1
|
Anzuay MS, Chiatti MH, Intelangelo AB, Ludueña LM, Viso NP, Angelini JG, Taurian T. Employment of pqqE gene as molecular marker for the traceability of Gram negative phosphate solubilizing bacteria associated to plants. Curr Genet 2024; 70:12. [PMID: 39093429 DOI: 10.1007/s00294-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Insoluble phosphorous compounds solubilization by soil bacteria is of great relevance since it puts available the phosphorus to be used by plants. The production of organic acids is the main microbiological mechanism by which insoluble inorganic phosphorus compounds are solubilized. In Gram negative bacteria, gluconic acid is synthesized by the activity of the holoenzyme glucose dehydrogenase-pyrroloquinoline quinine named GDH-PQQ. The use of marker genes is a very useful tool to evaluate the persistence of the introduced bacteria and allow to follow-up the effect of biotic and abiotic factors on these beneficial microorganisms in the soil. In previous studies we detected the presence of the pqqE gene in a great percentage of both non-culturable and culturable native soil bacteria. The objective of this study was to analyze the phylogeny of the sequence of pqqE gene and its potential for the study of phosphate solubilizing bacteria from pure and mixed bacterial cultures and rhizospheric soil samples. For this, the presence of the pqqE gene in the genome of phosphate solubilizing bacteria that belong to several bacteria was determined by PCR. Also, this gene was analyzed from mixed bacterial cultures and rhizospheric soil associated to peanut plants inoculated or not with phosphate solubilizing bacteria. For this, degenerate primers designed from several bacterial genera and specific primers for the genus Pseudomonas spp., designed in this study, were used. DNA template used from simple or mixed bacterial cultures and from rhizospheric soil samples was obtained using two different DNA extraction techniques. Results indicated that pqqE gene amplification product was found in the genome of all Gram negative phosphate solubilizing bacteria analyzed. It was possible to detect this gene in the DNA obtained from mixed cultures where these bacteria grew in interaction with other microorganisms and in that obtained from rhizospheric soil samples inoculated or not with these bacteria. The phylogenetic analysis indicated that pqqE gene is a conserved gene within related genera. In conclusion, pqqE gene could be a potential marker for the study of phosphate solubilizing bacterial populations.
Collapse
Affiliation(s)
- María Soledad Anzuay
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina
| | - Mario Hernán Chiatti
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina
| | | | | | - Natalia Pin Viso
- Instituto de Microbiología y Zoología Agrícola, IMyZA, IABiMo, INTA, Hurlingham, Buenos Aires, Argentina
| | | | - Tania Taurian
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina.
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, Río Cuarto, Córdoba, 5800, Argentina.
| |
Collapse
|
2
|
Yang L, Han P, Wang Q, Lin H, Wang D, Mao J, Qi W, Bai Y, Qu J. Disinfectant-induced ammonia oxidation disruption in microbial N-cycling process in aquatic ecosystem after the COVID-19 outbreak. WATER RESEARCH 2024; 258:121761. [PMID: 38749183 DOI: 10.1016/j.watres.2024.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
Anthropogenic activities significantly impact the elemental cycles in aquatic ecosystems, with the N-cycling playing a critical role in potential nutrient turnover and substance cycling. We hypothesized that measures to prevent COVID-19 transmission profoundly altered the nitrogen cycle in riverine ecosystems. To investigate this, we re-analyzed metagenomic data and identified 60 N-cycling genes and 21 host metagenomes from four urban reaches (one upstream city, Wuhan, and two downstream cities) along the Yangtze River. Our analyses revealed a marked decrease in the abundance of bacterial ammonia monooxygenase genes, as well as in the host, ammonia-oxidizing autotrophic Nitrosomonas, followed by a substantial recovery post-pandemic. We posited that discharge of sodium hypochlorite (NaOCl) disinfectant may be a primary factor in the reduction of N-cycling process. To test this hypothesis, we exposed pure cultures of Nitrosomonas europaea to NaOCl to explore the microbial stress response. Results indicated that NaOCl exposure rapidly compromised the cell structure and inhibited ammonia oxidation of N. europaea, likely due to oxidative stress damage and reduced expression of nitrogen metabolism-related ammonia monooxygenase. Using the functional tagging technique, we determined that NaOCl directly destroyed the ammonia monooxygenase protein and DNA structure. This study highlights the negative impacts of chlorine disinfectants on the function of aquatic ecosystems and elucidates potential mechanisms of action.
