1
|
Cuamatzi-Flores J, Nava-Galicia S, Esquivel-Naranjo EU, Lopez Munguia A, Arroyo-Becerra A, Villalobos-López MA, Bibbins-Martínez M. Regulation of dye-decolorizing peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source. PeerJ 2024; 12:e17467. [PMID: 38827301 PMCID: PMC11144388 DOI: 10.7717/peerj.17467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (μ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.
Collapse
Affiliation(s)
- Jorge Cuamatzi-Flores
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | - Soley Nava-Galicia
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Agustin Lopez Munguia
- Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, Morelos, México
| | - Analilia Arroyo-Becerra
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| | | | - Martha Bibbins-Martínez
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Tlaxcala, México
| |
Collapse
|
2
|
Dong CD, Patel AK, Madhavan A, Chen CW, Singhania RR. Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery - A review. BIORESOURCE TECHNOLOGY 2023; 379:128992. [PMID: 37011847 DOI: 10.1016/j.biortech.2023.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690 525, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
3
|
Matsumoto R, Mehjabin JJ, Noguchi H, Miyamoto T, Takasuka TE, Hori C. Genomic and Secretomic Analyses of the Newly Isolated Fungus Perenniporia fraxinea SS3 Identified CAZymes Potentially Related to a Serious Pathogenesis of Hardwood Trees. Appl Environ Microbiol 2023; 89:e0027223. [PMID: 37098943 PMCID: PMC10231188 DOI: 10.1128/aem.00272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.
Collapse
Affiliation(s)
- Ruy Matsumoto
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jakia Jerin Mehjabin
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | - Taichi E. Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land, and Water Resources, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu XB, Nagy L. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. Appl Environ Microbiol 2022; 88:e0094022. [PMID: 36374019 PMCID: PMC9746306 DOI: 10.1128/aem.00940-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cre1 is an important transcription factor that regulates carbon catabolite repression (CCR) and is widely conserved across fungi. The cre1 gene has been extensively studied in several Ascomycota species, whereas its role in gene expression regulation in the Basidiomycota species remains poorly understood. Here, we identified and investigated the role of cre1 in Coprinopsis cinerea, a basidiomycete model mushroom that can efficiently degrade lignocellulosic plant wastes. We used a rapid and efficient gene deletion approach based on PCR-amplified split-marker DNA cassettes together with in vitro assembled Cas9-guide RNA ribonucleoproteins (Cas9 RNPs) to generate C. cinerea cre1 gene deletion strains. Gene expression profiling of two independent C. cinerea cre1 mutants showed significant deregulation of carbohydrate metabolism, plant cell wall degrading enzymes (PCWDEs), plasma membrane transporter-related and several transcription factor-encoding genes, among others. Our results support the notion that, like reports in the ascomycetes, Cre1 of C. cinerea orchestrates CCR through a combined regulation of diverse genes, including PCWDEs, transcription factors that positively regulate PCWDEs, and membrane transporters which could import simple sugars that can induce the expression of PWCDEs. Somewhat paradoxically, though in accordance with other Agaricomycetes, genes related to lignin degradation were mostly downregulated in cre1 mutants, indicating they fall under different regulation than other PCWDEs. The gene deletion approach and the data presented here will expand our knowledge of CCR in the Basidiomycota and provide functional hypotheses on genes related to plant biomass degradation. IMPORTANCE Mushroom-forming fungi include some of the most efficient lignocellulosic plant biomass degraders. They degrade dead plant materials by a battery of lignin-, cellulose-, hemicellulose-, and pectin-degrading enzymes, the encoding genes of which are under tight transcriptional control. One of the highest-level regulations of these metabolic enzymes is known as carbon catabolite repression, which is orchestrated by the transcription factor Cre1, and ensures that costly lignocellulose-degrading enzyme genes are expressed only when simple carbon sources (e.g., glucose) are not available. Here, we identified the Cre1 ortholog in a litter decomposer Agaricomycete, Coprinopsis cinerea, knocked it out, and characterized transcriptional changes in the mutants. We identified several dozen lignocellulolytic enzyme genes as well as membrane transporters and other transcription factors as putative target genes of C. cinerea cre1. These results extend knowledge on carbon catabolite repression to litter decomposer Basidiomycota.
