes involved in thiamine biosynthesis. J Biosci Bioeng 2011; 111:388-90. [PMID: 21247799 DOI: 10.1016/j.jbiosc.2010.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/07/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
We have found a gene (thiP) encoding thiamine pyrophosphokinase (TPK) in the Aspergillus oryzae genome. No riboswitch-like region was found in the upstream region of thiP, although it was repressed probably by thiamine pyrophosphate (TPP) as well as thiA and nmtA, which are strictly regulated by TPP-riboswitch sequence. To improve the productivity of TPP in A. oryzae, we constructed the strain in which thiA, nmtA and thiP were overexpressed simultaneously. The resulting strain accumulated intracellular TPP 4-fold higher than did the control strain.
Collapse
Affiliation(s)
- Misato Tokui
- Research and Development Department, Hakutsuru Sake Brewing Co. Ltd., Higashinada-ku, Kobe 658-0041, Japan.
| | | | | | | | | |
Collapse
|
45
|
Bale S, Rajashankar KR, Perry K, Begley TP, Ealick SE. HMP binding protein ThiY and HMP-P synthase THI5 are structural homologues. Biochemistry 2010; 49:8929-36. [PMID: 20873853 PMCID: PMC2957805 DOI: 10.1021/bi101209t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ATP-binding cassette transporter system ThiXYZ transports N-formyl-4-amino-5-(aminomethyl)-2-methylpyrimidine (FAMP), a thiamin salvage pathway intermediate, into cells. FAMP is then converted to 4-amino-5-(hydroxymethyl)-2-methylpyrimidine (HMP) and recycled into the thiamin biosynthetic pathway. ThiY is the periplasmic substrate binding protein of the ThiXYZ system and delivers the substrate FAMP to the transmembrane domain. We report the crystal structure of Bacillus halodurans ThiY with FAMP bound at 2.4 Å resolution determined by single-wavelength anomalous diffraction phasing. The crystal structure reveals that ThiY belongs to the group II periplasmic binding protein family. The closest structural homologues of ThiY are periplasmic binding proteins involved in alkanesulfonate/nitrate and bicarbonate transport. ThiY is also structurally homologous to thiamin binding protein (TbpA) and to thiaminase-I. THI5 is responsible for the synthesis of 4-amino-5-(hydroxymethyl)-2-methylpyrimidine phosphate in the thiamin biosynthetic pathway of eukaryotes and is approximately 25% identical in sequence with ThiY. A homology model of Saccharomyces cerevisiae THI5 was generated on the basis of the structure of ThiY. Many features of the thiamin pyrimidine binding site are shared between ThiY and THI5, suggesting a common ancestor.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Kanagalaghatta R. Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Northeastern Collaborative Access Team, Building 436, Argonne National Laboratory, Argonne, IL 60439
| | - Kay Perry
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Northeastern Collaborative Access Team, Building 436, Argonne National Laboratory, Argonne, IL 60439
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
46
|
Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X. Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:219-29. [PMID: 20617313 DOI: 10.1007/s00253-010-2709-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/26/2023]
Abstract
To understand the response mechanisms of fungus cells upon exposure to the natural fungicide allicin, we performed commercial oligonucleotide microarrays to determine the overall transcriptional response of allicin-treated Saccharomyces cerevisiae strain L1190. Compared with the transcriptional profiles of untreated cultures, 147 genes were significantly upregulated, and 145 genes were significantly downregulated in the allicin-treated cells. We interpreted the microarray data with the hierarchical clustering tool, T-profiler. Major transcriptional responses were induced by allicin and included the following: first, Rpn4p-mediated responses involved in proteasome gene expression; second, the Rsc1p-mediated response involved in iron ion transporter activity; third, the Gcn4p-mediated response, also known as general amino acid control; finally, the Yap1p-, Msn2/4p-, Crz1p-, and Cin5p-mediated multiple stress response. Interestingly, allicin treatment, similar to mycotoxin patulin and artificial fungicide thiuram treatment, was found to induce genes involved in sulfur amino acid metabolism and the defense system for oxidative stress, especially DNA repair, which suggests a potential mutagenicity for allicin. Quantitative real-time reverse transcription-polymerase chain reaction was performed for selected genes to verify the microarray results. To our knowledge, this is the first report of the global transcriptional profiling of allicin-treated S. cerevisiae by microarray.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 2010; 30:3329-41. [PMID: 20439498 DOI: 10.1128/mcb.01590-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding thiamine biosynthesis enzymes in microorganisms are tightly regulated such that low environmental thiamine concentrations activate transcription and high concentrations are repressive. We have determined that multiple thiamine (THI) genes in Saccharomyces cerevisiae are also regulated by the intracellular NAD(+) concentration via the NAD(+)-dependent histone deacetylase (HDAC) Hst1 and, to a lesser extent, Sir2. Both of these HDACs associate with a distal region of the affected THI gene promoters that does not overlap with a previously defined enhancer region bound by the thiamine-responsive Thi2/Thi3/Pdc2 transcriptional activators. The specificity of histone H3 and/or H4 deacetylation carried out by Hst1 and Sir2 at the distal promoter region depends on the THI gene being tested. Hst1/Sir2-mediated repression of the THI genes occurs at the level of basal expression, thus representing the first set of transcription factors shown to actively repress this gene class. Importantly, lowering the NAD(+) concentration and inhibiting the Hst1/Sum1 HDAC complex elevated the intracellular thiamine concentration due to increased thiamine biosynthesis and transport, implicating NAD(+) in the control of thiamine homeostasis.
Collapse
|
48
|
Bartra E, Casado M, Carro D, Campamà C, Piña B. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation. J Appl Microbiol 2009; 109:272-81. [PMID: 20059614 DOI: 10.1111/j.1365-2672.2009.04652.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Release of hydrogen sulfide by fermenting yeast is a potential problem in wine production, because of its strong organoleptic impact. To identify the genetic determinants of sulfide production, we compared the transcriptomes of two wine yeast strains with similar oenological properties, but with very different levels of sulfide production, UDC522 (high sulfide producer) and P29 (low producer). METHODS AND RESULTS Oenological microfermentations were sampled at the peak production of sulfide. Transcription profiles of the two strains were analysed by three methods, a cDNA-based array, an oligonucleotide-based array and qRT-PCR analysis of selected transcripts. Less than 10% of yeast genes showed significant differences between the two strains. High sulfide production correlated with a general overexpression of thiamine biosynthesis genes, whereas genes linked to the catabolism of sulfur-containing compounds (like amino acids) showed no significant expression differences between both strains. CONCLUSIONS Our data suggest a relationship between the thiamine biosynthetic pathway and sulfide production during wine fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a first hint which indicates that for some yeast strains, biosynthesis of thiamine (and perhaps of other sulfur-containing compounds) may be more relevant than the general nitrogen metabolism in explaining sulfide production by some yeast strains during vinification, defining new targets for genetic improvement of wine yeast strains.
Collapse
Affiliation(s)
- E Bartra
- Institut Català de Vinya i el Vi, Plaça Àgora, Pol. Ind. Domenys II, Vilafranca del Penedès, Spain
| | | | | | | | | |
Collapse
|
49
|
Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009; 19:2271-8. [PMID: 19897511 DOI: 10.1101/gr.094276.109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.
Collapse
Affiliation(s)
- Boris U Stambuk
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA.
| | | | | | | | | |
Collapse
|
50
|
Makarchikov AF. Vitamin B1: Metabolism and functions. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|