Collapse
Affiliation(s)
- Lutong Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, Tsinghua University, Beijing, 100084, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Lu Z, Li C, Jing Z, Ao X, Chen Z, Sun W. Implication on selection and replacement of granular activated carbon used in biologically activated carbon filters through meta-omics analysis. WATER RESEARCH 2021; 198:117152. [PMID: 33940501 DOI: 10.1016/j.watres.2021.117152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Biologically activated carbon (BAC) filters are widely used in China and worldwide as an essential part of advanced water treatment. However, it is unclear how to properly select the granular activated carbon (GAC) used in BAC filters and to determine when GAC should be replaced. In this study, five BAC filters, each filled with a different coconut- or coal-based GAC with different physicochemical properties, were run continuously for 400 days. The structure and function of the microbial community and the quantity of specific enzymes in the BAC filters were investigated through an integrated metagenomic/metaproteomic analysis. The results indicated that GAC adsorption still played a major role in removing organic matter once the filters reached a steady-state, which was attributed to bioregeneration, and the contribution of adsorption might be relatively greater than that of biodegradation. GAC with strong adsorption capacity and high bioregeneration potential selected bacterial communities more phylogenetically closely-related than others. The iodine value could be used as an indicator of BAC performance in terms of organic matter removal in the initial stage of the filters, which is dominated by adsorption. However, it could not be used to assess performance at a later stage when adsorption and biodegradation occurred simultaneously. Pore-size distribution characteristics could be chosen as a potential better indicator compared with the current adsorption indicators, dually representing the adsorption performance and the microbial activity, and the proportion of important pore-size of GAC that is more suitable for BAC filter is suggested. GAC with strongly polar terminal groups is more conducive to the removal of ammonium-nitrogen.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing100084, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing100084, China
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou215163, China.
| |
Collapse
|
4
|
Orschler L, Agrawal S, Lackner S. Lost in translation: the quest for Nitrosomonas cluster 7-specific amoA primers and TaqMan probes. Microb Biotechnol 2020; 13:2069-2076. [PMID: 32686322 PMCID: PMC7533338 DOI: 10.1111/1751-7915.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
The choice of primer and TaqMan probes to quantify ammonia-oxidizing bacteria (AOB) in environmental samples is of crucial importance. The re-evaluation of primer pairs based on current genomic sequences used for quantification of the amoA gene revealed (1) significant misrepresentations of the AOB population in environmental samples, (2) and a lack of perfect match primer pairs for Nitrosomonas europaea and Nitrosomonas eutropha. We designed two new amoA cluster 7-specific primer pairs and TaqMan probes to quantify N. europaea (nerF/nerR/nerTaq) and N. eutropha (netF/netR/netTaq). Specificity and quantification biases of the newly designed primer sets were compared with the most popular primer pair (amoA1f/amoA2r) using DNA from various AOB cultures as individual templates as well as DNA mixtures and environmental samples. Based on the qPCR results, we found that the newly designed primer pairs and the most popular one performed similarly for individual templates but differed for the DNA mixtures and environmental samples. Using the popular primer pair introduced a high underestimation of AOB in environmental samples, especially for N. eutropha. Thus, there is a strong need for more specific primers and probes to understand the occurrence and competition between N. europaea and N. eutropha in different environments.
Collapse
Affiliation(s)
- Laura Orschler
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| | - Shelesh Agrawal
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| | - Susanne Lackner
- Institute IWARTechnical University of DarmstadtFranziska‐Braun‐Straße 7Darmstadt64287Germany
| |
Collapse
|
5
|
Nitrifying and Denitrifying Microbial Communities in Centralized and Decentralized Biological Nitrogen Removing Wastewater Treatment Systems. WATER 2020. [DOI: 10.3390/w12061688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological nitrogen removal (BNR) in centralized and decentralized wastewater treatment systems is assumed to be driven by the same microbial processes and to have communities with a similar composition and structure. There is, however, little information to support these assumptions, which may impact the effectiveness of decentralized systems. We used high-throughput sequencing to compare the structure and composition of the nitrifying and denitrifying bacterial communities of nine onsite wastewater treatment systems (OWTS) and one wastewater treatment plant (WTP) by targeting the genes coding for ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ). The amoA diversity was similar between the WTP and OWTS, but nosZ diversity was generally higher for the WTP. Beta diversity analyses showed the WTP and OWTS promoted distinct amoA and nosZ communities, although there is a core group of N-transforming bacteria common across scales of BNR treatment. Our results suggest that advanced N-removal OWTS have microbial communities that are sufficiently distinct from those of WTP with BNR, which may warrant different management approaches.