Collapse
Affiliation(s)
- Manish Pareek
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Botond Hegedüs
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zhihao Hou
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Árpád Csernetics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hongli Wu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Máté Virágh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Neha Sahu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
5
|
Effect of Different Inducer Sources on Cellulase Enzyme Production by White-Rot Basidiomycetes Pleurotus ostreatus and Phanerochaete chrysosporium under Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellulase enzymes attract a lot of research due to their industrial application. Diverse cellulase-producing organisms and substances that induce cellulase are highly sought after. This study aimed to evaluate the effect of different inducer sources on cellulase production by white rot fungi P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212 under submerged fermentation employing a completely randomized experimental design. The different inducer sources tested were nitrogen (yeast, potassium nitrate, sodium nitrate, ammonium sulphate, aqueous ammonia and urea), carbon (malt extract, glucose, fructose, carboxymethylcellulose, starch and xylose) and agro-biomass (stevia straw, wheat straw, oat straw, alfalfa straw, corn cobs and corn stover). These inducer sources strongly impacted enzyme activities by P. ostreatus CGMCC 3.7292 and P. chrysosporium CGMCC 3.7212. The suitable nitrogen and carbon inducer sources for cellulase activity by P. ostreatus and P. chrysosporium were yeast (1.354 U/mL and 1.154 U/mL) and carboxymethylcellulose (0.976 U/mL and 0.776 U/mL) while the suitable agro-biomass were wheat straw (6.880 U/mL) and corn stover (6.525 U/mL), respectively. The least inducer sources in terms of nitrogen, carbon and agro-biomass for cellulase activity by P. ostreatus and P. chrysosporium were urea (0.213 U/mL and 0.081 U/mL), glucose (0.042 U/mL and 0.035), xylose (0.042 U/mL and 0.035 U/mL) and stevia straw (1.555 U/mL and 0.960 U/mL). In submerged fermentation, the cellulase enzyme activity of P. ostreatus in response to various inducer sources was relatively higher than P. chrysosporium.
Collapse
|
6
|
Gauna A, Larran AS, Feldman SR, Permingeat HR, Perotti VE. Secretome characterization of the lignocellulose-degrading fungi Pycnoporus sanguineus and Ganoderma resinaceum growing on Panicum prionitis biomass. Mycologia 2021; 113:877-890. [PMID: 34251997 DOI: 10.1080/00275514.2021.1922249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
C4 grasses are common species in rangelands around the world and represent an attractive option for second-generation biofuel production. Although they display high polysaccharide content and reach great levels of biomass accumulation, there is a major technical issue to be addressed before they can be used for bioethanol industrial production: lignin removal. Concerning this, Pycnoporus and Ganoderma fungal genera have been highlighted due to their ability to hydrolyze lignocellulose in biological pretreatments. Our goals here were to evaluate the pretreatment efficiency using the secretome of species from Pycnoporus and Ganoderma spp. harvested from a glucose-free inductive medium (using a C4 grass) and to identify the fungal enzymatic activities responsible for the lignin degradation and glucose release. Our results show that P. sanguineus secretome exhibits a higher activity of lignocellulolytic enzymes such as cellulases, xylanases, laccases, and manganese peroxidases compared with that from G. resinaceum. Interestingly, zymograms in the presence of 2 M glucose suggest that a β-glucosidase isoform from P. sanguineus could be glucose tolerant. The proteomic approach carried out allowed the identification of 73 and 180 different proteins in G. resinaceum and P. sanguineus secretomes, respectively, which were functionally classified in five main categories and a miscellaneous group. These results open new avenues for future experimental work that lead to a deeper comprehension and a greater application of the mechanisms underlying lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Albertina Gauna
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Alvaro S Larran
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina.,Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Susana R Feldman
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina.,Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina.,Consejo de Investigaciones, Universidad Nacional de Rosario, Maipú 1165, 2000 Rosario, Santa Fe, Argentina
| | - Hugo R Permingeat
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina.,Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| | - Valeria E Perotti
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, S2125ZAA Zavalla, Santa Fe, Argentina
| |
Collapse
|
7
|
Reyes C, Poulin A, Nyström G, Schwarze FWMR, Ribera J. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. J Fungi (Basel) 2021; 7:jof7030222. [PMID: 33803754 PMCID: PMC8003285 DOI: 10.3390/jof7030222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
White-rot fungi can degrade all lignocellulose components due to their potent lignin and cellulose-degrading enzymes. In this study, five white-rot fungi, Trametes versicolor, Trametes pubescens, Ganoderma adspersum, Ganoderma lipsiense, and Rigidoporus vitreus were tested for endoglucanase, laccase, urease, and glucose-6-phosphate (G6P) production when grown with malt extract and nanocellulose in the form of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). Results show that temperature plays a key role in controlling the growth of all five fungi when cultured with malt extract alone. Endoglucanase activities were highest in cultures of G. adspersum and G. lipsiense and laccase activities were highest in cultures of T. versicolor and R. vitreus. Urease activities were highest in cultures of G. adspersum, G. lipsiense, and R. vitreus. Glucose-6-phosphate levels also indicate that cells were actively metabolizing glucose present in the cultures. These results show that TEMPO-oxidized CNF and CNC do not inhibit the production of specific lignocellulose enzymes by these white-rot fungi. The apparent lack of enzymatic inhibition makes TEMPO-oxidized CNF and CNC excellent candidates for future biotechnological applications in combination with the white-rot fungi studied here.
Collapse
Affiliation(s)
- Carolina Reyes
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
- Correspondence: (C.R.); (J.R.)
| | - Alexandre Poulin
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Francis W. M. R. Schwarze
- Laboratory for Cellulose & Wood Materials, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
- Correspondence: (C.R.); (J.R.)
| |
Collapse
|
8
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
9
|
Okal EJ, Aslam MM, Karanja JK, Nyimbo WJ. Mini review: Advances in understanding regulation of cellulase enzyme in white-rot basidiomycetes. Microb Pathog 2020; 147:104410. [PMID: 32707312 DOI: 10.1016/j.micpath.2020.104410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
White-rot basidiomycetic fungi have gained a lot of scientific attention in recent years owing to their ability to produce cellulase enzymes that are of great importance in numerous industrial applications. This has seen a rise in number of studies seeking to comprehend both physical and molecular mechanisms that regulate the production of cellulase enzymes in these fungi. Cellulase has several applications in production of food and beverages, biofuel, biological detergents, pharmaceuticals, and deinking in paper and pulp industry. Enhanced understanding of genetic mechanisms that regulate cellulase production would have utility for optimal cellulase production in white-rot basidiomycetes using biotechnology approaches. Carbon catabolite repression and various transcriptional factors such as XlnR, Cre, Clr, Ace, and gna1 control expression of genes encoding cellobiohydrolase (CBH), endoglucanase (EGL) and β-glucosidase (BGL). In this review, we have consolidated and summarised some of recent findings on genetic regulation of cellulase with an aim of highlighting the general regulatory mechanisms that underlie cellulase expressions in white-rot fungi. This review further outlines some of important transcription factors that regulate cellulase genes, and key research gaps that may need to be addressed by future research.