Collapse
|
6
|
Wigginton S, Brannon E, Kearns PJ, Lancellotti B, Cox A, Loomis GW, Amador JA. Nitrifying and Denitrifying Bacterial Communities in Advanced Nitrogen-Removal Onsite Wastewater Treatment Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1163-1171. [PMID: 30272776 DOI: 10.2134/jeq2018.03.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advanced N-removal onsite wastewater treatment systems (OWTS) rely on nitrification and denitrification to remove N from wastewater. Despite their use to reduce N contamination, we know little about microbial communities controlling N removal in these systems. We used quantitative polymerase chain reaction and high-throughput sequencing targeting nitrous oxide reductase () and bacterial ammonia monooxygenase () to determine the size, structure, and composition of communities containing these genes. We analyzed water samples from three advanced N-removal technologies in 38 systems in five towns in Rhode Island in August 2016, and in nine systems from one town in June, August, and October 2016. Abundance of ranged from 9.1 × 10 to 9 × 10 copies L and differed among technologies and over time, whereas bacterial abundance ranged from 0 to 1.9 × 10 copies L and was not different among technologies or over time. Richness and diversity of -but not -differed over time, with median Shannon diversity indices ranging from 2.61 in October to 4.53 in August. We observed weak community similarity patterns driven by geography and technology in The most abundant and containing bacteria were associated with water distribution and municipal wastewater treatment plants, such as and species. Our results show that communities in N-removal OWTS technologies differ slightly in terms of size and diversity as a function of time, but not geography, whereas communities are similar across time, technology, and geography. Furthermore, community composition appears to be stable across technologies, geography, and time for .
Collapse
|
7
|
Brannon EQ, Moseman-Valtierra SM, Lancellotti BV, Wigginton SK, Amador JA, McCaughey JC, Loomis GW. Comparison of N2O Emissions and Gene Abundances between Wastewater Nitrogen Removal Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:931-938. [PMID: 28991972 DOI: 10.2134/jeq2017.03.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological nitrogen removal (BNR) systems are increasingly used in the United States in both centralized wastewater treatment plants (WWTPs) and decentralized advanced onsite wastewater treatment systems (OWTS) to reduce N discharged in wastewater effluent. However, the potential for BNR systems to be sources of nitrous oxide (NO), a potent greenhouse gas, needs to be evaluated to assess their environmental impact. We quantified and compared NO emissions from BNR systems at a WWTP (Field's Point, Providence, RI) and three types of advanced OWTS (Orenco Advantex AX 20, SeptiTech Series D, and Bio-Microbics MicroFAST) in nine Rhode Island residences ( = 3 per type) using cavity ring-down spectroscopy. We also used quantitative polymerase chain reaction to determine the abundance of genes from nitrifying () and denitrifying () microorganisms that may be producing NO in these systems. Nitrous oxide fluxes ranged from -4 × 10 to 3 × 10 µmol NO m s and in general followed the order: centralized WWTP > Advantex > SeptiTech > FAST. In contrast, when NO emissions were normalized by population served and area of treatment tanks, all systems had overlapping ranges. In general, the emissions of NO accounted for a small fraction (<1%) of N removed. There was no significant relationship between the abundance of or genes and NO emissions. This preliminary analysis highlights the need to evaluate NO emissions from wastewater systems as a wider range of technologies are adopted. A better understanding of the mechanisms of NO emissions will also allow us to better manage systems to minimize emissions.
Collapse
|
8
|
Imhoff JF. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment. Microorganisms 2016; 4:microorganisms4020019. [PMID: 27681913 PMCID: PMC5029485 DOI: 10.3390/microorganisms4020019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane monooxygenase (pmoA) for methane oxidizing bacteria.
Collapse
Affiliation(s)
- Johannes F Imhoff
- GEOMAR Helmholtz-Zentrum für Ozeanforschung, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
9
|
Vetterli A, Hietanen S, Leskinen E. Spatial and temporal dynamics of ammonia oxidizers in the sediments of the Gulf of Finland, Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2016; 113:153-63. [PMID: 26722795 DOI: 10.1016/j.marenvres.2015.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 05/03/2023]
Abstract
The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes.