Collapse
Affiliation(s)
- Eyalira J Okal
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Joseph K Karanja
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Witness J Nyimbo
- Juncao Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
10
|
Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus Dichomitus squalens. Appl Environ Microbiol 2019; 85:AEM.01828-19. [PMID: 31585998 DOI: 10.1128/aem.01828-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
The extent of carbon catabolite repression (CCR) at a global level is unknown in wood-rotting fungi, which are critical to the carbon cycle and are a source of biotechnological enzymes. CCR occurs in the presence of sufficient concentrations of easily metabolizable carbon sources (e.g., glucose) and involves downregulation of the expression of genes encoding enzymes involved in the breakdown of complex carbon sources. We investigated this phenomenon in the white-rot fungus Dichomitus squalens using transcriptomics and exoproteomics. In D. squalens cultures, approximately 7% of genes were repressed in the presence of glucose compared to Avicel or xylan alone. The glucose-repressed genes included the essential components for utilization of plant biomass-carbohydrate-active enzyme (CAZyme) and carbon catabolic genes. The majority of polysaccharide-degrading CAZyme genes were repressed and included activities toward all major carbohydrate polymers present in plant cell walls, while repression of ligninolytic genes also occurred. The transcriptome-level repression of the CAZyme genes observed on the Avicel cultures was strongly supported by exoproteomics. Protease-encoding genes were generally not glucose repressed, indicating their likely dominant role in scavenging for nitrogen rather than carbon. The extent of CCR is surprising, given that D. squalens rarely experiences high free sugar concentrations in its woody environment, and it indicates that biotechnological use of D. squalens for modification of plant biomass would benefit from derepressed or constitutively CAZyme-expressing strains.IMPORTANCE White-rot fungi are critical to the carbon cycle because they can mineralize all wood components using enzymes that also have biotechnological potential. The occurrence of carbon catabolite repression (CCR) in white-rot fungi is poorly understood. Previously, CCR in wood-rotting fungi has only been demonstrated for a small number of genes. We demonstrated widespread glucose-mediated CCR of plant biomass utilization in the white-rot fungus Dichomitus squalens This indicates that the CCR mechanism has been largely retained even though wood-rotting fungi rarely experience commonly considered CCR conditions in their woody environment. The general lack of repression of genes encoding proteases along with the reduction in secreted CAZymes during CCR suggested that the retention of CCR may be connected with the need to conserve nitrogen use during growth on nitrogen-scarce wood. The widespread repression indicates that derepressed strains could be beneficial for enzyme production.
Collapse
|
11
|
Qin X, Sun X, Huang H, Bai Y, Wang Y, Luo H, Yao B, Zhang X, Su X. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:103. [PMID: 28439296 PMCID: PMC5399396 DOI: 10.1186/s13068-017-0787-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/12/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Manganese peroxidase is one of the Class II fungal peroxidases that are able to oxidize the low redox potential phenolic lignin compounds. For high redox potential non-phenolic lignin degradation, mediators such as GSH and unsaturated fatty acids are required in the reaction. However, it is not known whether carboxylic acids are a mediator for non-phenolic lignin degradation. RESULTS The white rot fungus Irpex lacteus is one of the most potent fungi in degradation of lignocellulose and xenobiotics. Two manganese peroxidases (IlMnP1 and IlMnP2) from I. lacteus CD2 were over-expressed in Escherichia coli and successfully refolded from inclusion bodies. Both IlMnP1 and IlMnP2 oxidized the phenolic compounds efficiently. Surprisingly, they could degrade veratryl alcohol, a non-phenolic lignin compound, in a Mn2+-dependent fashion. Malonate or oxalate was found to be also essential in this degradation. The oxidation of non-phenolic lignin was further confirmed by analysis of the reaction products using LC-MS/MS. We proved that Mn2+ and a certain carboxylate are indispensable in oxidation and that the radicals generated under this condition, specifically superoxide radical, are at least partially involved in lignin oxidative degradation. IlMnP1 and IlMnP2 can also efficiently decolorize dyes with different structures. CONCLUSIONS We provide evidence that a carboxylic acid may mediate oxidation of non-phenolic lignin through the action of radicals. MnPs, but not LiP, VP, or DyP, are predominant peroxidases secreted by some white rot fungi such as I. lacteus and the selective lignocellulose degrader Ceriporiopsis subvermispora. Our finding will help understand how these fungi can utilize MnPs and an excreted organic acid, which is usually a normal metabolite, to efficiently degrade the non-phenolic lignin. The unique properties of IlMnP1 and IlMnP2 make them good candidates for exploring molecular mechanisms underlying non-phenolic lignin compounds oxidation by MnPs and for applications in lignocellulose degradation and environmental remediation.