Collapse
Affiliation(s)
- Adrien Vetterli
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland.
| | - Susanna Hietanen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| | - Elina Leskinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Finland; Tvärminne Zoological Station, J.A. Palménin Tie 260, 10900, Hanko, Finland
| |
Collapse
|
10
|
Shay PE, Winder RS, Trofymow JA. Nutrient-cycling microbes in coastal Douglas-fir forests: regional-scale correlation between communities, in situ climate, and other factors. Front Microbiol 2015; 6:1097. [PMID: 26500636 PMCID: PMC4597117 DOI: 10.3389/fmicb.2015.01097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes such as fungi and bacteria play fundamental roles in litter-decay and nutrient-cycling; however, their communities may respond differently than plants to climate change. The structure (diversity, richness, and evenness) and composition of microbial communities in climate transects of mature Douglas-fir stands of coastal British Columbia rainshadow forests was analyzed, in order to assess in situ variability due to different temperature and moisture regimes. We compared denaturing gradient gel electrophoresis profiles of fungi (18S-FF390/FR1), nitrogen-fixing bacteria (NifH-universal) and ammonia-oxidizing bacteria (AmoA) polymerase chain reaction amplicons in forest floor and mineral soil samples from three transects located at different latitudes, each transect spanning the Coastal Western Hemlock and Douglas-fir biogeoclimatic zones. Composition of microbial communities in both soil layers was related to degree days above 0°C (2725–3489), while pH (3.8–5.5) best explained shifts in community structure. At this spatial scale, climatic conditions were likely to directly or indirectly select for different microbial species while local site heterogeneity influenced community structure. Significant changes in microbial community composition and structure were related to differences as small as 2.47% and 2.55°C in mean annual moisture and temperature variables, respectively. The climatic variables best describing microbial composition changed from one functional group to the next; in general they did not alter community structure. Spatial distance, especially associated with latitude, was also important in accounting for community variability (4–23%); but to a lesser extent than the combined influence of climate and soil characteristics (14–25%). Results suggest that in situ climate can independently account for some patterns of microbial biogeography in coastal Douglas-fir forests. The distribution of up to 43% of nutrient-cycling microorganisms detected in forest soils responded to smaller abiotic gradients than host trees.
Collapse
Affiliation(s)
- Philip-Edouard Shay
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria BC, Canada
| | - Richard S Winder
- Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, Victoria BC, Canada
| | - J A Trofymow
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria BC, Canada ; Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, Victoria BC, Canada
| |
Collapse
|
11
|
Ramond JB, Lako JDW, Stafford WHL, Tuffin MI, Cowan DA. Evidence of novel plant-species specific ammonia oxidizing bacterial clades in acidic South African fynbos soils. J Basic Microbiol 2015; 55:1040-7. [DOI: 10.1002/jobm.201400933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jean-Baptiste Ramond
- Center for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics; University of Pretoria; Pretoria South Africa
| | - Joseph D. W. Lako
- Department of Biotechnology; Dr. John Garang Memorial University of Science and Technology; Bor Town Jonglei State South Sudan
| | | | - Marla I. Tuffin
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM); University of the Western Cape; Cape Town South Africa
| | - Don A. Cowan
- Center for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics; University of Pretoria; Pretoria South Africa
| |
Collapse
|
12
|
dos Santos ACF, Marques ELS, Gross E, Souza SS, Dias JCT, Brendel M, Rezende RP. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments. GENETICS AND MOLECULAR RESEARCH 2012; 11:190-201. [PMID: 22370886 DOI: 10.4238/2012.january.27.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.
Collapse
Affiliation(s)
- A C F dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | | | | | | | | | | | | |
Collapse
|
13
|
Wu Z, Zou L, Lu D, Liu Z. Restoration of taxonomic and functional genes after bioaugmentation of petroleum contaminated soil. ACTA ACUST UNITED AC 2011; 13:2904-13. [DOI: 10.1039/c0em00761g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 2010; 85:425-40. [PMID: 19830422 PMCID: PMC2802487 DOI: 10.1007/s00253-009-2228-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
Abstract
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments.
Collapse
Affiliation(s)
- Pilar Junier
- Laboratory of Microbial Ecology, University of Neuchatel, Neuchatel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|