Collapse
Affiliation(s)
- Xing Qin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Xiaoyu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
12
|
Cloning and Transcript Analysis of Multiple Genes Encoding the Glycoside Hydrolase Family 6 Enzyme fromCoprinopsis cinerea. Biosci Biotechnol Biochem 2014; 73:67-73. [DOI: 10.1271/bbb.80477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Vincent M, Pometto AL, van Leeuwen JH. Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. BIORESOURCE TECHNOLOGY 2014; 158:1-6. [PMID: 24561994 DOI: 10.1016/j.biortech.2014.01.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.
Collapse
Affiliation(s)
- Micky Vincent
- Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia; Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States
| | - Anthony L Pometto
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - J Hans van Leeuwen
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, United States; Biorenewable Resources and Technology Program, Iowa State University, Ames, IA 50011, United States; Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
14
|
Rytioja J, Hildén K, Hatakka A, Mäkelä MR. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Fungal Genet Biol 2014; 72:91-98. [PMID: 24394946 DOI: 10.1016/j.fgb.2013.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The recent discovery of oxidative cellulose degradation enhancing enzymes has considerably changed the traditional concept of hydrolytic cellulose degradation. The relative expression levels of ten cellulose-acting enzyme encoding genes of the white-rot fungus Dichomitus squalens were studied on solid-state spruce wood and in microcrystalline Avicel cellulose cultures. From the cellobiohydrolase encoding genes, cel7c was detected at the highest level and showed constitutive expression whereas variable transcript levels were detected for cel7a, cel7b and cel6 in the course of four-week spruce cultivation. The cellulolytic enzyme activities detected in the liquid cultures were consistent with the transcript levels. Interestingly, the selected lytic polysaccharide monooxygenase (LPMO) encoding genes were expressed in both cultures, but showed different transcription patterns on wood compared to those in submerged microcrystalline cellulose cultures. On spruce wood, higher transcript levels were detected for the lpmos carrying cellulose binding module (CBM) than for the lpmos without CBMs. In both cultures, the expression levels of the lpmo genes were generally higher than the levels of cellobiose dehydrogenase (CDH) encoding genes. Based on the results of this work, the oxidative cellulose cleaving enzymes of D. squalens have essential role in cellulose degrading machinery of the fungus.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, Finland.
| |
Collapse
|
15
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
16
|
Comparative quantitative analysis of gene expression profiles of glycoside hydrolase family 10 xylanases in the sheep rumen during a feeding cycle. Appl Environ Microbiol 2012; 79:1212-20. [PMID: 23220966 DOI: 10.1128/aem.02733-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylanase is a crucial hydrolytic enzyme that degrades plant polysaccharides in the rumen. To date, there is no information on the genetic composition and expression characteristics of ruminal xylanase during feeding cycles of ruminants. Here, the major xylanase of the glycoside hydrolase family 10 (GH 10) from the rumen of small-tail Han sheep was investigated during a feeding cycle. We identified 44 distinct GH 10 xylanase gene fragments at both the genomic and transcriptional levels. Comparison of their relative abundance showed that results from the evaluation of functional genes at the transcriptional level are more reliable indicators for understanding fluctuations in xylanase levels. The expression patterns of six xylanase genes, detected at all time points of the feeding cycle, were investigated; we observed a complex trend of gene expression over 24 h, revealing the dynamic expression of xylanases in the rumen. Further correlation analysis indicated that the rumen is a dynamic ecosystem where the transcript profiles of xylanase genes are closely related to ruminal conditions, especially rumen pH and bacterial population. Given the huge diversity and changing composition of enzymes over the entire rumen, this research provides valuable information for understanding the role of functional genes in the digestion of plant material.
Collapse
|
17
|
Transcriptional response of the cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 2012; 78:3770-3. [PMID: 22407682 DOI: 10.1128/aem.00150-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellobiose dehydrogenase (CDH) gene transcripts were quantified by reverse transcription-PCR (RT-PCR) in cultures of Phanerochaete chrysosporium supplemented with various cello- and xylooligosaccharides in order to elucidate the mechanism of enhanced CDH production in xylan/cellulose culture. Cellotriose and cellotetraose induced cdh expression, while xylobiose and xylotriose induced expression of cellobiohydrolase genes, especially cel7C.
Collapse
|
18
|
MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 2012; 94:339-51. [PMID: 22391967 DOI: 10.1007/s00253-012-3937-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
As white-rot basidiomycetes, Phanerochaete species are critical to the cycling of carbon sequestered as woody biomass, and are predicted to encode many enzymes that can be harnessed to promote the conversion of lignocellulose to sugars for fermentation to fuels and chemicals. Advances in genomic, transcriptomic, and proteomic technologies have enabled detailed analyses of different Phanerochaete species and have revealed numerous enzyme families required for lignocellulose utilization, as well as insight into the regulation of corresponding genes. Recent studies of Phanerochaete are also exemplified by molecular analyses following cultivation on different wood preparations, and show substrate-dependent responses that were difficult to predict using model compounds or isolated plant polysaccharides. The aim of this mini-review is to synthesize results from studies that have applied recent advances in molecular tools to evaluate the expression and regulation of proteins that contribute to lignocellulose conversion in Phanerochaete species. The identification of proteins with as yet unknown function are also highlighted and noted as important targets for future investigation of white-rot decay.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 2010; 76:6164-70. [PMID: 20656867 DOI: 10.1128/aem.00724-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wood decay basidiomycete Phanerochaete chrysosporium produces a variety of cellobiohydrolases belonging to glycoside hydrolase (GH) families 6 and 7 in the presence of cellulose. However, no inducer of the production of these enzymes has yet been identified. Here, we quantitatively compared the transcript levels of the genes encoding GH family 6 cellobiohydrolase (cel6A) and GH family 7 cellobiohydrolase isozymes (cel7A to cel7F/G) in cultures containing glucose, cellulose, and cellooligosaccharides by real-time quantitative PCR, in order to evaluate the transcription-inducing effect of soluble sugars. Upregulation of transcript levels in the presence of cellulose compared to glucose was observed for cel7B, cel7C, cel7D, cel7F/G, and cel6A at all time points during cultivation. In particular, the transcription of cel7C and cel7D was strongly induced by cellotriose or cellotetraose. The highest level of cel7C transcripts was observed in the presence of cellotetraose, whereas the highest level of cel7D transcripts was found in the presence of cellotriose, amounting to 2.7 x 10(6) and 1.7 x 10(6) copies per 10(5) actin gene transcripts, respectively. These numbers of cel7C and cel7D transcripts were higher than those in the presence of cellulose. In contrast, cellobiose had a weaker transcription-inducing effect than either cellotriose or cellotetraose for cel7C and had little effect in the case of cel7D. These results indicate that cellotriose and cellotetraose, but not cellobiose, are possible natural cellobiohydrolase gene transcription inducers derived from cellulose.
Collapse
|
20
|
Suzuki H, Igarashi K, Samejima M. Quantitative transcriptional analysis of the genes encoding glycoside hydrolase family 7 cellulase isozymes in the basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 2009; 299:159-65. [PMID: 19709307 DOI: 10.1111/j.1574-6968.2009.01753.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellulolytic fungi generally secrete a cellulase mixture consisting mainly of glycoside hydrolase family 7 cellulases (Cel7s) during degradation of crystalline cellulose. Although several Cel7s have been investigated so far, the marked similarity in their amino acid and nucleotide sequences makes independent quantitative analysis difficult. Here, we present a real-time PCR method for the detection and quantification of Cel7 genes (cel7A-F/G) in the basidiomycete Phanerochaete chrysosporium using PCR primer sets designed based on the 3' untranslated region sequences. It was confirmed by agarose gel electrophoresis, sequencing, and dissociation curve analysis of the PCR products that each cel7 transcript was specifically amplified by the corresponding primers. We applied this real-time reverse-transcription PCR method using the presented primer sets to evaluate quantitatively the expression changes of cel7 genes in P. chrysosporium under conditions of carbon catabolite derepression.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo, Japan
| | | | | |
Collapse
|